用户名: 密码: 验证码:
聚丙烯腈改性及其对原丝组织结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用自由基溶液聚合方式和湿法纺丝方法,研究了碳纤维用聚丙烯腈原丝的制备工艺,以及制备工艺与原丝各级结构之间的关系。
     首先,本文研究了丙烯腈(AN)与衣康酸(IA)、衣康酸铵(AIA)、衣康酸甲酯(MIA)等衣康酸系共聚单体的自由基溶液共聚合反应。三种反应体系的聚合速率都比均聚体系的聚合速率低,聚合速率快慢有以下规律:AN/MIA<AN/AIA<AN/IA<AN。这是由于电子效应和体积效应引起的链自由基活性差异而造成的结果。利用经典Kelen-Tudos方法,测定了IA、AIA、MIA三种共聚单体在分别与AN进行的二元共聚反应中的竞聚率,发现三种共聚单体共聚活性较高,竞聚率均大于1。
     本文比较了溶液聚合、水相悬浮聚合和混合介质沉淀聚合三种聚合方式的特点。溶液聚合反应平稳,聚合物粘均分子量可达2.5×10~5,分子量分布D可控制在2.4以下;水相悬浮聚合反应快速,分子量可高达6.6×10~5,但分子量分布D在3.2左右;混合介质沉淀聚合反应较快,产物分子量较高,可达5.2×10~5,分子量分布D为3.0左右。
     根据自由基聚合反应的基本原理,计算了聚丙烯腈理论平均分子量。在引发剂用量为单体重量的0.45%条件下,当采用DMSO溶液聚合且单体浓度分别为20%、30%(wt)时,聚合物理论数均分子量分别为5.39×10~4、6.89×10~4;当采用水相悬浮聚合时,产物理论数均分子量则为1.30×10~5。
     采用Monte Carlo法模拟了IA、AIA、MIA分别与AN共聚所得三种共聚物的链结构和序列分布,模拟结果表明,为保持均匀的序列结构,第二单体的浓度不易太高,最好控制在2w%以下。
     研究了共聚物溶液的流变性,讨论了分子量、固含量、共聚单体含量、温度、外加添加剂对共聚物溶液粘度的影响。发现以MIA作为共聚单体和添加表面活性剂是降低PAN共聚物体系粘度的两种有效途径。
     本文进行了聚合物溶液改性研究,发现P(AN/IA)氨化改性后变为P(AN/AIA),聚合物亲水性大幅提高。
     本文从双扩散和微相分离的角度,对聚丙烯腈原丝初生纤维成形机理进行了初步探讨。小分子DMSO、H_2O的双扩散,导致原液细流内PAN固相与DMSO-H_2O液相的微相分离。其中,固相为连续相,液相散布在连续相中形成孔洞,微相分离是初生纤维组织结构形成的基础。
     在微相分离过程中,如果PAN聚合物的亲水性不够大,则在凝固区易形成大而疏的孔隙结构,大而疏的孔隙结构形成孤立的闭孔,不利于双扩散的继续进行,为了开辟新的双扩散通道,丝条会变形,因而得到截面形状非圆形的初生纤维。当扩散强度过高时,丝条凝固区甚至会崩裂,出现微裂纹,过大的孔隙和微裂纹将会遗传到原丝结构中,形成缺陷。提高聚合物的亲水性,可以改善初生纤维微相分离的孔隙结构,得到细而密、相互贯通的开孔结构,使双扩散平缓而顺利地进行,因而可得到截面形状为圆形的初生纤维。
     建立了原丝中残留DMSO的高压液相色谱检测方法。原丝中残留DMSO在水中的溶出率与水温和浸泡时间正相关。通过提高水洗温度、延长水洗时间,可使原丝中DMSO的残留量由93 mg/L下降到2 mg/L以下。
     本文从晶态结构、取向结构和孔隙结构的角度,对原丝的组织结构进行了分析。在多级牵伸过程中,PAN大分子整链或部分链段发生滑动,沿纤维轴向重排取向,重排取向过程中相邻的取向度高的分子链或链段形成束状结构,取向度低的分子链或链段则存在于束状结构之间,形成束状结构之间的联系结构。SEM和HRTEM测试显示,PAN原丝的取向结构表现为原纤和微原纤两级束状结构,原纤直径在50~200nm之间,微原纤直径在10nm左右,微原纤结构是原丝组织结构的基本单元。共聚单体IA、MIA能有效降低PAN原丝的结晶度和晶粒尺寸。PAN聚合物亲水性的改善有利于提高原丝的牵伸比和取向度。
     本文借助差示热分析(DTA)、差示热量扫描法(DSC)、热重分析(TG)等测试手段,研究了共聚单体对共聚物热性能的影响。试验结果表明,共聚单体MIA和IA均能使PAN放热峰向低温区移动,P(AN/MIA)、P(AN/IA)放热峰比均聚PAN放热峰向低温区分别移动了5.7℃、42.7℃,IA对PAN放热特性的改善比MIA更有效;氨改性没有改变P(AN/IA)原丝的热性能,P(AN/AIA)聚合物在纺丝过程中重新变成了P(AN/IA)。
     进行了热稳定化纤维的傅立叶红外光谱(FTIR)分析、氧元素分析和X-射线衍射(XRD)分析,标明了各温区发生的环化脱氢、脱氢环化以及氧化反应中氰基等官能团的变化,揭示了线形PAN大分子链转化为耐热梯形结构过程中的特征。
In this paper, the preparation technology and structure at different levels of PAN-based carbon fiber precursor were investigated in detail. The preparation technology was composed of free-radical solution copolymerization, dope modification and wet-spinning.
    Firstly, the radical solution copolymerization of AN with comonomers IA, AIA, MIA was investigated, respectively. The reactivity rates of the three copolymerization systems were all slower than that of homo-polymerization of AN, AN/MIA    The characteristics of solution polymerization, aqueous suspension polymerization and mixed-medium precipitation polymerization were summarized. The reaction rate of solution polymerization was the smoothest of the three, with the viscosity molecular weight reaching 2.5 × 10~5 at the high end and molecular weight distribution D at the range of 2.0-2.4. The reaction rate of aqueous suspension polymerization was the fastest of the three, with the viscosity molecular weight reaching 6.6 ×10~5 at the high end and molecular weight distribution D at about 3.2. The viscosity molecular weight can reach 5.2 ×10~5 at the high end and molecular weight distribution D was about 3.0.
    The theoretical molecular weight was calculated according to free-radical solution polymerization principle. When the monomer concentration was 20 30%(wt) respectively, the theoretical number-average molecular weight was 5.39 ×10~4 6.89 × 10~4 accordingly. For the aqueous suspension polymerization products, the theoretical number-average molecular weight was 1.30×10~5. The composition and sequence distribution of copolymers of AN with IA, MAA and AA as comonomers were simulated by Monte Carlo method.
    The rheological behavior of the polymer solution was studied. Effects of molecular weight, polymer concentration, comonomer concentration, temperature and additives on the viscosity of the solution were discussed. It was discovered that MIA as comonomer and surfactants as additives were both effective methods to reduce the viscosity of the solution.
    The polymer solution modification was carried out in this paper. When P(AN/IA)changed to P(AN/AIA) after amino-modification, the hydrophilic property of the polymer was improved dramaticly.
    From the view of mutual-diffusion and micro-phase separation, the protofiber coagulation was analyzed. The mutual-diffusion of the solvent DMSO and coagulate H_2O made the polymer micro-phase and the DMSO-H2O micro-phase separated from the dope, with the polymer as continuous phase, and liquid phase dispersing as micro-void.
    In the progress of micro-phase separation, if the hydrophilic property of the polymer was not high enough, big and loose voids were formed in the coagulation zoo. The big and loose voids were not interconnected and interfered the diffusion of DMSO and H_2O. The protofiber deformed for open new diffusion paths and the transverse section of the protofiber was no longer round. If the hydrophilic property of the polymer was high enough, small and interconnected voids were formed and the diffusion would progress smoothly, with protofiber transverse section round.
    A method was established for the determination of DMSO in the precursor fibers by high performance liquid chromatography (HPLC). By means of spinning processes improving, the residual of DMSO in PAN precursor fibers was reduced from 93 mg/L to 2 mg/L.
    The texture of precursor fibers was studied from the view of crystal structure, orientation structure and void structure. In the multi-level drawing process, the PAN chains or part of chain segments slide relatively and rearranged and oriented along the fiber axis. In the rearrangement and orientation process, chains or part of chain segments with high degree of orientation formed bundle-shaped structure, with chains or part of chain segments with low degree of orientation forming the connection structures among the bundle-shaped structures. SEM and HRTEM tests showed that the bundle structure had two levels: fibrils and micro-fibrils. The diameter of fibrils was at the range of 50-200nm, while the diameter of micro-fibrils was about 10nm. Micro-fibrils were the base structure of PAN precursor fibers. Comonomer IA or MIA could effectively decrease the crystal degree and crystal size. The increase of hydrophilicity of PAN made the polymer sustainable to high drawing-ratio and high degree of orientation.
    The effect of comonomers on the thermal properties of PAN fibers was studied by differential thermal analysis (DTA), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TG). It was discovered that comonomers IA or MIA could make the exothermal peak shift to low temperature zone, with the exothermal peak of P(AN/MIA) and P(AN/IA) 5.7°C and 42.7°C lower than that of homo-PAN, respectively. Amino-modification didn't change the thermal properties of the precursor fibers because P(AN/MIA) changed back to P(AN/IA) in the spinning process.
    In the last part of the paper, fiber samples from every important thermal stabilization steps were studied by infrared spectroscopy (IR), oxygen element analysis and X-ray diffraction (XRD). The changes of -CN and other key functional groups during the reactions of thermal stabilization were tracked. Several characteristics of the reaction were summarized.
引文
1. L. P. Kobets, I. S. Deev. Carbon fibers: Structure and mechanical properties. Composites Science and Technology, 1997, 57: 1571-1580
    2.贺福.碳纤维及其应用技术.北京:化学工业出版社,2004
    3.贺福,赵建国,王润娥.碳纤维工业的长足发展.高科技纤维与应用,2000,25(4):9-13
    4.罗益锋.新世纪初世界碳纤维透视.高科技纤维与应用,2000,25(1):1-7
    5. Anthony D. Cato, Dan D. Edie. Flow behavior of mesophase pitch. Carbon, 2003, 41: 1411-1417
    6.王德诚.PAN基及沥青基碳纤维生产现状与展望.合成纤维工业,1998,21(2):45-48
    7. D. D. Edie. The effect of processing on the structure and properties of carbon fiber. Carbon, 1998, 36(4): 345-362
    8. P. Rajalingam, Ganga Radhakrishnan. Polyacrylonitrile precursor for carbon fibers. JMS-REV. Macromolecular Chemistry Physics, 1991, C31: 301-310
    9.吴雪平,杨永岗,郑经堂,贺福.高性能聚丙烯腈基碳纤维的原丝.高科技纤维与应用,2001,26(6):6-10
    10.赵根祥,邱海鹏.聚酰亚胺基碳纤维的开发.合成纤维工业,2000,23(1):75-77
    11. Ames A. Newell, Dan D. Edie, E. Loren Fuller. Kinetics of carbonization and graphitization of PBO fiber. Journal of Applied Polymer Science, 1996, 60: 825-832
    12. K. Sen, S. Hajir Bahrami, P. Bajaj. High-performance acrylic fibers. JMS-REV. Macromolecular Chemistry Physics, 1996, C36: 1-76
    13. A. K. Gupta, D. K. Paliwal, P. Bajaj. Acrylic precursors for carbon fibers. JMS-REV. Macromolecular Chemistry Physics, 1991, C31: 1-89
    14.柯泽豪,杜菁菁.碳纤维研究发展之现状与未来.高科技纤维与应用,2000,25(6):1-9
    15.贺福,王润娥,赵建国.聚丙烯腈基碳纤维.化工新型材料,1999,27(4):6-11
    16.黎小平,张小平,王红伟.碳纤维的发展及其应用现状.高科技纤维与应用,2005,30(5):24-30
    17.赵稼祥.碳纤维低成本制备技术.高科技纤维与应用,2003,28(6):12-14
    18.全国合成纤维科技信息中心(上海).聚丙烯腈基碳纤维的发展和应用.合成纤维,2004,(5):1-4
    19.赵稼祥.我国高性能碳纤维研究为何一直徘徊不前.材料导报,2000,14(4):4-5
    20.贺福,赵建国.世纪之交展望我国的碳纤维工业.化工新型材料,2000,28(3):3-7
    21.罗益锋.新世纪初高科技纤维的新形势与展望.高科技纤维与应用,2001,26(1):1-10
    22.丁新波,晏雄.碳纤维的的生产及应用现状.纺织导报,2004,(6):69-73
    23. Mukesh K. Jain, A. S. Abhiraman. Conversion of acrylonitrile-based precursor fibers to carbon fibers: Part 1: A review of the physical and morphological aspects. Journal of Materials Science, 1987, 22: 278-300
    24. Mukesh K. Jain, M. Balasubramanian, P. Desai, A. S. Abhiraman. Conversion of acrylonitrile-based precursor fibers to carbon fibers: Part 2: Precursor morphology and thermooxidative stabilization. Journal of Materials Science, 1987, 22: 301-312
    25. M. Balasubramanian, Mukesh K. Jain, S. K. Bhattacharya, A. S. Abhiraman. Conversion of acrylonitrile-based precursor fibers to carbon fibers: Part 3: Thermooxidative stabilization and continuous, low temperature carbonization. Journal of Materials Science, 1987, 22: 3864-3872
    26. Keshav V. Datye. Spinning of PAN-fiber: Part Ⅲ: Wet spinning. Synthetic Fibers, 1996, (4): 11-19
    27. Keshav V. Datye. Spinning of PAN-fiber: Part Ⅱ: Dry spinning. Synthetic Fibers, 1995, (2): 7-11
    28.高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺.合成纤维工业,2002,25(4):35-38
    29. Zongquan Wu, Anqiu Zhang, Simona Percee, Shi Jin, Alexander J. Jing, Jason J. Ge, Stephen Z. D. Cheng. Structure and properties of melt-spun high acrylonitrile copolymer fibers via continuous zone-drawing and zone-annealing processes. Thermochimica Acta, 2003, 396: 87-96
    30. V. A. Bhanu, P. Rangarajan, K. Wiles, M. Bortner, M. Sankarpandian, D. Godshall, T. E. Glass, A. K. Banthia, J. Yang, G. Wilkes, D. Baird, J. E. McGrath. Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors. Polymer, 2002, 43: 4841-4850
    31.陈克权,李荣安,李瑞.共聚法合成可熔纺聚丙烯腈树脂.合成纤维工业,2001,24(1):34-38
    32.宋育梅,王刚.二甲基亚砜法碳纤维用聚丙烯腈原丝的技术进展.化工科技,2001,9(3):60-63
    33. D. C. Gupta, J. P. Agrawal. Effect of comonomers on thermal degradation of polyacrylonitrile. Journal of Applied Polymer Science, 1989, 38: 265-270
    34. Jin-Shy Tsai, Chung-Hua Lin. The effect of the side chain of acrylate comonomers on the orientation, pore-size, and properties of polyacrylnitrile precursor and resulting carbon fiber. Journal of Applied Polymer Science, 1991, 42: 3039-3044
    35. A. K. Gupta, D. K. Paliwal, P. Bajaj. Effect of the nature and mole fraction of acidic comonomer on the stabilization of polyacrylonitrile. Journal of Applied Polymer Science, 1996, 59: 1819-1826
    36.姜庆利,张旺玺,刘建军,蔡华甦.丙烯腈与衣康酸的溶液共聚合.高分子学报,1999,(5):640-643
    37. Renjith Devasia, C. P. Reghunadhan Nair, K. N. Ninan. Copolymerization of acrylonitrile with itaconic acid in dimethylformamide: effect of triethylamine. European Polymer Journal, 2003, 39: 537-544
    38. Renjith Devasia, C. P. Reghunadhan Nair, K. N. Ninan. Solvent and kinetic penultimate unit effects in the copolymerization of acrylonitrile with itaconie acid. European Polymer Journal, 2002, 38: 2003-2010
    39.张旺玺.衣康酸对聚丙烯腈原丝结构和性能的影响.高分子学报,2000,(3):287-291
    40. P. Bajaj, K. Sen, S. Hajir Bahrami. Solution polymerization of acrylonitrile with vinyl acids in dimthylformamide. Journal of Applied Polymer Science, 1996, 59: 1539-1550
    41.胡盼盼,朱德杰,赵炯心,吴承训,钱宝钧.超高相对分子质量聚丙烯腈浓溶液的制备.合成纤维工业,1998,21(3):10-13
    42.孙春峰,王成国,张旺玺.不同共聚单体与丙烯腈的共聚合及其表征.合成技术及应用,2003,18(4):9-12
    43. M. M. Iovleva, S. I. Banduryan, L. A. Zlatoustova, V. M. Radishevskii, A. T. Serkov, G. A. Budnitskii. Physical chemistry of fiber-forming polymers, morphology of the structure of polyacrylonitrile fibers. Fiber Chemistry, 1999, 31: 140-142
    44.李青山,沈新元,孟庆财,冯云生.腈纶生产工学.北京:中国纺织出版社,2000
    45.唐春红,张旺玺,曹维宇,刘杰,吴刚.不同牵伸倍数的PAN原丝结构性能的研究.塑料工业,2004,32(3):54-58
    46. P. H. WANG. Aspects on prestretching of PAN precursor: Shrinkage and thermal behavior. Journal of Applied Polymer Science, 1998, 67: 1185-1190
    47.杨茂伟,王成国,王延相,王启芬,刘焕章,蔡相军.PAN湿法纺丝工艺与纤维性能相关性研究.材料导报,2006,20(10):156-158
    48. B. S. Gupta, Y. E. El Mogahzy. The effect of hot-wet draw ratio on the coefficient of friction of wet-spun acrylic yarns. Journal of Applied Polymer Science, 1989, 38: 899-905
    49.张韧坚,何玉莲,赵锡武.超细旦腈纶油剂的研制.精细石油化工进展,2003,4(2):32-34
    50. I. Shimada, T. Takahagi, M. Fukuhara, K. Morita, A. Ishitani. FT-IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers. Journal of Polymer Science Part A: Polymer Chemistry, 1986, 24(8): 1989-1995
    51. A. K. Gupta, A. K. Maiti. Effect of heat treatment on the structure and mechanical properties of polyacrylonitrile fibers. Journal of Applied Polymer Science, 1982, 27: 2409-2416
    52.张乃武,王培华.PAN共聚纤维预氧化反应动力学的研究.青岛化工学院学报,1991,12(2):21-25
    53. G. T. Sivy, B. Gordon, M. M. Coleman. Studies of the degradation of copolymers of acrylonitrile and acrylamide in air at 200℃. Speculations on the role of the preoxidation step in carbon fiber formation. Carbon, 1983, 21: 573-578
    54. Tse-Hao Ko, Hsing-Yie Ting, Chung-Hua Lin. Thermal stabilization of polyacrylonitrile fibers. Journal of Applied Polymer Science, 1988, 35: 631-640
    55. S. Dalton, F. Heatley, P. M. Budd. Themal stabilization of polyacrylonitrile fibers. Polymer 1999, 40: 5531-5543
    56.于晓强,庄光山,丁洪太,蔡华苏.聚丙烯腈基碳纤维预氧化过程中环构化机理.山东工业大学学报,1995,25(4):301-306
    57.荣浩鸣,王培华,杨小平.聚丙烯腈(PAN)原丝在预氧化过程中的热机械行为-收缩应力变化的研究.北京化工大学学报,1999,26(2):33-37
    58.贺福,杨永岗.突破原丝瓶颈是碳纤维产业化的必备条件.高科技纤维与应用,2001,26(6):1-5
    59.齐志军,宋威,林树波.PAN原丝生产过程对碳纤维强度的影响因素.高科技纤维与应用,2001,26(5):17-20
    60. P. Bajaj, D. K. Paliwal, A. K. Gupta. Influence of metal ions structure and properties acrylic fibers. Journal of Applied Polymer Science, 1998, 67: 1647-1659
    61.岳中仁,李仍元,王平华,刘杰.碳纤维直径对结构和性能的影响.合成纤维工业,1991,14(3):29-32
    62.岳中仁,张骏,李仍元.聚丙烯腈热氧稳定化纤维鞘芯结构的控制.安徽大学学报,1991,(1):77-82
    63.秦志全,高葆春,周霞.聚丙烯腈基碳纤维抗拉强度的影响因素.高科技 纤维与应用,2006,31(1):36-40
    64.董纪震,罗鸿烈,王庆瑞,曹振林.合成纤维生产工艺学.北京:纺织工业出版社,1993
    65.陈厚,王成国,崔传生,蔡华甦.丙烯腈与N-乙烯基吡咯烷酮在H_2O/DMSO混合溶剂中共聚反应动力学研究.功能高分子学报,2002,15(4):457-460
    66.刘建军,王成国.碳纤维前驱体聚丙烯腈原丝的亲水改性研究.化工科技,2003,13(4):1-3
    67.张斌,赵祥臻,赵炯心,胡盼盼,吴承训,钱宝钧.以含氟自由基为引发剂制备超高相对分子质量聚丙烯腈.合成纤维工业,1997,20(2):19-22
    68. Yasuhiro Nakano, Kunio Hisatani. Highly isotactic polyacrylonitriles prepared using dialkylmagnesium/water systems as initiators. Polymer International, 1994, 35: 249-255
    69.喻发全,刘艳萍,黄世英,姚树人.丙烯酸与丙烯腈感光共聚合反应研究.高分子材料科学与工程,1999,15(2):32-34
    70. S. Sarkar, M. S. Adhikari, M. Banerjee, R. S. Konar. Persulfate initiated aqueous polymerization of acrylonitrile at 50℃ in an inert atmosphere of nitrogen gas. Journal of Applied Polymer Science, 1988, 36: 1865-1876
    71. Anju Dixit, S. Malik, Sarvagya S. Katiyar. Radical polymerization of acrylonitrile initiated by a-picolinium p-chlorophenacylid. Polymer International, 1996, 37: 287-290
    72. P. Shukla, A. K. Srivastava. Polymerization of acrylonitrile initiated by styrene-arsenic sulfide complex. Colloid and Polymer Science, 1993, 271: 241-245
    73. Masatomo Minagawa, Hitoshi Yamada, Kouichi Yamaguchi, Fumio Yoshii. γ-ray irradiation canal polymerization conditions ensuring highly stereoregular(>80%) poly(acrylonitrile). Macromolecules, 1992, 25: 503-510
    74. 110. Hangquan Li, Zhongjie Du, Eli Ruckenstein. Room temperature-initiated and self-heating copolymerization of acrylonitrile with vinyl acetate. Journal of Applied Polymer Science,1998,68:999-1011
    75.杜中杰,励杭泉.丙烯腈/醋酸乙烯酯单体的室温引发本体聚合.高分子材料科学与工程,2000,16(4):33-35
    76.杜中杰,励杭泉.丙烯腈/醋酸乙烯酯单体的室温引发浓乳液聚合.高分子材料科学与工程,2000,16(3):53-55
    77.滕新荣,胡学超,邵惠丽.超临界CO_2中合成的聚丙烯腈的相对分子质量及分布的测定.东华大学学报(自然科学版),2003,29(3):79-83
    78. P. Bajaj, T. V. Sreekumar, K. Sen. Effect of reaction medium on radical coplymerization of acrylonitrile with vinyl acids. Journal of Applied Polymer Science, 2001, 79: 1640-1652
    79. Neeta Srivastava, J. S. P. Rai. Radical copolymerization of acrylonitrile with methyl acrylate complexed by zinc chloride. J. M. S.-Pure Applied Chemistry., 1993, A30: 541-556
    80.王占平.丙烯腈-丙烯酸甲酯-衣康酸在氯化锌溶液中的聚合反应.合成纤维工业,1997,20(2):16-18
    81.洪璋传.丙烯腈连续水相聚合的过程分析及控制.合成纤维工业,1994,17(2):37-41
    82.张引枝,李志敬,贺福,王茂章.丙烯腈在混合溶剂中的聚合动力学研究.高分子材料科学与工程,1993,9(6):84-87
    83. Shu-Xue Zhou, Zhi-Xue Weng, Zhi-Ming Huang, Zu-Ren Pan. Effects of water solubility of acrylonitrile on vinylidene chloride/acrylonitrile/styrene suspension polymerization. Journal of Applied Polymer Science, 2001, 79: 1431-1438
    84. C. Zhang, R. D. Gilbert, R. E. Fornes. Preparation of ultrahigh molecular weight PAN and its terpolymers. Journal of Applied Polymer Science, 1995, 58: 2067-2075
    85. Yasuhiro Nakano, Kunio Hisatani. Synthesis of highly isotactic (mm>0.70) polyacryloniotrile by anionic polymerization using diethylberyllium as a main initiator. Polymer International, 1994, 35: 207-213
    86. Yasuhiro Nakano, Kunio Hisatani. Synthesis of ultra-high molecular weight polyacrylonitrile with highly isotactic content(mm>0.60) using dialkymagnesiurn/polyhydric alcohol system as catalyst. Polymer International, 1995, 36: 87-99
    87.吴承训,万锕俊,赵炯心,张斌.阴离子模板聚合法合成较高立构规整性的聚丙烯腈.合成技术及应用,2000,15(1):1-5
    88. P. Bajaj, T. V. Sreekumar, K. Sen. Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. Journal of Applied Polymer Science, 2002, 86: 773-787
    89.徐梁华.PAN干湿法纺丝工艺中原丝的表面沟槽形态.高科技纤维与应用,2001,26(2):21-24
    90.何翼云,施祖培.聚丙烯腈熔融纺丝技术进展.合成纤维工业,1997,20(6):32-36
    91.陈蕾,杨明远,毛萍君.聚丙烯腈纤维的熔融纺丝.合成技术及应用,1990,5(3):36-41
    92.樊淑芳.适于熔融纺丝的聚丙烯腈熔体物料的研究.石化技术与应用,2000,18(4):203-205
    93. J. Mittal, R. B. Mathur, O. P. Bahl. Post spinning modification of PAN fibers-a review. Carbon, 1997, 35(12): 1713-1722
    94. Tsehao Ko, Lichuan Huang. Preparation of high-performance carbon fibers from PAN fibers modified with cobaltous chloride. Journal of Materials Science, 1992, 27: 2429-2436
    95. Tsehao Ko, Lichuan Huang. The influence of cobaltous chloride modification on physical properties and microstructure of modified PAN fiber during carbonization. Journal of Applied Polymer Science, 1998, 70: 2409-2415
    96. Tse-Hao Ko, Phaichit Chiranairadul, Hsing-Yie Ting, Chung-Hua Lin. The effect of modification on structure and dynamic mechanical behavior during the processing of acrylic fiber to stabilized fiber. Journal of Applied Polymer Science, 1989, 37: 541-552
    97. V. I. Besshaposhnikova, S. E. Artemenko, L. G. Panova. Carbonization of polyacrylonitrile fiber modified with polyphosphate. Fiber Chemistry, 1998, 30: 257-259
    98. Tsehao Ko. The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization. Journal of Applied Polymer Science, 1991, 43: 589-600
    99. Tsehao Ko, Singchuang Liau. Preparation of graphite fibres from a modified PAN precursor. Journal of Materials Science, 1992, 27: 6071-6078
    100. Kenneth E. Gonsalves, Radha Agarwal. Modification of PAN by titanium dialkylamides: Precursors for titanium carbide. Journal of Applied Polymer Science, 1988, 36: 1659-1665
    101.刘川,刘杰,王培华.化学改性聚丙烯腈原丝热应力的研究.北京化工大学学报,1999,26(4):30-32
    102. J. Mittal, R. B. Mathur, O. P. Bahl. Post spinning treatment of PAN fibers using suceinic acid to produce high performance carbon fibers. Carbon, 1998, 36: 893-897
    103. Bennett S. C., Johnson D. J. Electron-microscope studies of structural heterogeneity in PAN-based carbon fibers. Carbon, 1979, 17(1): 25-39
    104.贺福,杨永岗.提高碳纤维强度的理论基础及其技术途径.高科技纤维与应用,2001,26(2):7-11
    105.齐志军,林树波,于振环.影响碳纤维强度的因素分析.高科技纤维与应用,2003,28(4):30-35
    106. Qian Baojun, Qin Jian, Zhou Zhenlong. Void formation in acrylic fibers. Textile Asia, 1989, (4): 40-57
    107. X. Hu, D. J. Johnson, J. G. Tomka. Molecular modeling of the structure of polyacrylonitrile fibers. Journal of the Textile Institute, 1995, 86(2): 322-331
    108. Xiao-Ping Hu. The molecular structure of polyacrylonitrile fibers. Journal of Applied Polymer Science, 1996, 62: 1925-1932
    109. Y. H. Bang, S. Lee, H. H. Cho. Effect of methyl acrylate composition on the microstructure changes of high molecular weight polyacrylonitrile for heat treatment. Journal of Applied Polymer Science, 1998, 68: 2205-2213
    110.张寿春,温月芳,杨永岗,郑经堂,凌立成.Effect ofitaconic acid content on the thermal behavior of polyacrylonitrile.新型炭材料,2003,18(4):315-318
    111.徐梁华,张巍,童元建,王晓玲,武冠英.PAN原丝工艺过程结晶行为的研究.新型炭材料,1997,12(3):31-33
    112. X. D. Liu, W. Ruland. X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules, 1993, 26: 3030-3036
    113. Rachel J. Hobson, Alan H. Windle. Crystalline structure of atactic poly(acrylonitrile). Macromolecules, 1993, 26: 6903-6907
    114.徐棵华,张巍,童元建,王晓玲,武冠英.PAN原丝工艺过程结晶行为的研究.新型炭材料,1997,12(3):31-33
    115.韩曙鹏,徐粱华,曹维宇,姚红.PAN纤维致密化过程对纤维晶态结构的影响.合成纤维工业,2004,27(6):17-19
    116.韩曙鹏,徐粱华,曹维宇,姚红.X射线衍射法研究聚丙烯腈原丝的晶态结构.北京化工大学学报,2005,32(2):63-67
    117. Yu-Jun Bai, Cheng-guo Wang, Ning Lun, Yan-xiang Wang, Mei-jie Yu, Bo Zhu. HRTEM microstructures of PAN precursor fibers. Carbon, 2006, 44: 1773-1778
    118.T.Gries著,刘越,李理译.聚丙烯腈纤维的发展:特性与应用.国外纺织技术,2004,226(1):9-10
    1.陈希,黄象安.化学纤维实验教程.北京:纺织工业出版社,1988
    2. G. S. Misra, P. K. Mukberjee. The relationship between the molecular weight and intrinsic viscosity of poyacrylnitrile. Colloid and Polymer Science, 1978, 256: 1027-1029
    3.张美珍,柳百坚,谷晓昱.聚合物研究方法.北京:中国轻工业出版社,2000
    4.臧瑾光.物理化学实验。北京:北京理工大学出版社
    5.潘祖仁.高分子化学.北京:化学工业出版社,1997
    6.高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001
    7.高家武,张复盛,张秋禹,伍必兴.高分子材料近代测试技术.北京:北京航空航天大学出版社,1994
    8.刘建军,王成国,陈娟,尹玉勇.高效液相色谱法测定PAN基碳纤维原丝中DMSO残留量.色谱,2007,25(2):284-285
    1.徐梁华.突破原丝瓶颈效应加速我国PAN碳纤维技术的发展.炭素科技,2001,11(3):3-5
    2.罗益锋.碳纤维的新形势与新技术.新型碳材料,1995,10(4):13-25
    3.张兴智.PAN基高性能碳纤维的制备及其性能的研究.安徽大学学报,1995,(1):74-81
    4.吴雪平,杨永岗,郑经堂,贺福.高性能聚丙烯腈基碳纤维的原丝.高科技纤维与应用,2001,26(6):6-10
    5.宋育梅,王刚.二甲基亚砜法碳纤维用聚丙烯腈原丝的技术进展.化工科技,2001,9(3):60-63
    6. P. Bajaj, T. V. Sreekumar, K. Sen. Effect of reaction medium on radical coplymerization of acrylonitrile with vinyl acids. Journal of Applied Polymer Science, 2001, 79: 1640-1652
    7. Keshav V. Datye. Formulation of polyacrylonitrile for solution spinning. Synthetic Fibers, 1994, (4): 37-43
    8.洪璋传.丙烯腈连续水相聚合的过程分析及控制.合成纤维工业,1994,17(2):37-41
    9.张引枝,李志敬,贺福,王茂章.丙烯腈在混合溶剂中的聚合动力学研究.高分子材料科学与工程,1993,9(6):84-87
    10. C. Zhang, R. D. Gilbert, R. E. Fornes. Preparation of ultrahigh molecular weight PAN and its terpolymers. Journal of Applied Polymer Science, 1995, 58: 2067-2075
    11. D. C. Gupta, J. P. Agrawal. Effect of comonomers on thermal degradation of polyacrylonitrile. Journal of Applied Polymer Science., 1989, 38: 265-270
    12. A. K. Gupta, D. K. Paliwal, P. Bajaj. Effect of the nature and mole fraction of acidic comonomer on the stabilization of polyacrylonitrile. Journal of Applied Polymer Science, 1996, 59: 1819-1826
    13.张旺玺,王艳芝,刘建军,蔡华苏.丙烯酸对聚丙烯腈原丝结构和热性能的影响.高分子材料科学与工程,2000,16(4):76-78
    14. Neeta Srivastava, J. S. P. Rai. Radical copolymerization of acrylonitrile with methyl acrylate complexed by zinc chloride. J. M. S.-Pure Appl. Chem., 1993, A30: 541-556
    15. Zongquan Wu, Anqiu Zhang, Simona Percee, Shi Jin, Alexander J.Jing, Jason J.Ge, Stephen Z.D.Cheng. Structure and properties of melt-spun high acrylonitrile copolymer fibers via continuous zone-drawing and zone-annealing processes. Thermochimica Acta, 2003, 396: 87-96
    16. Renjith Devasia, C.P.Reghunadhan Nair, K.N.Ninan. Copolymerization of acrylonitrile with itaconic acid in dimethylformamide: effect of triethylamine. European Polymer Journal,2003,39: 537-544
    17.张旺玺.丙烯腈与衣康酸共聚物的合成与表征.山东工业大学学报,1999,29(5):411-416
    18.张旺玺.衣康酸对聚丙烯腈原丝结构和性能的影响.高分子学报,2000,(3):287-291
    19.余木火,唐建国.高分子化学.北京:中国纺织出版社,1999
    20.肖超渤,胡运华.高分子化学.武汉:武汉大学出版社,1998
    21.何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000
    22.王延相,董学梅,焦培明,王成国,季保华,何东新.高性能碳纤维原丝聚合机理和纺丝工艺的研究.材料导报,2003,17(4):75-77
    23.潘祖仁.高分子化学.北京:化学工业出版社,1997
    24.陈厚,王成国,张旺玺,蔡华甦.丙烯腈与N-乙烯基吡咯烷酮共聚体系对单体竞聚率的影响.高分子材料科学与工程,2003,19(3):72-74
    25. P. Bajaj, D. K. Paliwal, A. K. Gupta. Acrylonitrile-acrylic acids copolymers. Ⅰ: Synthesis and characterization. Journal of Applied Polymer Science, 1993, 49: 823-833.
    26. Chen Hou, Cheng-Guo Wang, Hua-Su Cai, Wang-xi Zhang. Determination of the reactivity ratios for acrylonitrile/N-vinylpyrrolidone copolymerization systems. Journal of Applied Polymer Science, 2003, 89: 422-425
    27.李克友,张菊华.高分子合成原理及工艺学.北京:科学出版社,1999
    28.张林,杨明远,毛萍君.悬浮聚合反应制备高相对分子质量PAN.合成纤维工业,1998,21(4):29-31
    29.潘祖仁,翁志学,黄志明.悬浮聚合.北京:化学工业出版社,1997
    30.唐施华,袁惠根.AN水相沉淀聚合颗粒形态和聚合机理.合成纤维工业,1987,10(1):12-16
    31. Landoll Leo M. Use of hydrophobically modified water soluble polymers in suspension polymerization. US Patent 4352916, 1982
    32.陈厚,张旺玺,蔡华甦.丙烯腈和丙烯酸的水相悬浮聚合及表征.金山油化纤,1999,(4):7-11
    33.吴承训,何建明,施飞舟.丙烯腈的悬浮聚合.高分子学报,1991,(2):121-123
    34.张旺玺.丙烯腈与丙烯酸混合介质悬浮聚合工艺研究.合成纤维,2000,29(3):6-8
    35.陈厚,王成国,崔传生,蔡华苏.H_2O/DMSO混合溶剂对丙烯腈与N-乙烯基吡咯烷酮共聚反应的影响。新型炭材料,2002,17(4):38-42
    36.陈厚,张旺玺,王成国,蔡华甦.水相悬浮聚合法合成较高分子量聚丙烯腈.高分子材料科学与工程,2003,19(2):79-82
    37.赵建青,李伯耿,袁惠根.丙烯腈水相沉淀聚合研究进展.高分子通报,1992.3:1-8
    38. Hou Chen, Ying Liang, Cheng-guo Wang. Kinetics of copolymerization of acrylonitrile with Ammonium itaconate in a H2O/dimethyl formamide mixture. Journal of Applied Polymer Science,2004,94: 1151-1155
    39.王艳芝,孙春峰,王成国,朱波.混合溶剂法合成高分子量聚丙烯腈.山东大学学报,2003,33(4):362-366
    40.王善琦.高分子化学原理.北京:北京航空航天大学出版社,1993
    41.李培仁,单洪青.混合溶剂法制备丙烯腈共聚物的特性.北京化工大学学 报,1995,22(2):26-29
    42.张旺玺,李木森,徐忠波,王艳芝,王成国.丙烯腈与衣康酸在DMSO/H_2O中的聚合及聚合物性能表征.高分子学报,2003,(1):83-87
    43. V. E. Meyer, G. G. Lowry. Integral and differential binary copolymerization equations. Journal of Polymer Science Part A: General Papers, 1965, 3: 2843-2851
    44.孙春峰.共聚单体与聚丙烯腈原丝及其碳纤维结构性能的相关性研究[硕士学位论文].济南:山东大学,2004
    45.杨玉良,张卫东.高分子科学中的Monte Carlo方法.上海:复旦大学出版社,1993
    46.石明孝,裘武军,陈意秋,徐锋.共聚反应的Monle Carlo模拟和竞聚率的概率估算.高分子学报,1991,(5):577-583
    1.李青山,沈新元,孟庆财,冯云生.腈纶生产工学.北京:中国纺织出版社,2000
    2.朱岿立,毛萍君,杨明远.PAN基碳纤维原丝用纺丝溶液的流变性质.合成技术及应用,2002,17(4):4-7
    3. Hou Chen, Ying Liang, Cheng-guo Wang. Viscosity behavior of acrylonitrile-Ammonium itaconate copolymer solutions in dimethyl sulfoxide. Journal of Applied Polymer Science, 2004, 93: 2622-2626
    4. Chen Hou, Cheng-Guo Wang, Liang Ying, Hua-Su Cal. Stability of acrylonitrilc-acrylamide copolymer solutions. Journal of Applied Polymer Science, 2004, 91: 4105-4108
    5.王鹏,潘鼎.干湿纺PAN/DMSO原液触变性与大分子缠结机理的研究.合成纤维工业,2004,27(6):37-39
    6.徐梁华,吴红枚.高浓度PAN/DMSO原液粘度特性及纺丝工艺性的研究.北京化工大学学报,1999,26(3):21-24
    7. Roychen Joseph, Surekha Devi, Animesh Kumar Rakshit. Viscosity behaviour of acrylonitrile-acrylate copolymer solutions in dimethyl formide. Polymer International, 1991, 26(2): 89-92
    8.陈方泉,陈惠芳,潘鼎.聚丙烯腈/二甲基亚砜溶液的流变学性质.高分子材料科学与工程.2005,21(3):133-136
    9.董纪震,罗鸿烈,王庆瑞,曹振林.合成纤维生产工艺学.北京:纺织工业出版社,1993
    10.何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000
    11.张斌,赵炯心,张幼维,杨年慈,吴承训.超高相对分子质量聚丙烯腈溶解的研究.东华大学学报,2002,28(1):111-115
    12.秦建,胡盼盼,赵炯心,吴宗铨.聚丙烯腈大分子缠结和解缠过程的研究.合成纤维工业,1991,14(2):19-25
    13. David Karl-Heinz, Nogaj Alfred, Rinkler Heinrich. Process for stabilizing acrylonitrile polymer spinning solutions. US Patent 4286076, 1981
    14. James C. Masson. Acrylic fiber technology and application. New York: M. Deldcer, 1995
    15.金离尘.盐类对腈纶干湿纺丝原液及成品纤维性能的影响.合成纤维工业,1991,14(3):23-28
    16. Chen Hou, Cheng-Guo Wang, Liang Ying, Hua-Su Cai. Effect of inorganic salts on viscosity of acrylonitrile-N-vinylpyrrolidone copolymer solutions. Journal of Applied Polymer Science, 2003, 89: 3492-3495
    17. P. Bajaj, D. K. Paliwal, A. K. Gupta. Influence of metal ions on structure and properties of acrylic fibers. Journal of Applied Polymer Science, 1998, 67: 1647-1659
    18.陈厚,王成国,蔡华甦.无机盐对丙烯腈与N-乙烯基吡咯烷酮共聚物溶液粘度的影响.化工学报,2003,54(10):1497-1500
    19. Z. Bashir, M. Manns, D. M. Service, D. C. Bott, I. R. Herbert, R. N. Ibbett, S. P. Church. Investigation of base induced cylization and methane proton abstraction in polyacrylonitrile solutions. Polymer, 1991, 32: 1826-1833
    20. N. S. Batty, J. T. Guthrie. Degradation of polyacryloniotrile in solution by alkali. Polymer, 1978, 19: 1145-1148
    21.潘祖仁.高分子化学.北京:化学工业出版社,1997
    22.蓝立文.高分子物理.西安:西北工业大学出版社,1993
    23. V. A. Bhanu, P.Rangarajan, K.Wiles, M.Bortner, M.Sankarpandian, D.Godshall, T.E.Glass, A.K.Banthia, J.Yang, G.Wilkes, D.Baird, J.E.MeGrath. Synthesis and characterization of acrylonitrile methyl acrylate statistical eopolymers as melt proeessable carbon fiber precursors. Polymer, 2002, 43: 4841-4850
    1.乔福牛.二甲基亚砜一步法碳纤维用聚丙烯腈原丝生产工艺.合成纤维工 业,1995,18(4):19-23
    2. Keshav V. Datye. Spinning of PAN-fiber: Part Ⅲ: Wet spinning. Synthetic Fibers, 1996, (4): 11-19
    3.李青山,沈新元,孟庆财,冯云生.腈纶生产工学.北京:中国纺织出版社,2000
    4.吕永根,杨常玲,翟磊,李永红,吕春祥,贺福,凌立成.用称重法研究聚丙烯腈树脂的凝固过程.新型炭材料,2004,19(1):16-20
    5.曾小梅,张莹,赵炯心.聚丙烯腈.二甲基亚砜溶液挤出胀大的研究.合成技术及应用,2004,19(3):9-12
    6.沈新元.高分子材料加工原理.北京:中国纺织出版社,2000
    7.陈娟.聚丙烯腈湿法纺丝凝固过程的研究[博士学位论文].济南:山东大学,2006
    8. Po-Da Hong, Che-Min Chou, Hsing-Tsai Huang. Phase separation behavior in polyvinyl alcohol/ethylene glycol/water ternary solutions. European Polymer Journal, 2000, 36: 2193~2200
    9. Yong-Ming Wei, Zhen-Liang Xua, Xiao-Tian Yang, Hong-Lai Liu. Mathematical calculation of binodal curves of a polymer/solvent/nonsolvent system in the phase inversion process. Desalination, 2006, 192: 91-104
    10. F. W. Altena, C. A. Smolders. Calculation of Liquid-Liquid Phase Separation in a Ternary System of a Polymer in a Mixture of a Solvent and a Nonsolvent. Macromolecules, 1982, 15: 1491-1498
    11. S. H. Yoo, J. H. Kim, J. Y. Jho, et al. Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes: Effect of PVP molecular weight. Journal of Membrane Science, 2004, 236: 203-207
    12. J. H. Hao, S. C. Wang. Calculation of alcohol-acetone-cellulose acetate ternary phase diagram and their relevance to membrane formation. Journal of Applied Polymer Science, 2001, 80: 1650-1657
    13. L. Yilmaz, A. J. McHugh. Analysis of nonsolvent-solvent-polymer phase diagram and their relevance to membrane formation modeling. Journal of Applied Polymer Science, 1986, 31: 997-1018
    14.董纪震,罗鸿烈,王庆瑞,曹振林.合成纤维生产工艺学.北京:纺织工业出版社,1993
    15. S. J. Law, S. K. Mukhopadhyay. The construction of a phase diagram for a ternary system used for the wet spinning of acrylic fibers based on a linearized cloudpoint curve correlation. Journal of Applied Polymer Science, 1997, 65: 2131-2139
    16. T.-H. Young, W.-Y. Chuang. Thermodynamic analysis on the cononsolvency of poly(vinyl alcohol) in water-DMSO mixtures through the ternary interaction parameter. Journal of Membrane Science, 2002, 210: 349-359
    17. P. Van de Witte, P.J. Dijikstra, J.W.A. Van den Berg, et al. Phase separation processes in polymer solutions in relation to membrane formation. Journal of Membrane Science, 1996, 117: 1-31
    18.张冠,赵炯心,曾小梅,武永涛,吴承训,潘鼎.DMSO湿法PAN纤维截面形状形成条件的研究.合成技术及应用,2005,20(4):10-14
    19. Liang Ying, Chen Hou, Wang Fei. Diffusion Coefficient of DMSO in polyacrylonitrile fiber formation. Journal of Applied Polymer Science, 2006, 100: 4447-4451
    20. Chen Hou, Ying Liang, Cheng-Guo Wang. Determination of the diffusion coefficient of H_2O in polyacrylonitrile fiber formation. Journal of Polymer Research, 2005, 12: 49-52
    21. P. Bajaj, T. V. Sreekumar, K. Sen. Structure development during dry-jet-wet spinning of aerylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. Journal of Applied Polymer Science, 2002, 86: 773-787
    22. Jin-Shy Tsai, Chung-Hua Lin. The effect of molecular weight on the cross section and properties of polyacrylonitrile precursor and resulting carbon fiber. Journal of Applied Polymer Science, 1991, 42: 3045-3050
    23.徐梁华,吴红枚.高浓度PAN/DMSO原液粘度特性及纺丝工艺性的研究.北京化工大学学报,1999,26(3):21-24
    24. Qian Baojun, Qin Jian, Zhou Zhenlong. Void formation in acrylic fibers. Textile Asia, 1989, (4): 40-57
    1.董纪震,罗鸿烈,王庆瑞,曹振林.合成纤维生产工艺学.北京:纺织工业出版社,1993
    2.Ziabicki A 著,华东纺织学院化学纤维教研室译.纤维成型基本原理.上海:上海科学技术出版社,1983
    3. D. D. Edie. The effect of processing on the structure and properties of carbon fibers. Carbon, 1998, 36: 345-362
    4.王延相,季保华,刘焕章.湿法纺聚丙烯腈原丝凝固过程的研究.功能材 料,2005,36(9):1438-1441
    5. Baojun Qian, Ding Pan, Zhenqiou Wu. The mechanism and characteristics of dry-jet wet-spinning of acrylic fibers. Advances in Polymer Technology, 1986, 6: 509-529
    6. P. Bajaj, T. V. Sreekumar, K. Sen. Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. Journal of Applied Polymer Science, 2002, 86: 773-787
    7. S. H. Bahrami, P. Bajaj, K. Sen. Effect of Coagulation Conditions on Properties of Poly(acrylonitrile-carboxylic acid) Fibers. Journal of Applied Polymer Science, 2003, 89: 1825-1837
    8.刘建军,王成国,陈娟,尹玉勇.高效液相色谱法测定PAN基碳纤维原丝中DMSO残留量.色谱,2007,25(2):284-285
    9.齐志军,宋威,林树波.PAN原丝生产过程对碳纤维强度的影响因素.高科技纤维与应用,2001,26(5):17-20
    10.陈娟.聚丙烯腈湿法纺丝凝固过程的研究:[博士论文].济南:山东大学,2006
    11.李青山,沈新元,孟庆财,冯云生.腈纶生产工学.北京:中国纺织出版社,2000
    12. X. Hu, D. J. Johnson, J. G. Tomka. Molecular modeling of the structure of polyacrylonitrile fibers. J. Text. Inst., 1995, 86: 322-331
    13. Xiao-Ping Hu. The molecular structure of polyacrylonitrile fibers. Journal of Applied Polymer Science, 1996, 62: 1925-1932
    14. X. D. Liu, W. Ruland. X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules, 1993, 26: 3030-3036
    15. Rachel J. Hobson, Alan H. Windle. Crystalline structure of atactic poly(acrylonitrile). Macromolecules, 1993, 26: 6903-6907
    16. Yu-Jun Bai, Cheng-guo Wang, Ning Lun, Yan-xiang Wang, Mei-jie Yu, Bo Zhu. HRTEM microstructures of PAN precursor fibers. Carbon, 2006, 44: 1773-1778
    17.徐樑华,张巍,童元建,王晓玲,武冠英.PAN原丝工艺过程结晶行为的研 究.新型炭材料,1997,12(3):31-33
    18.韩曙鹏,徐粱华,曹维宇,姚红.PAN纤维致密化过程对纤维晶态结构的影响.合成纤维工业,2004,27(6):17-19
    19.韩曙鹏,徐粱华,曹维宇,姚红.X射线衍射法研究聚丙烯腈原丝的晶态结构.北京化工大学学报,2005,32(2):63-67
    20.徐强,吴丝竹,徐粱华,曹维宇,吴刚.聚丙烯腈原丝取向结构和力学性能研究.合成纤维工业,2004,27(5):4-6
    21.刘岳新,徐粱华,张均,赵志娟.PAN分子取向程度与纤维结构性能的关系.合成纤维工业,2005,28(1):5-8
    22. Qiang Xu, Lianghua Xu, Weiyu Cao, Sizhu Wu. A study on the orientation structure and mechanical properties of polyacrylonitrile precursors. Polym. Adv. Technol., 2005, 16: 642-645
    1.王茂章,贺福.碳纤维制造、性能及其应用北京:科学出版社,1984
    2.贺福.碳纤维及其应用技术.北京:化学工业出版社,2004
    3. D.D. Edie. The effect of processing on the structure and properties of carbon fibers. Carbon, 1998, 36(4): 345-362
    4. Tse-Hao Ko, Chung-Hua Lin, Hsing-Yie Ting. Structural changes and molecular motion of polyacrylonitrile fibers during pyrolysis. Journal of Applied Polymer Science. 1989, 37(2): 553-566
    5. Tse-Hao Ko. Influence of continuous stabilization on the physical properties and microstructure of PAN-based carbon fibers. Journal of Applied Polymer Science, 1991, 42(7): 1949-1957
    6. A. K.Gupta, D. K. Paliwal, P. Bajaj. Effect of the nature and mole fraction of acidic comonomer on the stabilization of polyacrylonitrile. Journal of Applied polymer science, 1996,59: 1819-1826
    7. P. Bajaj, D. K. Paliwal, A. K. Gupta. Acrylonitrile-acrylic acids copolymers. 1. synthesis and characterization. Journal of Applied polymer science, 1993,49: 823-833
    8. P. Bajaj, T. V. Sreekumar, K. Sen. Thermal behavior of acrylonitrile copolymers having methacrylic and itaconic acid comonomers. Polymer, 2001,42(4): 1707-1718
    9. D C Gupta, J P Agrawal. Effect of comonomers on thermal degradation of polyacrylonitrile. Journal of Applied Polymer Science, 1989, 38(2): 265-270
    10. J. S. Tsai, C. Lin. The effect of the distribution of composition among chains on the properties of polyacrylonitrile precursor for carbon fiber. Journal of Material Science, 1991,26: 3996-4000
    11. Y.H.Bang, S. Lee, H.H.Cho. Effect of methyl acrylate composition on the microstructure changes of high molecular weight polyacrylonitrile for heat treatment. Journal of Applied polymer science, 1998,68: 2205-2213
    12. Shinghua Chang. Thermal analysis of acrylonitrile copolymers containing methyl acrylate. Journal of Applied Polymer Science, 1994, 54: 405-407
    13. P. J.Sanchez-Soto, M.A.Aviles, J.C.del Rio, J.M.Gines, J.Pascual, J.L.Perez-Rodriguez. Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis. Journal of Analytical and Applied Pyrolysis,2001,58-59: 155-172
    14. G. T. Sivy, B. Gordon, M. M. Coleman. Studies of the degradation of copolymers of acrylonitrile and acrylamide in air at 200℃. Speculations on the role of the preoxidation step in carbon fiber formation. Carbon, 1983,21(6): 573-578
    15. E. Homer, Kisinger. Reaction kinetic in different thermal analysis. Analytical Chemistry, 1957,29: 1702
    16. L.Laffont, M.Monthioux, V.Serin, R.B.Mathur, C.Guimon, M.F.Guimon. An EEL study of the structural and chemical transformation of PAN polymer to solid carbon. Carbon,2004,42: 2485-2494
    17. K E Perepelkin. Chemistry and technology of chemical fibers, Oxidized (cyclized) polyacrylonitrile fibers-OXYPAN. A review. Fibre Chemistry, 2003,35(6): 409-416
    18. E Fitzer, W Frohs, M Heine. Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon, 1986, 24(4): 387-394
    19. Masatomo Minagawa, Kazuyuki Miyano, Masahiko Takahashi, Fumio Yoshii. Infrared characteristic absorption bands of highly isotactic poly(acrylonitrile). Macromolecules, 1988, 21: 2387-2391
    20. J. Mittal, O. P. Bahl, R. B. Mathur, N. K. Sandle. IR studies of PAN fibers thermally stabilized at elevated temperatures. Carbon, 1994, 32: 1133-1136
    21. M. M. Coleman, G. T. Sivy. Fourier Transform IR studies of the degradation of polyacrilonitrile copolymers-I. Carbon, 1981,19(2): 123-126
    22. S. P. Varma, B. B. Lal, N. K. Srivastava. IR studies on preoxidized PAN fibers, Carbon, 1976, 14: 207-209
    23. G. T. Sivy, M. M. Coleman. Fourier Transform IR studies of the degradation of polyacrylonitrile copolymers. Carbon, 1981, 19: 127-131
    24. A.Gupta, I.R.Harrison. New aspects in the oxidative stabilization of PAN-based carbon fibers. Carbon, 1996,34(11): 1427-1445
    25. A.Gupta, I.R.Harrison. New aspects in the oxidative stabilization of PAN-based carbon fibers: II. Carbon, 1997,35(6): 809-818

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700