用户名: 密码: 验证码:
用于深度冷冻的混合制冷剂吸收式制冷循环的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸收式制冷作为一种可由低品位热源驱动的制冷方式,在当前能源紧张与环境危机的背景下愈来愈得到各国政府及相关研究人员的重视,具有重要的研究意义和实用价值。传统的吸收式制冷装置,如LiBr/H2O吸收式制冷机和NH3/H20吸收式制冷机等,已经在工业生产和国民生活领域内得到广泛应用;但是受吸收式工质及循环特性的限制,制冷温度不够低,使吸收式制冷技术在许多存在大量余热、废热同时又需要深度冷冻的应用领域中无法得到有效的利用。为此,本文将混合制冷剂应用于吸收式制冷循环,在对循环的运行特点和规律,以及流程形式的选择等研究基础上,提出了一种可应用于深度冷冻领域的新型混合制冷剂吸收式制冷循环。
     基于吸收式制冷循环的运行机理与吸收式工质相平衡性质,详细分析了混合制冷剂吸收式制冷循环的运行特点。研究结果显示,混合制冷剂应用于吸收式制冷循环时,将具有更多的约束条件。这不仅强化了各运行参数间的相互约束程度,同时也限制了循环流程形式的合理选择。
     基于混合制冷剂吸收式制冷循环的运行特点,提出了定运行高压(发生压力和冷凝压力)的分析和优化方法,大大减少了相应计算过程的工作量,有助于深入了解压力参数对循环性能的影响,把握各种循环的内部规律。基于此方法,深入研究了吸收式工质组成、发生温度、冷凝温度、吸收温度等关键运行参数对传统循环与自复叠循环性能的影响规律;从COP的优化角度出发,给出了设定工况下最优发生压力的确定方法。
     在对不同流程形式的循环性能比较的基础上,揭示了自复叠循环性能提高的内在机理,阐明了自复叠模块在混合制冷剂吸收式制冷循环中所起作用的物理本质,验证了吸收式工质在吸收式制冷循环的性能和流程形式的选择上起主导作用。
     基于混合制冷剂吸收式制冷循环的特点及实际运行中各工况参数间的相互约束关系,提出了一种新型混合制冷剂吸收式制冷循环。新循环采用两级串联吸收方式,降低了混合制冷剂的蒸发压力,从循环机理上确保系统在低品位热源驱动下可获得更低的制冷温度;通过热力分析,理论研究了关键运行参数对新循环的性能的影响规律,并在相同工况下将新循环与传统循环以及自复叠循环等进行了热力性能的比较。
     自行设计并搭建了混合制冷剂吸收式制冷装置的实验平台,对吸收式工质组成和关键运行参数对新循环、传统循环和自复叠循环等3种不同流程形式循环的性能的影响规律进行了实验研究。实验结果表明,新循环在相同的工况参数下更利于实现深度冷冻;采用新循环的装置,在以R23+R134a/DMF为吸收式工质,发生温度为184.4℃,冷凝温度为18.8℃,低压级和高压级的吸收温度分别为26.4℃和28.5℃时,实现了-62.3℃的制冷温度和0.023的循环COP。
Under the background of energy and environmental crisis, more and more attention has been put into the development of the absorption refrigeration which is a refrigeration technology driven by low grade thermal energy by the governments and researchers, and the absorption refrigeration is more worthy to be researched and put into the application. Traditional absorption refrigerators, such as LiBr/H2O absorption refrigerator and NH3/H2O absorption refrigerator, etc, have been widely used in the industrial process and living fields, however, they are very hard to be gotten the lower refrigeration temperature due to the properties of the selected working fluids and the cycle configuration, which limits the application of the absorption refrigerator in the deep freezing fields even where has a lot of waste heat to be released simultaneously. In this thesis, mixed refrigerants are used in the absorption refrigeration cycle, and a new mixed refrigerants absorption refrigeration cycle is proposed based on the study of the operating features and rules, and the influence of the configuration on the performance of the absorption refrigeration cycle using mixed refrigerants.
     The operating characteristics of the absorption refrigeration cycle using mixed refrigerants are analyzed based on the operation principle of the absorption refrigeration cycle and the phase equilibrium properties of the refrigerant-absorbent pairs The results show that it has more constraints when mixed refrigerants are used in the absorption refrigeration cycle, which not only strengthens the interaction constraints among the various operating parameters, but also limits the exertion of the features of different configurations of cycles.
     A method with constant high pressure of the cycle (generating pressure and condensing pressure) is proposed to be applied through the analysis and optimization of the absorption refrigeration cycle using mixed refrigerants based on the operating characteristics of the absorption refrigeration cycle using the mixed refrigerant, which can simplify the calculation of the cycle, and is helpful to the deep investigation in the influence of the pressure variable on the features of cycles as well as the natures of different cycles. Based on this method the influence of the key operating parameters, such as the composition of the refrigerant-absorbent working fluids, generation temperature, condensing temperature and absorption temperature, on the performance of cycles of traditional flow type and auto-cascade flow type as well as the rules of the influence have been investigate. And from the optimized COP of these cycles, the method of the optimized generating pressure is obtained at the given working condition.
     Based on the compared results from the performances of different cycles, the inherent mechanisms of the performance improvement of the auto-cascade absorption refrigeration cycle as well as the physical nature of the cascade module in the absorption refrigeration cycle using mixed refrigerants are revealed, and leading effect of the properties of the selected refrigerant-absorbent working fluid on the performance and flow type of the cycle has been validated.
     A new absorption refrigeration cycle using mixed refrigerants is proposed based on the features of the absorption refrigeration cycle using the mixed refrigerants and the mutual constraint relationships among parameters of the working condition in the actual operation. The new cycle uses two-staged absorption in series to reduce the evaporation pressure of the mixed refrigerants which can ensure the absorption system driven by the low grade thermal energy to obtain the lower refrigeration temperature. By the detailed thermodynamic analysis, the influence of the key parameters on the performances of the new cycle are analyzed and discussed. And the comparison of the thermodynamic performance the traditional absorption refrigeration cycle, the auto-cascade absorption refrigeration cycle and the new absorption refrigeration cycle is conducted under the same working condition.
     A experiment setup is built for investigating the influence of the key operating parameters on the operating performance of the traditional absorption refrigeration cycle, the auto-cascade refrigeration cycle and the new proposed cycle. The experimental results show that the new cycle can make the refrigeration at lower temperatures under the same working condition, and the refrigeration temperature of the new cycle can reach to-62.3℃with the COP of0.023, when generation temperature is184.4℃, the condensing temperature is18.8℃, and the absorption temperatures of the low-pressure absorber and high-pressure absorber are26.4℃, and28.5℃, respectively.
引文
[1]Energy Information Administration Office of Integrated Analysis & Forecasting (2006) Annual Energy Outlook 2006.
    [2]Calm J.M. Comparative efficiencies and implications for greenhouse gas emissions of chiller refrigerants[J]. International Journal of Refrigeration,2006,29(6):833-841
    [3]Bassols J., Kuckelkorn B., Langreck B. Schneider R., Veelken H.. Trigeneration in the food industry [J]. Applied Thermal Engineering,2002,22(6):.595-602
    [4]王树刚,王如竹.船舶余热回收现状及吸附制冷应用前景[J].中国修船,2003,3:24-26
    [5]Fernandez-Seara J., Sieres J., Vazquez M. Absorption refrigeration prototype for onboard cooling production in fishing vessels[C]. ISHPC'02, Proceedings of the International Sorption Heat Pump Conference Shanghai, China, September 24-27,2002,130-135.
    [6]Bruno J.C. Guxens S. Efficiency improvement in oil refining process using absorption refrigeration plants driven by waste heat[C]. ISHPC'02, Proceedings of the International Sorption Heat Pump Conference Shanghai, China, September 24-27,2002,111-116
    [7]Kalinowski P., Hwang Y., Radermacher R., Hashimi S.A. Application of waste heat powered absorption refrigeration system to the LNG recovery process[J]. International Journal of Refrigeration,2009,32(6):687-694
    [8]Herold K.E., Radermacher L. Absorption heat pump[J]. Mechanical Engineering,1989, 111(8):68-73
    [9]Gosney W.B. Principle of refrigeration[M]. Cambridge University Press,1982
    [10]高田秋一[日]著,耿慧彬,戴永庆,郑玉清等译.吸收式制冷机[M].北京:机械工业出版社,1985
    [11]陈光明,陈曙辉.国外吸收制冷研究进展[J].制冷,1998,65(4):18-24
    [12]陈光明,陈国邦.制冷与低温原理(第一版)[M].北京:机械工业出版社,2000
    [13]Kaushik S.C., Kumar R. Thermodynamic study of a two-stage vapour absorption refrigeration system using NH3 refrigerant with liquid/solid absorbents[J]. Energy Conversion and Management,1985,25(4):427-431
    [14]Balamuru V.G., Lbrahim O.M.,Barnett S.M. Simulaiton of termary ammonia-water-salt absorption refrigeration cycles[J]. International Journal of Refrigeration,2000,23(1): 31-42
    [15]M6ller R., Knoche K.F. Surfactants with NH3-H2O[J]. International Journal of Refrigeration,1996,19(5):317-321
    [16]Kang Y.T., Kashiwagi T. Heat transfer enhancement by Marangoni convection in the NH3-H2O absorption process[J]. International Journal of Refrigeration,2002,25(6): 780-788
    [17]Sneader W. Drug discovery:a history[M]. Chichester, England, John Wiley and Sons, 2005
    [18]Zellhoefer G.F. Solubility of halogenated hydrocarbon refrigerants in organic solvents[J]. Industrial and Engineering Chemistry,1937,29(5):548-551
    [19]Copley M.J., Zellhoefer G.F., Marvel C.S. Hydrogen bonds involving the C-H link. Ⅳ. The effect of solvent association on solubility[J]. Journal of American Chemistry Society, 1938,60(11):2666-2673
    [20]Zellhoefer G.F., Copley M.J., Marvel C.S. Hydrogen bonds involving the C-H link. The solubility of haloforms in donor solvents[J]. Journal of American Chemistry Society,1938, 60(6):1337-1343
    [21]Copley M.J., Zellhoefer G.F., Marvel C.S. Hydrogen bonds involving the C-H link. Ⅴ. The solubility of methylene chloride in donor solvents[J]. Journal of American Chemistry Society,1938,60(11):2714-2716
    [22]Zellhoefer G.F., Copley M.J. The heat of mixing of haloforms and polyethylene glycol ethers[J]. Journal of American Chemistry Society,1938,60(6):1343-1345
    [23]Copley M.J., Holley C.E.. Hydrogen bonding by negatively substituted CH groups. Ⅵ. Acetylenic compounds[J]. Journal of American Chemistry Society,1939,61(6): 1599-1600
    [24]Copley M.J., Marvel C.S., Ginsberg E. Hydrogen bonding by S-H. VII. Aryl mercaptans[J]. Journal of American Chemistry Society,1939,61(6):3161-3162
    [25]Copley M.J., Zellhoefer G.F., Marvel C.S. Hydrogen bonds involving the C-H link. Ⅷ. The solubility of completely halogenated methanes in organic solvents[J]. Journal of American Chemistry Society,1939,61(12):3550-3552
    [26]Copley M.J., Ginsberg E., Zellhoefer G.F. Hydrogen bonding and the solubility of alcohols and amines in organic solvents. XIII[J]. Journal of American Chemistry Society, 1941,63(1):254-256
    [27]Mastrangelo S.V.R. Chlorofluorohydrocarbons in tetraethylene glycol dimethyl ether[J]. ASHRAE Journal,1959,64-68
    [28]Eiseman B.J. Why refrigerant 22 should be favored for absorption refrigeration[J]. ASHRAE Journal,1959:45-51
    [29]Albright L.F., Doody T.C., Buclez P.C, Pluche C.R. Solubility of refrigerants 11,21 and 22 in organic solvents containing an oxygen atom[J]. ASHRAE Transactions,1961, 423-433
    [30]Agarwal R.S., Bapat S.L. Solubility characteristics of R22-DMF refrigerant-absorbent combination[J]. International Journal of Refrigeration,1985,8(2):70-74
    [31]Agarwal R.S., Agarwal A.K., Bin Gadhi S.M. Performance analysis of R22 DMF turbo absorption refrigeration system[J]. Energy Conversion and Management,1987,27(2): 211-217
    [32]Fatouh M., Srinivasa Murthy S. Performance of an HCFC22-based vapour absorption refrigeration system[J]. International Journal of Refrigeration,1995,18(7):465-476
    [33]陈光明,赵冠春.新型吸收系统工质对R22-DEF的H-T-X关系计算[J].工程热物理学报,1988,9(1):22-24
    [34]Borde I., Jelinek M., Daltrophe N.C. Refrigerant-absorbent mixtures based on the refrigerant R134a[C]. Psroceedings of ⅩⅧ International Conference of Refrigeration. Montreal, Canada.1991,653-658
    [35]Borde I., Jelinek M., Daltrophe N.C. Absorption system based on the refrigerant R134a[J]. International Journal of Refrigeration,1995,18(6):387-394
    [36]Jelinek M., Borde I. Single-and double-stage absorption cycles based on fluorocarbon refrigerants and organic absorbents [J]. Applied Thermal Engineering,1998,18(9-10): 765-771
    [37]Levy A., Jelinek M., Borde I., Ziegler F. Performance of an advanced absorption cycle with R125 and different absorbents[J]. Energy,2004,29(12-15):2501-2515
    [38]Levy A., Jelinek M., Borde I. Single stage absorption system based on refrigerants R125 and R134a with DMETEG[C]. ASME-ZSITS International Thermal Science Seminar. Bled, Slovenia,2000
    [39]Jelinek M., Levy A., Borde I. The performance of a triple pressure level absorption cycle (TPLAC) with working fluids based on the absorbent DMEU and the refrigerants R22, R32, R124, R125, R134a and R152a[J]. Applied Thermal Engineering,2008, (11-12): 1551-1555
    [40]陈光明,尹执中,王剑峰,郑飞,蒋浩波.使用非共沸混合制冷剂的吸收式制冷剂特性[J].制冷学报,1998,1:1-5
    [41]陈曙辉,郑飞,王剑峰,陈光明.HCFC22替代工质的吸收制冷特性[J].工程热物理学报,1999,20(4):410-412
    [42]陈曙辉,陈光明,郑飞,张红线.采用替代工质的吸收式制冷运行特性[J].低温工程,1999,112(6):22-30
    [43]高婉丽,赵小明,刘志刚HFC32+HFC227ea/DMF吸收式制冷循环热力性能分析[J].工程热物理学报,2010,31(4):545-548
    [44]郑飞.吸收制冷循环与绝热吸收过程的理论和实验研究[D].博士学位论文,浙江大学,2000
    [45]姚普明,陈秋芳.高性能吸收式循环与新工质[J].暖通空调,1996,2:29-35
    [46]Nishiyama N., Hujikura K., Shitara A. Development of absorption heat pump using new working fluid[C]. Proceeding Volume of 19th ICCR,1995,1212-1216
    [47]R. Best, F. A. Holland. A study of the operating characteristics of an experimental absorption cooler using ternary systems[J]. International Journal of Energy Research, 1990,14(5):553-559
    [48]De Lucas A., Donate M., Molero C, Villasenor J., Rodriguez J.F. Performance evaluation and simulation of a new absorbent for an absorption refrigeration system[J]. International Journal of Refrigeration,2004,27(4):324-330
    [49]Donate M., Rodriguez L., De Lucas A., Rodriguez J.F. Thermodynamic evaluation of new absorbent mixtures of lithium bromide and organic salts for absorption refrigeration machines[J]. International Journal of Refrigeration,2006,29(1):30-35
    [50]De Lucas A., Donate M., Rodriguez J.F. Absorption of water vapor into new working fluids for absorption refrigeration systems[J]. Industrial and Engineering Chemistry Research,2007,46(1):345-350
    [51]De Lucas A., Donate M., Rodriguez J.F. Appliying surfactants to improve the absorption capacity of mixtures of lithium bromide and formates in absorption refrigeration coolers[J]. International Journal of Refrigeration,2008,31(6):1073-1080
    [52]Kaushik S.C., Gadhi S.M.B., Agarwal R.S., Kumar Y. Feasibility studies on an alcohol-salt mixture for absorption refrigeration systems[J]. Energy Conversion and Management,1991,31(5):459-469
    [53]Iyoki S., Tanaka K., Uemura T. Theoretical performance analysis of absorption refrigerating machine, absorption heat-pump and absorption heat transformer using alcohol as working medium[J]. International Journal of Refrigeration,1994,17(3): 180-190
    [54]Nowaczyk U., Steimle F. Thermophysical properties of new working fluid system for absorption processes[J]. International Journal of Refrigeration,1992,15(1):10-15
    [55]Stephan K., Hengerer R. Heat transformation with the ternary working fluid TFE-H2O-E18[J]. International Journal of Refrigeration,1993,16(2):120-128
    [56]张士嵩,徐士鸣、冷振.以TFE/NMP为工质的GAX循环计算与分析[J].流体机械,2000,28(4):47-49
    [57]向平,徐士鸣,张树林.以TFE/E181为工质的二级吸收式换热器(AHT)循环分析[J].动力工程,2002,22(6):2115-2118
    [58]赵宗昌,周方伟,李凇平.TEF-E181高温型第二类吸收式热泵热力过程分析[J].大连理工大学学报,2004,44(5):651-655
    [59]王建召,郑丹星.以TFE-[BMIm][Br]为工质对的吸收式制冷循环性能分析[J].工程热物理学报,2008,29(11):1814-1816
    [60]崔晓龙.新型吸收制冷工质相平衡理论与实验研究[D].浙江大学博士学位论文,2006
    [61]Kang Y.T., Kunugi Y. Kashiwagi T. Review of advanced absorption cycle:performance improvement and temperature lift enhancement[J]. International Journal of Refrigeration, 2000,23(5):378-387
    [62]Srikhirin P., Aphornratana S., Chungpaibulpatana S. A review of absorption refrigeration technologies[J]. Renewable and Sustainable Energy Reviews,2001,5(4):343-372
    [63]Wang J.F., Gao G.C., Chen G.M. An improved absorption refrigeration cycle[J]. International Journal of Energy Research,2000,24(7):633-640
    [64]Erickson D.C. One-and-a-half effect absorption cycle[P]. U.S. Patent,5016444
    [65]Wang J.Z., Zheng D.X. Performance of one and a half-effect absorption cooling cycle of H2O/LiBr System[J]. Energy Conversion and Management,2009,50(12):3087-3095
    [66]陈光明,洪大良,唐黎明,何一坚.一种高效的1.x效吸收式制冷装置[P].中国发明专利.201010104713.4,2010
    [67]Hong D.L., Chen G.M., Tang L.M., He Y.J. Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle[J]. Energy,2011,36(1):94-98
    [68]陈光明,洪大良,唐黎明.高效的两级吸收式制冷装置[P].中国发明专利.ZL200910096977.7,2009
    [69]洪大良,唐黎明,陈光明.一个高效的两级吸收式制冷循环[P].太阳能学报,2010,31(9):1141-1145
    [70]Herold K.E., Radermacher R., Klein S.A. Absorption chillers and heat pumps[M]. CRC Press Inc,1996
    [71]邓文宇.GAX循环的模拟与特性研究[D].硕士学位论文.北京化工大学,2006
    [72]周锦生,陆震,曹卫华.高效吸收式热泵的GAX技术及市场展望[J].流体机械,1998,27(7):57-61
    [73]Jawahar C.P., Saravanan R. Generator absorber heat exchange based absorption cycle-A review[J]. Renewable and Sustainable Energy Reviews,2010,14(8):2372-2382
    [74]Erickson D.C. Branched GAX absorption vapor compressor[P]. U.S. Patent,5024063, 1991
    [75]Erickson D.C. Evaluation of double-lift cycles for waste heat powered refrigeration[C]. Proceedings of the International Absorption Heat pump Conference, Canada,1996, 161-168
    [76]Dao K. Advanced regenerative absorption refrigeration cycles[P]. U.S. Patent,4921515, 1988
    [77]Staicovici M.D. Polybranched regenerative GAX cooling cycles[J]. International Journal of Refrigeration,1995,18(5):318-329
    [78]Kang Y.T., Akisawa A., Kashiwagi T. An advanced GAX cycle for waste heat recovery: WGAX cycle[J]. Applied Thermal Engineering,1999,19(9):933-947
    [79]Kang Y.T., Kashiwagi T. An environmentally friendly GAX cycle for panel heating: PGAX cycle[J]. International Journal of Refrigeration,2000,23(5):378-387
    [80]Velazquez N., Best R. Methodology for the energy analysis of an air cooled GAX absorption heat pump operated by natural gas and solar energy[J]. Applied Thermal Engineering,2002,22(10):1089-1103
    [81]Park C.W., Koo J., Kang Y.T. Performance analysis of ammonia absorption GAX cycle for combined cooling and hot water supply modes[J]. International Journal of Refrigeration,2008,31(4):727-733
    [82]杜垲,廖健敏.氨水吸收式制冷GAX循环中临界热源温度的理论分析[J].东南大学学报(自然科学版),2005,35(5):766-768
    [83]Kang Y.T., Hong H., Park K.S. Performance analysis of advanced hybrid GAX cycles: HGAX[J]. International Journal of Refrigeration,2004,27(4):442-448
    [84]Kuhlenschmidt D. Absorption refrigeration system with multiple generator stages[P]. U.S. Patent,3717007,1973
    [85]李征宇,赵建华,赵宗昌.喷射式氨-水吸收制冷系统的研究[J].热科学与技术,2010,28(3):241-245
    [86]Chen L.T. A new ejector-absorber cycle to improve the COP of an absorption refrigeration system[J]. Applied Energy,30(1):37-51
    [87]Sozen A., Ozalp M. Performance improvement of absorption refrigeration system using triple-pressure-level[J]. Applied Thermal Engineering,2003,23(13):1577-1593
    [88]Sun D.W.,Eames I.W., Aphornratana S.Evaluation of a novel combined ejector-absorption refrigeration cycle.1. Computer simulation[J]. International Journal of Refrigeration, 1996,19(3):172-180
    [89]Aphornratana S., Eames I.W.. Experimental investigation of a combined ejector absorption refrigerator[J]. International Journal of Energy Research,1998,22(3):195-207
    [90]Wang J.F., Dai Y.P., Zhang T.Y., Ma S.L. Parametric analysis for a new combined power and ejector-absorption refrigeration cycle[J]. Energy,2009,34(10):1587-1593
    [91]Wu S.Y., Eames I.W. A novel absorption-recompression refrigeration cycle[J]. Applied Thermal Engineering,1998,18(11):1149-1157
    [92]Eames I.W., Wu S.Y.. Experimental proof-of-concept testing of an innovative heat-powered vapour recompression-absorption refrigerator cycle[J]. Applied Thermal Engineering,2000,20(8):721-736
    [93]Hong D.L., Tang L.M., He Y.J., Chen G.M. A novel absorption refrigeration cycle[J]. Applied Thermal Engineering,2010,30(14-15):2045-2050
    [94]Kleemenko A.P. One flow cascade cycle[C]. Proceedings of 10th International Congress of Refrigeration. Copenhagen, Denmark,1959,1:34-39
    [95]Fuderer M. Andrijia A. German Patent,1426956,1969
    [96]罗二仓.液氮温区混合物工质节流制冷剂的工作机理及试验研究[D].博士学位论文.华中理工大学,1997
    [97]Missimer D.J. Control system for low temperature refrigeration system[P]. U.S, Patent, 3698202,1972
    [98]Missimer D.J. Self-balancing low temperature refrigeration system[P]. U.S. Patent, 3768275,1973
    [99]Missimer D.J. Refrigerant conversion of auto-refrigerating cascade (ARS) system [J]. International Journal of Refrigeration,1997,20(3):201-207
    [100]Little W.A., Calif P.A. Self-cleaning low-temperature refrigeration system[P]. U.S. Patent,5617739,1997
    [101]Boiarski M., Khatri A., Kovalenko V. Design Optimization of the throttle-cycle cooler with mixed refrigerant [J]. Cryocoolers,1999,10:457-465
    [102]Boiarski M., Khatri A., Podtcherniaev O., Kovalenko V. Modern trends in designing small-scale throttle-cycle coolers operating with mixed refrigerants[J]. Cryocoolers, 2001,11:513-521
    [103]Alexeev A., Haberstroh C.H., Quack H. Further development of a mixed gas Joule-Thomson refrigerator[J]. Advances in Cryogenic Engineering,1998,43: 1667-1674
    [104]Alexeev A., Thiel A., Haberstroh C.H., Quack H. Study on the behavior in the heat exchanger of a mixed gas Joule-Thomson cooler [J]. Advances in Cryogenic Engineering, 2000,45:1667-1675
    [105]公茂琼.深冷多元混合工质回热式节流制冷剂的热力分析及其实验研究[J].博士学位论文.中国科学院力学研究所,2002
    [106]吴剑锋,公茂琼,罗二仓.一种多元混合工质分离节流深冷制冷循环[P].中国发明专利,ZL00136709,2000
    [107]陈光明,张绍志,王剑峰,冯仰浦.低温制冷机[P].中国实用新型专利,ZL99203770.0,1999
    [108]陈光明,张绍志,王勤.深度制冷方法及其装置[P].中国发明专利,ZL02110664.9,2002
    [109]王勤.混合工质节流制冷机的理论与实验研究.博士学位论文.浙江大学,2002
    [110]胡江武.三元氮烃混合工质低温制冷特性研究.硕士学位论文.上海交通大学,1996
    [111]石玉美.混合制冷循环液化天然气流程的热力分析[D].硕士学位论文.上海交通大学,1998
    [112]许名尧.混合气体的节流特性和微型脉管制冷机的实验研究[D].硕士学位论文.西安交通大学,1994
    [113]陈光明.深度冷冻吸收式制冷装置[P].中国发明专利,ZL02110940.0,2002
    [114]陈光明,何一坚,王勤.吸收式低温制冷机[P].中国发明专利,ZL03115631.2,2003
    [115]钟永芳.自行复叠吸收制冷循环理论及实验研究[D].硕士学位论文.浙江大学,2002
    [116]Zhong Y.F., Chen G.M. Theoretical and experimental study of a new absorption refrigeration cycle[J]. ASHRAE Transactions,2004,508-514
    [117]He Y.J., Chen G.M. Experimental study on an absorption refrigeration system at low temperatures[J]. International Journal of Thermal Sciences,2007,47(3):294-299
    [118]陈新志,蔡振云,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2008
    [119]Prausnitz, J. M. Phase equilibrium and fluid properties in the chemical industry[C]. ACS Symposium Series 60,1977
    [120]郭天民.多元汽-液平衡和精馏[M].北京:石油工业出版社,2002
    [121]Benedict M., Webb G.B., Rubin L.C. An empirical equation for the thermodynamic properties of light hydrocarbons and their mixtures Ⅱ, Mixtures of methane, ethane, propane and n-butane[J]. Journal of Chemical Physics,1942,10(12):747-758
    [122]Benedict M., Webb G.B., Rubin L.C. An empirical equation for the thermodynamic properties of light hydrocarbons and their mixtures-Constants for 12 Hydrocarbons[J]. Chemical Engineering Process,1951,41(8):419-422
    [123]Martin J.J., Hou Y.C. Development of equation of state for gases[J]. AICHE Journal, 1955,1(2):142-151
    [124]Redlich O., Kwong J.N.S. On the thermodynamics of solutions V. An equation of state-Fugacities of gaseous solutions[J]. Chemical Reviews,1949,44(1):233-244
    [125]Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science.1972,27(6):1197-1203
    [126]Peng D.Y., Robinson D.B. A new two-constant equation of state[J]. Industrial and Engineering Chemistry Fundamentals,1976,15(1):59-64
    [127]Patel N.C., Teja A.S. A new cubic equation of state for fluids and fluids mixtures[J]. Chemical Engineering Science,1982,37(3):463-473
    [128]童景山.流体的热物理性质(第一版)[M].北京:中国石化出版社,1996
    [129]Poling Bruce E., Prausnitz John M., O'Connell John P.. The properties of gases and liquids(5th Edition) [M]. New York:McGraw-Hill,2000
    [130]Yaws C.L. Chemical Properties Handbook[M]. New York:McGraw Hill,1999
    [131]ASHRAE Handbook-Fundamentals[M].2009
    [132]Zehioua R., Coquelet C., Meniai A.H., Richon D. Isothermal vapor-liquid equilibrium data of 1,1,1,2-tetrafluoroethane (R134a)+dimethylformamide (DMF) working fluids for an absorption heat transformer[J]. Journal of Chemical and Engineering Data,2010, 53(13-14):2813-2825
    [133]Han X.H. Xu Y.J. Gao Z.J. Wang Q. Chen G.M. Vapor-liquid equilibrium study of an absorption heat transformer working fluid of (HFC-32+DMF) [J]. Journal of Chemical and Engineering Data,2011,56(4):1268-1272
    [134]姚玉英.化工原理[M].天津:天津科学技术出版社,1999
    [135]何一坚.深度冷冻吸收制冷理论与实验研究[D].博士学位论文.浙江大学,2004
    [136]杨祖荣,刘丽英,刘伟.化工原理[M].北京:化学工业出版社,2004
    [137]陈洪钫,刘家祺.化工分离过程[M].北京:化学工业出版社,1995
    [138]张祉祜.制冷原理与设备[M].北京:机械工业出版社,1986
    [139]He L.J., Tang L.M., Chen G.M. Performance prediction of refrigerant-DMF solutions in a single-stage solar-powered absorption refrigeration system at low generating temperatures[J]. Solar Energy,2009,83(11):2029-2038
    [140]Duran-Valencia C., Valtz A., Galicia-Luna L.A., Richon D. Isothermal vapor-liquid equilibria of the carbon dioxide (CO2)-N,N-dimethylformamide (DMF) system at temperatures from 293.95 K to 338.05 K and pressure up to 12MPa[J]. Journal of Chemical and Engineering Data,2001,46(6):1589-1592
    [141]张爱民,王勤,陈光明,雷令军.一种-60℃制冷机的实验研究[J].流体机械,2007,35(5): 54-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700