用户名: 密码: 验证码:
高性能高温超导线性相位滤波器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用高温超导(HTSC)薄膜研制的微波滤波器具有体积小、重量轻、插损小、Q值高和滤波特性好等优点,这是波导腔、介质谐振器或常规平面结构设计的滤波器所无法比拟的。这些优点对于减轻通信系统的重量和缩小体积降低成本都是非常有利的。
     本论文首先介绍了高温超导材料的基本特性,在对当前国内外文献中已报道的部分同类产品做了简要归纳的基础上对高温超导线性相位滤波器的应用进行了分析。本论文在解决了高温超导微波无源器件的设计、光刻工艺、密封封装和低温测量等难点之后,不仅分别采用了自均衡法和外均衡法来进行多种结构的高温超导线性相位滤波器的设计,而且还分别利用不同的设计方法,对不同阶数,不同相对带宽的高温超导线性相位滤波器进行了多角度的研制。第二章主要分析了谐振器间各类耦合及给出Extracted-pole结构高温超导线性相位滤波器的实验结果和结果分析。实测线性相位滤波器指标为:中心频率为1740MHz,带宽为80MHz,带内群时延波动(线性相位特性)<±1.5 ns,带外抑制>20dB,带内插损最好可达到0.141dB。第三章主要介绍利用原型结构直接进行高温超导自均衡线性相位滤波器的研制。实测线性相位滤波器指标为:中心频率为1993MHz,带宽55MHz,通带内最优插损为0.22dB,回波损耗优于-13.8dB,群时延起伏<±1 ns的有效带宽约占通带的75%。第四章主要介绍利用并联结构进行高温超导线性相位滤波器的研制。实测线性相位滤波器指标为:中心频率为2000 MHz,带宽40 MHz,通带内最优插损为0.264 dB,回波损耗优于-17.6 dB,群时延起伏<±1.5 ns的有效带宽约占通带的70%以上。第五章主要介绍交叉线结构自均衡小型化高温超导线性相位滤波器的研制。实测线性相位滤波器指标为:带宽15 MHz,中心频率2514 MHz,通带内最优插损为2.96 dB。群时延起伏<±10 ns的有效带宽约占通带的70%。第六章主要介绍高温超导外均衡线性相位滤波器的研制。实测线性相位滤波器指标为:中心频率2250.86 MHz,带宽14 MHz,通带内最优插损为2.092 dB,回波损耗优于-18.97 dB,群时延起伏< 50ns有效带宽约占通带的78.57%。第七章主要讨论了利用低阶线性相位滤波器通过级联的方式构造高阶线性相位滤波器的方法,并给出仿真实例。
     第三章和第五章还给出了部分自行综合出的线性相位滤波器低通原型参数或归一化耦合矩阵,今后在此基础上还可根据实际设计目标综合出对应的低通原型参数或归一化耦合矩阵作为设计工作的理论指导。
     在论文设计过程中,所采用的基片均采用YBCO/LaAlO3/YBCO双面薄膜。设计各器件的主要过程为:首先给出线性相位滤波器的原理参数模型和设计原理,利用电磁仿真工具建立高温超导滤波器的理论仿真模型以获取理论理想结果,然后采用全波电磁仿真方法,综合设计符合要求的高温超导线性相位滤波器,并完成设计结果与理论结果比对。最后完成器件的制作、封装和测量,将试验结果与仿真结果进行比较。从基片介电常数、厚度、加工工艺等多种因素以不同角度针对测试结果与理想结果之间的差异进行分析。
The microwave filters using HTSC (high temperature superconductivity) thin films that are small in size and mass have the advantages of low resistance and high quality factor, so its performances are much better than the filters using wave-guide, dielectric resonance or conventional planar structures, offer the potential of large reduction in mass and volume of communication systems, and lead to significant cost reduction of communication systems.
     In this thesis, the characteristics of HTSC materials are presented first. Then some examples announced in some recent papers are given, and the using of HTSC filters is analyzed too. Difficulties such as the design of HTSC microwave passive component , the lithographic processing technology , the encapsulation and the measurement in low temperature and so on have been solved in this thesis. After this, a series of HTSC linear phase filters of different orders, structures and fractional bandwidths are simulated and designed in different ways, using self-equalization or external equalization of group delay. In chapter 2, the couplings of open-loop microstrip resonators are studied and the measured results of a HTSC filter designed with extracted-pole techenology, whose bandwidth is 80 MHz and center frequency is 1750 MHz, has been given. The best measured insertion loss is less than 0.141 dB and the group delay fluctuates about±1.5 ns across the pass band. In chapter 3, a six-pole HTSC linear phase filter is designed and manufactured with prototype structure. The measured filter has a 55 MHz pass band at a center frequency of 1993 MHz. The measured return loss is better than 13.8 dB across the pass band and the best insertion loss is 0.22 dB. The linear phase bandwidth, where the variation of group delay fluctuates about±1 ns, is over 75% of the filter bandwidth. In chapter 4, a specific parallel structure is used to develop a six-pole HTSC linear phase filter. The measured filter has a 40 MHz pass band at a center frequency of 2000 MHz. The measured return loss is better than 17.6 dB across the pass band and the best insertion loss is 0.264 dB. The linear phase bandwidth, where the variation of group delay fluctuates about±1.5 ns, is over 70% of the filter bandwidth. The measured results well satisfy the performance of simulation. In chapter 5, the process of synthesizing and simulating a series of HTSC linear phase filters of different orders with cross-coupled quadruplet structures to realize the self-equalization. The measured 8-order filter has a 15 MHz pass band at a center frequency of 2514 MHz. The best insertion loss is 2.96 dB across the pass band. The linear phase bandwidth, where the variation of group delay fluctuates about±10 ns, is over 70% of the filter bandwidth. In chapter 6, with external equalization technique, an eight-pole HTSC linear phase filter is designed and manufactured, getting access to a single pole group delay equalizer to compensate the variation. And this results in a much flatter group delay in the pass band of filter. The measured filter has a 14 MHz pass band at a center frequency of 2250.86 MHz. The measured return loss is better than 18.97 dB and the best insertion loss is 2.092 dB. The linear phase bandwidth, where the variation of group delay fluctuates about±50 ns, is over 78.57% of the filter bandwidth. In chapter 7, the method and design process of cascaded linear phase filter are discussed. And the simulated data of two classes of 12-order linear phase filter cascaded from different kinds of 6-order linear phase filter with different structures are given respectively.
     In chapter 3 and chapter 5, some prototype parameters of low-pass linear phase filters are synthesized and given by this thesis itself. Those parameters can play an extremely important role in guiding the following design of various linear phase filters.
     All the HTSC linear phase filters are manufactured on the double-sided HTSC YBCO (YBa2Cu3O7) films of about 400nm thickness on a LaAlO3 substrate of 0.5 mm. The whole process in developing the filters can be illustrated as follows. First of all, the prototype parameters are cited from other papers or synthesized by this thesis itself with specific optimization methods. Secondly, the lumped parameter models are given, getting access to some formulations to convert low-pass forms to band-pass forms. Then the theoretical responses are achieved by EM simulation solvers. Thirdly, the modes of HTSC resonators and the linear phase filters are built using CAD programs by full-wave field solvers. Subsequently, the simulated responses and theoretical responses are compared. Finally, the HTSC filters are fabricated, installed in metal shielding boxes and measured; the measured results are given and analyzed as well.
引文
[1]沈致远.高温超导微波电路[M].北京:国防工业出版社,2000.
    [2]吴培亨.超导电子学研究进展[J].电子工程师,1997(4):8-11
    [3] Mansour R R.Microwave superconductivity[J]. IEEE Transactions on Microwave Theory and Techniques,2002,50(3): 750-759.
    [4]金建勋,郑陆海.高温超导材料与技术的发展及应用[J].电子科技大学学报,2006(S1): 612-627
    [5]罗正祥.超导技术:材料王国的超人[M].成都:四川教育出版社, 1999
    [6]李承恕.当前我国移动通信发展中的若干问题[J].电信建设,2001(6):30-32
    [7]熊予莹,康琳,吴培亨,等.高温超导滤波器在现代移动通信中的应用[J].移动通信,2001(1):41-45
    [8] http://www.mc21st.com/~p.aspx?id=8
    [9]张其瑞.超导电性能[M].浙江:浙江大学出版社,1992
    [10] Kubota H, Takeuchi H, et al.Low Thermal Leakage Coaxial Cable for HTS Devices[J]. IEEE Transactions on Applied Superconductivity , 1999,9(2): 3117-3120.
    [11] Jedamzik D, Menolascino R, Pizarroso M, et al. Evaluation of HTS sub-systems for cellular basestations[J].IEEE Transactions on Applied Superconductivity , 1999,9(2): 4022– 4025.
    [12]吴东升,邓红斌,王小平,等.高温超导窄带滤波器的研究[J].低温与超导,1998 (4):16-18
    [13] RHODES J DAVID.The Design and Synthesis of a Class of Microwave Bandpass Linear Phase Filters[J].IEEE-MTT,1969,17(4):189-204.
    [14] RHODES J DAVID.A lowpass prototype network for microwave linear phase Filters[J]. IEEE-MTT, 1970,28(7): 290-301.
    [15] JOHN DAVID RHODES.The Generalized Direct-Coupled Cavity Linear Phase Filter[J]. IEEE Transactions on Microwave Theory And Techniques,1970,18(6):308-313.
    [16] JOHN DAVID RHODES. In-Line Waveguide Selective Linear Phase Filters[J].IEEE Transactions on Microwave Theory And Techniques, 1974, MlS-22(1):1-5.
    [17] Qian Jianzhong,Wang Qiang.Circular waveguide dual-mode linear phase filter[C]//1997 Asia Pacific Microwave Conference ,1997: 837-840.
    [18] Antonije R Djordjevic, Alenka G Zajicl.Low-reflection bandpass filters with a flat group delay[J].Ieee Transactions On Microwave Theory And Techniques, 2005,53(4):1164- 1167.
    [19] GERHARD PFITZENMAIER.Synthesis and Realization of Narrow-Band Canonical Microwave Bandpass Filters Exhibiting Linear Phase and Transmission Zeros[J].IEEE Transactions On Microwave Theory And Techniques, 1982,82(9):1300-1311.
    [20] J DAVID RHODES.Generalized interdigital linear phase networks with optimum maximally flat amplitude characteristics[J].IEEE Transactions On Circuit Theory, 1970,17(3):399-409.
    [21] J H CLOETE.Tables for Nonminimum-Phase Even-Degree Low-Pass Prototype Networks for the Design of Microwave Linear-Phase Filters[J].IEEE Transactions On Microwave Teotry And Techniques,1979,27(2):123-128.
    [22] THODES J DAVID.General Extracted Pole Synthesis Technique with Applications to Low- Loss TE011 Mode Filters.IEEE Transaction On Microwave And Techniques,1980, 28(9):1018-1028
    [23] Kenneth S K Yeo, Michael J Lancaster, Jia-Sheng Hong,et al.The Design of Microstrip Six-Pole Quasi-Elliptic Filter with Linear Phase Response Using Extracted-Pole Technique[J].IEEE Transaction On Microwave And Techniques, 2001,49(2):321-327.
    [24] Jia-Sheng Hong,Eamon P McErlean,Bindu Karyamapudi,et al.High-Order Superconducting Filter with Group Delay Equalization[C].Microwave Symposium Digest,2005 IEEE MTT-S International,2005:1467-1470.
    [25] Fei Li, Xueqiang Zhang, Qingduan Meng,et al.Superconducting filter with a linear phase for third-generation mobile communications[J].Supercond. Sci. Technol,2007(20):611–615.
    [26] Tao Zuo,Shaolin Yan,Xinjie Zhao,et al.The design of a linear phase superconducting filter with quasi-elliptic response[J].Supercond Sci. Technol,2008(6):1-6
    [27] Tao Zuo,Lan Fang,Shaolin Yan,et al.A High Temperature Superconducting Group-delay Equalizer.Microwave And Optical Technology Letters[J].2007,49(9):2163-2165.
    [28] Liang Sun,Chunguang Li,Yusheng He, et al.An HTS microstrip equalizer for improving the group delay of an HTS filter for third-generation communications[J].Supercond Sci.Technol, 2008(3):1-6
    [29] Jia-Sheng Hong,M J Lancaster.Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters[J].IEEE Transcation on Microwave Theory Tech, 1996,44(11): 2099-2109.
    [30]羊恺,王占平,张其劭,等.小型化高温超导带通滤波器的研制[C]//刘盛钢.庆祝中华人民共和国建国50周年电子科技大学学术论文专集.成都:电子科技大学出版社,1999:199-202.
    [31]羊恺,补世荣,张其劭,等.高温超导小型化多曲折线滤波器研制[J].科学通报, 2002(18):1378-1380.
    [32] Jia-Sheng Hong. Microstrip Filters for RF/Micriowave Applications[C]. John Wiley & Sons, INC.2001.
    [33]甘本祓,吴万春.现代微波滤波器的结构与设计[M].北京:科学出版社,1998.
    [34]黄席椿,高顺全.滤波器综合法设计原理[M].北京:人民邮电出版社,1977.
    [35]约翰森.微波器理论导论[M].颜绍书,李远文,译.北京:人民邮电出版社,1981.
    [36] Ian H.Theory and design of microwave filters[M].MPG Books Limited,2001.
    [37]张天良,羊恺,罗正祥,等.开口环小型化高温超导滤波器.科学通报,2007,52(22):2599-2602
    [38] Zhang Tianliang,Yang Kai,Luo Zhengxiang,et al.The Design of Open-loop Resonator HTSC Linear-Phase Filter.Cryogenics,2007,47:409-412.
    [39] Richard J. Cameron.Advanced Coupling Matrix Synthesis Techniques for Microwave Filters[J].IEEE MTTS,2003,51(1):1-10.
    [40] Richard J. Cameron.General Coupling Matrix Synthesis Methods for Chebyshev Filtering Functions[J].IEEE Transactions On Microwave Theory And Techniques,1999,47(4):433- 442.
    [41] John W Bandler,Jadranka R P,Virenllra K Jha,et al.Cascaded Network Optimization Program. Cascaded Network Optimization Program[J].IEEE Transactions On Microwave Tlieory And Techniques,974,22(3):300-308.
    [42] Special Issue on Microwave and Millimeter-Wave Applications for High-Temperature Superconductivity. IEEE Trans-Microwave Theory Tech, 1996, 40
    [43] Raafat R Mansour,Shen Ye,Bill Jolley,et al.A 60-Channel Superconductive Input Multiplexer Integrated with Pulse-Tube Cryocoolers[J].IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,2000,48(7):1171-1180.
    [44] [Zhang Tianliang,Yang kai,Bu Shirong,et al.Development of Miniature HTSC Wide-band Filter with Open-loop Resonators[J].Chinese Science Bulletin,2008(53):1304-1309.
    [45] Michael J Lancaster,Frederick Huang,Adrian Porch,et al.Miniature Superconducting Filters[J].IEEE Transactions On Microwave Theory And Techniques,1996,44(1):1339 -1346.
    [46] M Reppel,H Chaloupka, et al.Novel Approach For Narrowband Superconducting Filters[J]. 1999 IEEE Mlt-S Digest,1999(4):1563-1566.
    [47] H R Yi,Stephen K Remillardl.A Novel Ultra-Compact Resonator for Superconducting Thin-Film Filters[J].IEEE Transactions On Microwave Theory And Techniques,2003,51 (12):2290-2296.
    [48] R Levy.Direct Synthesis of cascade quadruplet filters[J].IEEE Transcations on Microwave Theoty Tech.,1995,MTT-43(12):2940-2945.
    [49] N Yildirim,M Karaaslan,Y Sen,et al.Cascaded Triplet Filter Design Using Cascaded Synthesis Approach[J].IEEE MTT-S Int. Microwave Symp.Digest,1999(3):903-906.
    [50]贾宝富,王一凡,罗正祥,等.广义切比雪夫线性相位滤波器设计[J].电子科技大学学报,2008(3):389-392.
    [51] E G Cristal.Theory and design of transmission line all-pass equalizers[J].IEEE Trans MTT,1969(17):28-38.
    [52] C. M. Kudsia,S. Kallianteris,M. N. S. Swamy.Linear phase versus externally equalized longitudinal dual-mode filters for space application.IEEE MTT-S Int. Microwave Symp. Dig.,1978:220–222.
    [53] Simon Hellerstein.Synthesis of All-Pass Delay Equalizers[J].IEEE Trans on Circuit Theory, 1961:215-222.
    [54] J. O. Scanlan,J. D. Rhodes.Microwave all-pass network—Part I.IEEE Trans. Microwave Theory Tech.1968,vol.6(3),pp:62–79
    [55] Heng-Tung Hsu,Hui-Wen Yao,Kawthar A.Zaki,et al.Synthesis of Coupled-Resonators Group-Delay Equalizers[J].IEEE MTT,2002, 50(8):1960-1968.
    [56] A E Atia,A E Williams,R W Newcomb,et al.Narrow-band multiple-coupled cavity synthesis[J].IEEE Transcations on Circuit Syst.,1974,21(5):649–655.
    [57] M H Chen.Short-circuit tuning method for singly terminated filters[J].IEEE Transcations on Microwave Theory Tech.,1997(25):1032–1036.
    [58] A E Atia,H W Yao.Coupling and resonant frequency measurements of cascaded resonators[J]. IEEE MTT-S Int.Microwave Symp.Dig.,2000:1637–1640.
    [59] H T Hsu,H W Yao,K A Zaki,et al.Design of coupled resonator group delay equalizers [J].IEEE MTT-S Int. Microwave Symp. Dig.,2001:1603–1606.
    [60] M H Chen.The design of a multiple cavity equalizer[J].IEEE Trans.Microwave Theory Tech., 1982(30):1380–1383.
    [61] C. Buoli.3 dB 90o Dc Block Directional Coupler. European Microwave Conference, 1988. 18th:779-784.
    [62] Tetsuo Anada,Hsu Jui-Pang.Analysis and Synthesis of Ttriplate Branch-Line 3dB Coupler based on the Planar Circuit Theory[J].IEEE MTT-S Digest,1987,87(1):207-210.
    [63]张敬如,赵风利,裴士伦,等.S-Band 3dB定向耦合器的优化设计及应用[C]//第三届全国粒子加速器技术学术交流会论文集.北京:Chinese Physics C,2008:172-174.
    [64]补世荣,羊恺,罗正祥,等.高温超导级联滤波器[J].电子科技大学学报,2003,32(4): 409-412 .
    [65] Levy R,Snyder R V,Matthaei G.,et al.Design of microwave filters[J].IEEE Transactions on Microwave Theory and Techniques,2002,50(3):783 - 793
    [66]应鲁曲.高温超导微波无源器件及其应用[J].微波与卫星通信,1999(4):7-12
    [67] Riddle A.High Performance Parallel coupled Microstrip Filters[J].Microwave Symposium Digest,IEEE MTT-S International,1988(25-27):427-430.
    [68]朱震宇,程其恒,冯一军.高温超导微带滤波器的研究[J].低温物理学报刊,1998(3):71-75
    [69]赵晓红,张玉田,钱平凯,等.高温超导微波带通滤波器的研制[J].北京邮电大学学报, 1996(4):50-54
    [70] Hong Teuk Kim.A Compact Narrowband HTS Microstrip Filter for PCS Applications[J]. IEEE Transactions on Applied Superconductivity, 1999,9(2):3909-3912.
    [71] Hui Xu,Gao E,Sahba S,et al.Design and implementation of a lumped-element multipole HTS filter at 15 MHz[J].IEEE Transactions on Applied Superconductivity, 1999,19(2):3886-3888.
    [72] Jia-Sheng Hong, Lancaster M J.Cross-coupled microstrip hairpin-resonator filters[J].IEEE Transactions on Microwave Theory and Techniques,1998,46(1):118-122.
    [73] Jia-Sheng Hong,Lancaster M J.Recent Advances in Microstrip Filters for Communications and Other Applications[C].IEE Colloquium on 22 May,1997:2/1-2/6
    [74] Jia-Sheng Hong,Lancaster M J.Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies[J].IEEE Transactions on Microwave Theory and Techniques,2000,48(7):1098-1107.
    [75]羊恺.高温超导微波窄带通滤波器的研制//94南京全国超导薄膜和超导电子学学术讨论会文集.南京,1994
    [76] Heing Tiong Su.Highly Miniature HTS Microwave Filters[J].IEEE Transcations on Applied Superconductvity, 2001,11(1):349-352.
    [77] S J Fiedziuszko, J A Curtis, S C Holme,et al.Low-loss multiplexers with planar dual-mode HTS resonators[J],IEEE Transcation on Microwave Theory Tech.,1996,44(7):1248–1257.
    [78] B A Aminov,H Piel,M A Hein,et al.YBaCuO disk resonator filters operating at high power[J] IEEE Transcations on Applied Superconductvity, 1999,9(2):4185-4188.
    [79] S Schornstein.High-temperature Superconductor-Shielded High Power Dielectric Dual-Mode Filter for Applications in Satellite Communications[J].IEEE MTT-S Digest,1998(3):1319 -1322.
    [80] Zhi-Yuan Shen.Power Handling Capability Improvement of High-Temperature[J].IEEE Transcations on Applied Superconductivity, 1997,7(2):1287-1294.
    [81] Setsune K,Enokihara A.Elliptic-Disk Filters of High-Tc Superconducting Films for Power-Handling Capability Over 100W[J].IEEE Transaction On Microwave And Techniques, 2002,48(7): 1256 - 1264
    [82] Guo-Chun Liang,Dawei Zhang,Chien-Fu Shih,et al.High-Power HTS Microstrip Fiters for Wirelesee Communication[J].IEEE Transaction On Microwave And Techniques,1995,43(12): 3020-3029
    [83] Guo-Chun,Liang,Dawei,Zhang,Chien-Fu.Shih.High-Temperature Superconducting Microstrip Filters With High Power-Handling Capability.IEEE MTT-S,1995,1:191-194
    [84] Zhi-Yuan Shen.High-Power HTS Planar Filters with Novel Back-Side Coupling[J].IEEE Transaction On Microwave And Techniques, 1996,44(6):984-986.
    [85]曹效能.高温超导薄膜微波滤波器[J].电子科学学刊,1991,13(4):413-416
    [86] Greed R B.An HTS transceiver for third generation mobile communications[J].IEEE Transactions on Applied Superconductivity, 1999,9(2):4002-4005.
    [87] Raafat R Mansour.On the Power Handling Capability of High Temperature Superconductive Filters[J].IEEE Transaction On Microwave And Techniques,1996,44(7):1322-1338.
    [88] Kurt F Raihn.Highly Selective HTS Band Pass Filter with Multiple Resonator Cross- Couplings[J].IEEE MTT-S Digest,2000(2):661-664.
    [89] Nisenoff M, Ritter J C, Price G, et al. The High Temperature Superconductivity Space Experiment:HTSSE I-Components And HTSSE II Subsystems And Advanced Devices[J]. IEEE Trans.Appl.Supercond,1993(3):2885–2890.
    [90]高葆新.微波电路计算机辅助设计[M].北京:清华大学出版社,1988.
    [91] Hunter I C,Billonet L,Jarry B,et al.Microwave filters-applications and technology[J].IEEE Transactions on Microwave Theory and Techniques,2002,50(3):794-805.
    [92] Mansour R R,Shen Ye,Dokas V,et al.Design considerations of superconductive input multiplexers for satellite applications[J].IEEE Trans. Microwave Theory Tech.,1996(44): 1213–1228.
    [93]李国荣.全通网络实用设计[M].北京:电子工业出版社,1986.
    [94]陈叔远,颜绍书.相移均衡器[M].北京:人民邮电出版社, 1984.
    [95] M Klauda,T Kasser,C Neumann,et al.Superconductors and cryotechnology for future space communication technology-the BOSCH demonstrator experiment[J].Microwave Symposium Digest,1999 IEEE MTT-S International,1999(3):1381-1384
    [96]张淼.爱立信GSM系统中塔顶放大器的使用[J].移动通信,1999(5):48-50
    [97]宗新华.全球通GSM数字移动通信网容量增加解决方案[J].北京电信科技,2000(1):23-30
    [98] E R Soares.HTS AMPS-A and AMPS-B Filter for Cellular Receive Base Stations[J].IEEE Transactions On Applied Superconductivity,1999,9(2): 4018-4021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700