用户名: 密码: 验证码:
Cripto-1蛋白、β-catenin蛋白在子宫内膜异位性疾病中的表达及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过观察Cripto-1、β-catenin蛋白在卵巢子宫内膜异位囊肿、子宫腺肌病、卵巢子宫内膜异位囊肿合并子宫腺肌病的异位、在位内膜是否存在表达差异性及相关性,探析二者在异位病灶形成过程中的作用及意义。
     方法:应用免疫组化SP二步法检测Cripto-1、β-catenin蛋白在卵巢子宫内膜异位囊肿(巧囊组)、子宫腺肌病(腺肌病组)、卵巢子宫内膜异位囊肿合并子宫腺肌病(巧囊合并腺肌病组)异位、在位内膜的表达特点,并与正常子宫内膜(对照组)进行比较。
     结果:1.Cripto-1蛋白在巧囊组、腺肌病组及巧囊合并腺肌病组异位、在位内膜中的阳性表达率两两比较均无显著性差异(P>0.05),均显著高于对照组的阳性表达率(P<0.05)。巧囊组异位内膜、腺肌病组异位内膜、巧囊合并腺肌病组巧囊异位内膜及腺肌病异位内膜的阳性表达率分别为46.67%、53.33%、57.78%及66.67%,两两比较无显著性差异(P>0.05),以上三组的在位内膜中的阳性表达率分别为62.22%、64.44%及75.56%,两两比较亦无显著性差异(P>0.05),均显著高于对照组的阳性表达率17.78%(P<0.05)。巧囊组异位内膜中Ⅲ~Ⅳ期的阳性表达率58.06%显著高于Ⅰ~Ⅱ期的阳性表达率21.43%(P<0.05);在巧囊合并腺肌病组巧囊异位内膜中Ⅲ~Ⅳ期的阳性表达率66.67%显著高于Ⅰ~Ⅱ期的阳性表达率33.33%(P<0.05)。
     2.β-catenin蛋白在巧囊组、腺肌病的异位内膜及在位内膜的阳性表达率两两比较有显著性差异(P<0.05),均显著低于对照组的阳性表达率86.67%(P<0.05)。巧囊合并腺肌病组中巧囊异位内膜、腺肌病异位内膜的阳性表达率与在位内膜相比均有显著性差异(P<0.05),均显著低于对照组(P<0.05)。巧囊组异位内膜、腺肌病组异位内膜、巧囊合并腺肌病组巧囊异位内膜及腺肌病异位内膜中的阳性表达率分别为31.11%、24.44%、26.67%及17.78%,两两比较无显著性差异(P>0.05)。在巧囊组、腺肌病组及巧囊合并腺肌病组的在位内膜的阳性表达率分别为62.22%、57.78%及66.67%,两两比较无显著性差异(P>0.05),均显著低于对照组(P<0.05)。巧囊组异位内膜中Ⅲ~Ⅳ期的阳性表达率19.35%显著低于Ⅰ~Ⅱ期的阳性表达率57.14%(P<0.05);巧囊合并腺肌病组巧囊异位内膜中Ⅲ~Ⅳ期的的阳性表达率15.15%显著低于Ⅰ~Ⅱ期的阳性表达率58.33%(P<0.05)。在巧囊组、腺肌病组的异位内膜、在位内膜及对照组正常子宫内膜中胞浆阳性率两两比较有显著性差异(P<0.05)。在巧囊合并腺肌病组巧囊异位内膜、腺肌病异位内膜中胞浆阳性率显著高于在位内膜的胞浆阳性率(P<0.05),以上三组胞浆阳性率均显著高于对照组(P<0.05)。
     3. Spearman等级相关分析显示Cripto-1与β-catenin蛋白在子宫内膜异位性疾病中的在位内膜、异位内膜中表达存在负相关,差异有统计学意义(P<0.05),在对照组中无明显相关性(P>0.05)。
     结论:1.Cripto-1蛋白在卵巢子宫内膜异位囊肿及子宫腺肌病的异位内膜、在位内膜的表达明显高于正常子宫内膜,β-catenin蛋白则明显低于正常子宫内膜,提示二者与子宫内膜异位性疾病的发病有关。
     2.Cripto-1与β-catenin蛋白在三组的在位内膜既已发生改变,靶点均位于在位内膜,提示与在位内膜的迁徙侵袭及异位定植相关。
     3.Cripto-1、β-catenin蛋白随内异症临床分期存在差异性表达,可望作为评估内异症病情严重程度及病情进展的指标。
     4.Cripto-1与β-catenin蛋白在子宫内膜异位性疾病中的在位内膜、异位内膜中呈负相关,提示二者可能共同参与异位病灶形成。
Objective:To investigate the expression and relationship between Cripto-1and (3-catenin in paired ectopic and eutopic endometrium of ovarian endometriomas, adenomyosis and ovarian endometriomas concomitant with adenomyosis patients, so as to explore their roles in the pathogenesis of ectopic focus progression.
     Methods:To detect the expression profile of Cripto-1and β-catenin protein in paired ectopic and eutopic endometrium of45patients with ovarian endometriomas (Chocolate cyst group),45patients with adenomyosis (Adenomyosis group),45patients with ovarian endometriomas concomitant with adenomyosis (Chocolate cyst combined with adenomyosis group) and45cases of normal endometrium (control group) by Immunohistochemistry.
     Results:1.The positive ratio of Cripto-1protein expression was no significantly differences in ectopic and eutopic endometrium of Chocolate cyst group、Adenomyosis group and Chocolate cyst combined with adenomyosis group (P>0.05), and up-regulated significantly in comparison of control group (P<0.05). The positive ratio of Cripto-1protein was46.67%for ectopic endometrium of Chocolate cyst group,53.33%for ectopic endometrium of Adenomyosis group,57.78%for ectopic endometrium of chocolate cyst in Chocolate cyst combined with adenomyosis group and66.67%for ectopic endometrium of adenomyosis in Chocolate cyst combined with adenomyosis group, which is similar between the two groups (P>0.05). The positive ratios of the above three groups were62.22%、64.44%and75.56%, which is no significantly difference between groups (P>0.05) and significantly higher than the positive ratio of control group (P<0.05). The positive ratio of stage III-IV in ectopic endometrium of Chocolate cyst group were higher than that of stage Ⅰ~Ⅱ with significance (P<0.05). Meanwhile the positive ratio of stage III-IV in ectopic endometrium of chocolate cyst of Chocolate cyst combined with adenomyosis group were significantly higher than that of stage Ⅰ~Ⅱ (P<0.05).
     2.The positive ratio of β-catenin protein expression was significantly different in paired ectopic and eutopic endometrium between Chocolate cyst group and Adenomyosis group (P<0.05), and down-regulated significantly in comparison of that of control group (86.67%). The positive ratio of β-catenin protein expression in ectopic endometrium of chocolate cyst and ectopic endometrium of adenomyosis in Chocolate cyst combined with adenomyosis group was significantly different versus paired eutopic endometrium (P<0.05), and decreased significantly in comparison of control group (P<0.05). The positive ratio of β-catenin protein was31.11%for ectopic endometrium of Chocolate cyst group,53.33%24.44%for ectopic endometrium of Adenomyosis group,26.67%for ectopic endometrium of chocolate cyst of Chocolate cyst combined with adenomyosis group and17.78%for ectopic endometrium of adenomyosis of Chocolate cyst combined with adenomyosis group, which is no significantly differences between groups (P>0.05). The positive ratios of the above three groups were62.22%、57.78%and66.67%, which is also no significantly differences between groups (P>0.05)and significantly lower than the positive ratio of control group (P<0.05). The positive ratio of stage III-IV in ectopic endometrium of Chocolate cyst group were lower than that of stage Ⅰ~Ⅱ with significance (P<0.05). Meanwhile the positive ratio of stage Ⅲ~Ⅳ in ectopic endometrium of chocolate cyst of Chocolate cyst combined with adenomyosis group were lower than that of stage Ⅰ~Ⅱ with significance (P <0.05).The cytoplasm positive ratio of P-catenin protein expression was significantly different between the paried ectopic and eutopic endometrium among the Chocolate cyst group, Adenomyosis group and Chocolate cyst combined with adenomyosis group, comparing with that of control group (P<0.05).
     3.The Spearman analysis showed that negative correlations between Cripto-1protein and β-catenin protein in paired ectopic and eutopic endometrium of the Chocolate cyst group, Adenomyosis group and Chocolate cyst combined with adenomyosis group(P<0.05).
     Conclusion:1.The expression of Cripto-1protein was significantly up-regulated in eutopic endometrium of endometriosis and adenomyosis versus the normal endometrium while β-catenin protein was significantly down-regulated, which indicated that they might be involved in the pathogenesis of endometriosis and adenomyosis.
     2.The target site of Cripto-1protein and β-catenin protein was the eutopic endometrium, which suggested that the two proteins were related with the mechanism of migration, invasion and plantation of eutopic endometrial cells.
     3.The expression of Cripto-1protein and β-catenin protein were relevant with different clinical stages of endometriosis, which indicated that they might be a promising indicator of assessing the disease severity and progression.
     4.There was a negative relationship between the Cripto-1protein and β-catenin protein in paired ectopic and eutopic endometrium of endometriosis and adenomyosis, which suggested that they may involved in the development of ectopic focus progression.
引文
[1]Giudice LC, Kao LC. Endometriosis[J]. Lancet.2004,364(9447):1789-1799.
    [2]Bulun SE.Endometriosis[J].N Engl J Med.2009,360(3):268-279.
    [3]Colette S, Donnez J.Endometriosis[J].N Engl J Med.2009,360(18):1911-1912.
    [4]Bergeron C,Amant F,Ferenczy A.Pathology and physiopathology of adenomyosis[J].Best Pract Res Clin Obstet Gynaecol.2006,20(4):511-521.
    [5]Missmer SA, Cramer DW.The epidemiology of endometriosis.Obstet Gynecol Clin North Am.2003,30(1):1-19.
    [6]Stephen Kennedy,宗利丽.解读子宫内膜异位症[M].北京:人民军医出版社,2008:71-76.
    [7]徐丛剑,金志军.子宫内膜异位症[M].北京:人民卫生出版社.2002:1-3.
    [8]Maheshwari A, Gurunath S, Fatima F, et al. Adenomyosis and subfertility:a systematic review of prevalence, diagnosis, treatment and fertility outcomes[J].Hum Reprod Update.2012,18(4):374-392.
    [9]Kunz G, Beil D, Huppert P, et al. Adenomyosis in endometriosis-prevalence and impact on fertility. Evidence from magnetic resonance imaging [J]. Hum Reprod.2005,20:2309-2316.
    [10]Benagiano G, Habiba M, Brosens I.The pathophysiology of uterine adenomyosis: An update[J]. Fertil Steril.2012,98(3):572-579.
    [11]Bazot M, Fiori O, Darai E. Adenomyosis in endometriosis-prevalence and impact on fertility. Evidence from magnetic resonance imaging [J]. Hum Reprod. 2006,21(4):1101-1102.
    [12]Ismiil N, Rasty G, Ghorab Z, et al. Adenomyosis involved by endometrial adenocarcinoma is a significant risk factor for deep myometrial invasion [J]. Ann Diagn Pathol.2007; 11(4):252-257.
    [13]Burney RO, Giudice LC.Pathogenesis and pathophysiology of endometriosis[J]. Fertil Steril.2012;98(3):511-519.
    [14]Weedon MN, Lango H, Lindgren CM, et al.Genome-wide association analysis identifies 20 loci that influence adult height[J]. Nat Genet.2008; 40(5):575-583.
    [15]Guo SW. Recurrence of endometriosis and its control[J]. Hum Reprod Update. 2009;15(4):441-461.
    [16]孙爱军,薛薇.不孕患者子宫内膜异位囊肿的手术决策及卵巢功能保护问题[J].实用妇产科杂志.2012,28(8):617-619.
    [17]Abushahin N, Zhang T, Chiang S, et al. Serous Endometrial Intraepithelial Carcinoma Arising in Adenomyosis:A Report of 5 Cases[J]. Int J Gynecol Pathol.2011,30(3):271-281.
    [18]Farquhar C, Brosens I.Medical and surgical management of adenomyosis[J].Best Pract Res Clin Obstet Gynaecol.2006;20(4):603-616.
    [19]Pepas L, Deguara C, Davis C.Update on the surgical management of adenomyosis[J].Curr Opin Obstet Gynecol.2012;24(4):259-264.
    [20]]Hudelist G, Keckstein J, Wright JT.The migrating adenomyoma:past views on the etiology of adenomyosis and endometriosis[J].Fertil Steril.2009; 92(5):1536-1543.
    [21]Farquhar CM. Extracts from the "clinical evidence". Endometriosis[J]. BMJ.2000,320(7247):1491-1452.
    [22]Donnez J. Endometriosis:enigmatic in the pathogenesis and controversial in its therapy [J].Fertility and Sterility.2012;98(3):509-510.
    [23]郎景和.子宫内膜异位症研究的任务与展望(之一)[J].中华妇产科杂志.2006,41(5):289-290.
    [24]仝佳丽,郎景和.子宫内膜异位症的在位内膜病变研究进展[J].现代妇产科进展.2010,19(6):465-467.
    [25]洪湘兰.子宫内膜异位症的病因和发病机制[J].中国现代应用药学杂志.2008,25(8):769-771.
    [26]Matsuzaki S, Darcha C. Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis[J].Hum Reprod.2012; 27(3):712-721.
    [27]Chen YJ, Li HY, Huang CH, et al. Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis[J]. J Pathol.2010;222(3):261-270.
    [28]Hamada S, Watanabe K, Hirota M, et al. beta-Catenin/TCF/LEF regulate expression of the short form human Cripto-1[J]. Biochem Biophys Res Commun. 2007;355(1):240-244.
    [29]No authors listed. Revised American Society for Reproductive Medicine classification of endometriosis:1996 [J]. Fertil Steril.1997;67(5):817-821.
    [30]Ota H, Igarashi S, Sasaki M, et al. Distribution of cyclooxygenase-2 in eutopic and ectopic endometrium in endometriosis and adenomyosis[J]. Hum Reprod. 2001,16(3):561-566.
    [31]Maruyama K, Ochiai A, Akimoto S, et al. Cytoplasmic beta-catenin accumulation as a predictor of hematogenous metastasis in human colorectal cancer[J]. Oncology.2000,59(4):302-309.
    [32]Mingzhu Li,Chunyi Zang. Immunohistochemical characterization of β-catenin in gynecologic tumor and its diagnostic value[J].The Chinese-German Journal of Clinical Oncology.2010,9(6):354-358.
    [33]Sampson JA. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity[J]. Am J Obstet Gynecol.1927; 14(2):422-469.
    [34]Sampson JA. Heterotopic or misplaced endometrial tissue[J]. Am J Obstet Gynecol.1925,10(4):649-664.
    [35]Watkins RE. Uterine retro-displacements, retrograde menstruation and endometriosis[J]. West J Surg Obstet.1938,46(3):480-494.
    [36]Liu DT, Hitchcock A. Endometriosis:its association with retrograde menstruation, dysmenorrhoea and tubal pathology [J]. Br J Obstet Gynaecol.1986,93(8): 859-862.
    [37]Gardner G, Greene RR, Ranney B. The histogenesis of endometriosis:a review of facts and fancies[J]. Obstet Gynecol.1953,1(1):615.
    [38]Gruenwald P. Origin of endometriosis from the mesenchyme of the coelomic walls[J]. Am J Obstet Gynecol.1942,44(5):470.
    [39]张颖,段华.子宫内膜-肌层交界区的生理功能与相关疾病[J].中华妇产科杂志.2009,44(11):876-878.
    [40]Benagiano G, Brosens I.History of adenomyosis[J].Best Pract Res Clin Obstet Gynaecol.2006,20(4):449-463.
    [41]Bird CC, McElin TW, Manalo-Estrella P. The elusive adenomyosis of the uterus-revisited[J]. Am J Obstet Gynecol.1972,112(5):583-589.
    [42]Kim MD, Won JW, Lee DY, et al. Uterine artery embolization for adenomyosis without fibroids[J]. Clin Radiol.2004,59(6):520-526.
    [43]Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J]. J Cell Biol. 1982,95(1):333-339.
    [44]Savagner P. The epithelial-mesenchymal transition (EMT) phenomenon[J]. Ann Oncol.2010,21(Suppl 7):vii89-vii92
    [45]Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell.2009,139(5):871-890.
    [46]Micalizzi DS, Farabaugh SM, Ford HL.Epithelial-mesenchymal transition in cancer:parallels between normal development and tumor progression[J].J Mammary Gland Biol Neoplasia.2010,15(2):117-134.
    [47]Lopez-Novoa JM, Nieto MA. Inflammation and EMT:an alliance towards organ fibrosis and cancer progressionJ]. EMBO Mol Med.2009,1(6-7):303-314.
    [48]Chen J, Han Q, Pei D.EMT and MET as paradigms for cell fate switching[J].J Mol Cell Biol.2012,4(2):66-69.
    [49]Brosens I, Benagiano G.Endometriosis, a modern syndrome [J].Indian J Med Res. 2011,133:581-593.
    [50]Signorile PG, Baldi A.Endometriosis:new concepts in the pathogenesis[J].Int J Biochem Cell Biol.2010,42(6):778-780.
    [51]Ravisankar V, Singh TP, Manoj N.Molecular evolution of the EGF-CFC protein family[J].Gene.2011,482(1-2):43-50.
    [52]Bianco C, Normanno N, Salomon DS, et al. Role of the cripto (EGF-CFC) family in embryogenesis and cancer[J].Growth Factors.2004,22(3):133-139.
    [53]Strizzi L, Bianco C, Normanno N, et al. Cripto-1:a multifunctional modulator during embryogenesis and oncogenesis[J]. Oncogene.2005,24(37):5731-5741.
    [54]Bianco C, Strizzi L, Normanno N, et al. Cripto-1:an oncofetal gene with many faces[J].Curr Top Dev Biol.2005,67:85-133.
    [55]Bianco C, Rangel MC, Castro NP, et al. Role of Cripto-1 in stem cell maintenance and malignant progression[J].Am J Pathol.2010,177(2):532-540.
    [56]de Castro NP, Rangel MC, Nagaoka T, et al. Cripto-1:an embryonic gene that promotes tumorigenesis[J].Future Oncol.2010,6(7):1127-1142.
    [57]Watanabe K, Meyer MJ, Strizzi L, et al. Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells[J].Stem Cells.2010,28(8):1303-1314.
    [58]Gordts S, Brosens JJ, Fusi L, et al. Uterine adenomyosis:a need for uniform terminology and consensus classification[J].Reprod Biomed Online.2008,17(2): 244-248.
    [59]Benagiano G, Brosens I.The endometrium in adenomyosis[J].Womens Health (Lond Engl).2012,8(3):301-312.
    [60]丁永慧.MMP-7及TIMP1在子宫内膜异位性疾病中的表达及意义[J].宁夏医科大学学报.2011,33(10):928-930.
    [61]孙爱群,孙国富,陈录庭,等.MMP7蛋白在子宫腺肌症中的表达及临床意义[J].实用医学杂志.2010,26(20):3723-3724.
    [62]史文静,韩西群,邓樑卿,等.骨桥蛋白及其受体异常表达在子宫内膜异位症中的作用[J].解剖学研究.2011,33(3):169-175.
    [63]Valenta T, Hausmann G, Basler K.The many faces and functions of β-catenin[J].EMBO J.2012,31(12):2714-2736.
    [64]Clevers H, Nusse R.Wnt/β-catenin signaling and disease[J].Cell. 2012,149(6):1192-1205.
    [65]Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling:diseases and therapies[J]. Nat Rev Genet.2004,5(9):691-701.
    [66]Scotti S, Regidor PA, Schindler AE, et al. Reduced proliferation and cell adhesion in endometriosis[J]. Mol Hum Reprod.2000,6(7):610-617.
    [67]Jamieson C, Sharma M, Henderson BR.Wnt signaling from membrane to nucleus: β-catenin caught in a loop[J].Int J Biochem Cell Biol.2012,44(6):847-850.
    [68]Tamara Grigoryan, Peter Wend, Alexandra Klaus, et al. Deciphering the function of canonical Wnt signals in development and disease:conditional loss-and gain-of-function mutations of β-catenin in mice[J].Gene Dev.2008,22(17): 2308-2341.
    [69]Niehrs C.The complex world of WNT receptor signalling [J].Nat Rev Mol Cell Biol.2012,13(12):767-779.
    [70]Tian X, Liu Z, Niu B, et al. E-cadherin/β-catenin complex and the epithelial barrier[J].J Biomed Biotechnol.2011,2011:567305.
    [71]Sachiko Matsuzaki, Claude Darcha, Elodie Maleysson, et al. Impaired Down-Regulation of E-Cadherin and beta-Catenin Protein Expression in Endometrial Epithelial Cells in the Mid-Secretory Endometrium of Infertile Patients with Endometriosis[J]. J Clin Endocrinol Metab.2010,95(7):3437-3445.
    [72]Allen WR, Wilsher S.A review of implantation and early placentation in the mare[J].Placenta.2009,30(12):1005-1015.
    [73]黄静,何俊琳,刘学庆,等.p-TrCP和β-连环蛋白在小鼠胚胎着床过程中子宫内膜的表达[J].细胞生物学杂志.2009,31(2):243-249.
    [74]王立宏,李亚里,刘爱军.E-钙粘素及β-连环素在子宫内膜异位症中的表达[J].解放军医学杂志.2004,29(7):612-614.
    [75]罗雪珍,李明清,王凌,等.β-catenin在子宫内膜异位症患者在位内膜中的表达[J].生殖与避孕.2012,11(32):733-738.
    [76]Ueda M, Yamashita Y, Takehara M, et al. Gene expression of adhesion molecules and matrix metalloproteinases in endometriosis[J].Gynecol Endocrinol. 2002,16(5):391-402.
    [77]Van Patten K, Parkash V, Jain D.Cadherin expression in gastrointestinal tract endometriosis:possible role in deep tissue invasion and development of malignancy[J].Mod Pathol.2010,23(1):38-44.
    [78]雷婷,郭晓静,王欣欣,等.Cripto-1蛋白在乳腺癌中的表达和预后意义[J].中国肿瘤临床.2010,37(24):665-668.
    [79]Nagaoka T, Karasawa H, Castro NP, et al. An evolving web of signaling networks regulated by Cripto-1 [J].Growth Factors,2012,30(1):13-21.
    [80]Tao Q, Yokota C, Puck H, et al. Maternal Wntl 1 activates the canonical Wnt signaling pathway required for axis formation in xenopus embryos[J]. Cell.2005, 120(6):857-871.
    [1]de Castro NP, Rangel MC, Nagaoka T, et al. Cripto-1:an embryonic gene that promotes tumorigenesis[J].Future Oncol.2010,6(7):1127-1142.
    [2]Ding J, Yang L, Yan YT, et al. Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo[J].Nature.1998,395(6703):702-707.
    [3]Bianco C, Rangel MC, Castro NP, et al. Role of Cripto-1 in stem cell maintenance and malignant progression[J].Am J Pathol.2010,177(2):532-540.
    [4]Strizzi L, Bianco C, Normanno N, et al. Cripto-1:a multifunctional modulator during embryogenesis and oncogenesis[J].Oncogene.2005,24(37):5731-5741.
    [5]Bianco C, Strizzi L, Normanno N, et al. Cripto-1:an oncofetal gene with many faces[J].Curr Top Dev Biol.2005,67:85-133.
    [6]Watanabe K, Meyer MJ, Strizzi L, et al. Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells[J].Stem Cells.2010,28(8):1303-1314.
    [7]Ravisankar V, Singh TP, Manoj N.Molecular evolution of the EGF-CFC protein family[J].Gene.2011,482(1-2):43-50.
    [8]Bianco C, Normanno N, Salomon DS, et al. Role of the cripto (EGF-CFC) family in embryogenesis and cancer[J].Growth Factors.2004,22(3):133-139.
    [9]Ciccodicola A, Dono R, Obici S, et al. Molecular characterization of a gene of the'EGF family'expressed in undifferentiated human NTERA2 teratocarcinoma cells[J].EMBO J.1989,8(7):1987-1991.
    [10]Watanabe K, Hamada S, Bianco C, et al. Requirement of glycosylphosphatidylinositol anchor of Cripto-1 for trans activity as a Nodal co-receptor[J].J Biol Chem.2007,282(49):35772-35786.
    [11]Watanabe K, Bianco C, Strizzi L, et al.Growth factor induction of Cripto-1 shedding by glycosylphosphatidylinositol-phospholipase D and enhancement of endothelial cell migration[J].J Biol Chem.2007,282(43):31643-31655.
    [12]Shi S, Ge C, Luo Y, et al.The threonine that carries fucose, but not fucose, is required for Cripto to facilitate Nodal signaling [J].J Biol Chem.2007,282(28):20133-20141.
    [13]Schiffer SG, Foley S, Kaffashan A, et al. Fucosylation of Cripto is required for its ability to facilitate nodal signaling[J].J Biol Chem. 2001,276(41):37769-37778.
    [14]Minchiotti G, Parisi S, Liguori G, et al.Membrane-anchorage of Cripto protein by glycosylphosphatidylinositol and its distribution during early mouse development[J].Mech Dev.2000,90(2):133-142.
    [15]D'Andrea D, Liguori GL, Le Good JA, et al.Cripto promotes A-P axis specification independently of its stimulatory effect on Nodal autoinduction[J].J Cell Biol.2008,180(3):597-605.
    [16]Xu C, Liguori G, Persico MG, et al. Abrogation of the Cripto gene in mouse leads to failure of postgastrulation morphogenesis and lack of differentiation of cardiomyocytes[J].Development.1999,126(3):483-494.
    [17]Xu C, Liguori G, Adamson ED, et al. Specific arrest of cardiogenesis in cultured embryonic stem cells lacking Cripto-1[J].Dev Biol.1998,196(2):237-247.
    [18]Kenney NJ, Adkins HB, Sanicola M.Nodal and Cripto-1:embryonic pattern formation genes involved in mammary gland development and tumorigenesis[J].J Mammary Gland Biol Neoplasia.2004,9(2):133-144.
    [19]Salomon DS, Bianco C, De Santis M.Cripto:a novel epidermal growth factor (EGF)-related peptide in mammary gland development and neoplasia[J].Bioessays.1999,21 (1):61-70.
    [20]Niemeyer CC, Persico MG, Adamson ED.Cripto:roles in mammary cell growth, survival, differentiation and transformation[J].Cell Death Differ. 1998,5(5):440-449.
    [21]Bianco C, Wechselberger C, Ebert A, et al. Identification of Cripto-1 in human milk[J].Breast Cancer Res Treat.2001,66(1):1-7.
    [22]Wechselberger C, Ebert AD, Bianco C, et al. Cripto-1 enhances migration and branching morphogenesis of mouse mammary epithelial cells[J].Exp Cell Res. 2001,266(1):95-105.
    [23]Wechselberger C, Strizzi L, Kenney N, et al. Human Cripto-1 overexpression in the mouse mammary gland results in the development of hyperplasia and adenocarcinoma[J].Oncogene.2005,24(25):4094-4105.
    [24]Sun Y, Strizzi L, Raafat A, et al. Overexpression of human Cripto-1 in transgenic mice delays mammary gland development and differentiation and induces mammary tumorigenesis[J].Am J Pathol.2005,167(2):585-597.
    [25]Normanno N, De Luca A, Bianco C, et al. Cripto-1 overexpression leads to enhanced invasiveness and resistance to anoikis in human MCF-7 breast cancer cells[J].J Cell Physiol.2004,198(1):31-39.
    [26]De Santis ML, Martinez-Lacaci I, Bianco C, et al. Cripto-1 induces apoptosis in HC-11 mouse mammary epithelial cells [J]. Cell Death Differ. 2000,7(2):189-196.
    [27]Bianco C, Adkins HB, Wechselberger C, et al. Cripto-1 activates nodal-and ALK4-dependent and -independent signaling pathways in mammary epithelial Cells[J].Mol Cell Biol.2002,22(8):2586-2597.
    [28]Das AB, Loying P, Bose B.Human recombinant Cripto-1 increases doubling time and reduces proliferation of HeLa cells independent of pro-proliferation pathways[J].Cancer Lett.2012,318(2):189-198.
    [29]Bianco C, Normanno N, De Luca A, et al. Detection and localization of Cripto-1 binding in mouse mammary epithelial cells and in the mouse mammary gland using an immunoglobulin-cripto-1 fusion protein[J].J Cell Physiol. 2002,190(l):74-82.
    [30]Strizzi L, Bianco C, Raafat A, et al. Netrin-1 regulates invasion and migration of mouse mammary epithelial cells overexpressing Cripto-1 in vitro and in vivo[J].J Cell Sci.2005,118(Pt20):4633-4643.
    [31]Ertoy D, Ayhan A, Sarac E, et al. Clinicopathological implication of cripto expression in early stage invasive cervical carcinomas[J].Eur J Cancer. 2000,36(8):1002-1007.
    [32]Bianco C, Strizzi L, Ebert A, et al. Role of human cripto-1 in tumor angiogenesis[J].J Natl Cancer Inst.2005,97(2):132-141.
    [33]Bianco C, Cotten C, Lonardo E, et al. Cripto-1 is required for hypoxia to induce cardiac differentiation of mouse embryonic stem cells[J].Am J Pathol. 2009,175(5):2146-2158.
    [34]Parish CL, Parisi S, Persico MG, et al.Cripto as a target for improving embryonic stem cell-based therapy in Parkinson's disease[J]. Stem Cells.2005, 23:471-476.
    [35]Nagaoka T, Karasawa H, Castro NP, et al. An evolving web of signaling networks regulated by Cripto-1 [J].Growth Factors.2012,30(1):13-21.
    [36]Wei CL, Miura T, Robson P, et al.Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state[J].Stem Cells.2005,23(2):166-185.
    [37]Chang TC, Liu YG, Eddy CA, et al.Derivation and characterization of novel nonhuman primate embryonic stem cell lines from in vitro-fertilized baboon preimplantation embryos[J].Stem Cells Dev.2011,20(6):1053-1062.
    [38]Loh YH, Wu Q, Chew JL, et al.The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells [J].Nat Genet. 2006,38(4):431-440.
    [39]Babaie Y, Herwig R, Greber B, et al.Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells[J]. Stem Cells.2007,25:500-510.
    [40]Gong YP, Yarrow PM, Carmalt HL, et al. Overexpression of Cripto and its prognostic significance in breast cancer:a study with long-term survival[J].Eur J Surg Oncol.2007,33(4):438-443.
    [41]杨倩.Activin A, Cripto-1在乳腺癌中的表达及临床意义[D].长沙:中南大学.
    [42]雷婷,郭晓静,王欣欣,等.Cripto-1蛋白在乳腺癌中的表达和预后意义[J].中国肿瘤临床.2010;37(24):665-668.
    [43]Savagner P. The epithelial-mesenchymal transition (EMT) phenomenon[J]. Ann Oncol.2010,21(Suppl 7):vii89-vii92.
    [44]张建国,辛彦.Cripto-1与肿瘤关系的研究进展[J].中华肿瘤防治杂志.2009,(24):1966-1969.
    [45]Strizzi L, Postovit LM, Margaryan NV, et al. Emerging roles of nodal and Cripto-1:from embryogenesis to breast cancer progression.Breast Di[J]. 2008,29:91-103.
    [46]Bianco C, Salomon DS.Targeting the embryonic gene Cripto-1 in cancer and beyond[J].Expert Opin Ther Pat.2010,20(12):1739-1749.
    [47]Strizzi L, Bianco C, Normanno N, et al. Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice[J].J Cell Physiol.2004,201(2):266-276.
    [48]Wu Z, Li G, Wu L, et al. Cripto-1 overexpression is involved in the tumorigenesis of nasopharyngeal carcinoma[J].BMC Cancer.2009,9:315.
    [49]Zhong XY, Zhang LH, Jia SQ, et al. Positive association of up-regulated Cripto-1 and down-regulated E-cadherin with tumour progression and poor prognosis in gastric cancer[J].Histopathology.2008,52(5):560-568.
    [50]Zhang J, Xin Y.Significance and relationship between Cripto-1 and p-STAT3 expression in gastric cancer and precancerous lesions[J].World J Gastroenterol. 2010,16(5):571-577.
    [51]王烯冬,德力,陈珂,等.Cripto-1高表达以及E-cadherin低表达与晚期胃癌转移有关[J].医学综述.2011,17(20):3198-3200.
    [52]Hong SP, Lee EK, Park JY, et al. Cripto-1 overexpression is involved in the tumorigenesis of gastric-type and pancreatobiliary-type intraductal papillary mucinous neoplasms of the pancreas [J]. Oncol Rep.2009,21(1):19-24.
    [53]李艳青.Cripto-1瘤基因高表达在肝癌发病机理中的作用及其临床意义[D].广州:南方医科大学.
    [54]Baldassarre G, Tucci M, Lembo G, et al. A truncated form of teratocarcinoma-derived growth factor-1 (cripto-1) mRNA expressed in human colon carcinoma cell lines and tumors [J].Tumour Biol.2001,22(5):286-293.
    [55]范钰,张尤历,李华,等.RNAi沉默Cripto基因对结肠癌细胞血管内皮生长因子的抑制[J].中国病理生理杂志.2008,24(2):242-245.
    [56]De Luca A, Lamura L, Strizzi L, et al. Expression and functional role of CRIPTO-1 in cutaneous melanoma[J].Br J Cancer.2011,105(7):1030-1038.
    [57]Mallikarjuna K, Vaijayanthi P, Krishnakumar S.Cripto-1 expression in uveal melanoma:an immunohistochemical study[J].Exp Eye Res.2007,84(6): 1060-1066.
    [58]Strizzi L, Abbott DE, Salomon DS, et al. Potential for cripto-1 in defining stem cell-like characteristics in human malignant melanoma[J].Cell Cycle. 2008,7(13):1931-1935.
    [59]Ertoy D, Ayhan A, Sarac E, et al. Clinicopathological implication of cripto expression in early stage invasive cervical carcinomas[J].Eur J Cancer. 2000,36(8):1002-1007.
    [60]徐嵘嵘.Cripto-1, Nodal在宫颈癌中的表达及临床意义[D].合肥:安徽医科大学.
    [61]徐嵘嵘,冯定庆,雷蕾,等.Cripto-1在子宫颈癌中的表达及临床意义[J].临床与实验病理学杂志.2011,27(8):811-814.
    [62]Ebert AD, Wechselberger C, Nees M, et al. Cripto-1-induced increase in vimentin expression is associated with enhanced migration of human Caski cervical carcinoma cells[J].Exp Cell Res.2000 May 25;257(l):223-229.
    [63]步晓琳.Cripto-1、E-cadherin、β-catenim vimentin在卵巢浆液性腺癌中的表达及意义[D].大连:大连医科大学.
    [64]D'Antonio A, Losito S, Pignata S, et al. Transforming growth factor alpha, amphiregulin and cripto-1 are frequently expressed in advanced human ovarian carcinomas[J].Int J Oncol.2002,21(5):941-948.
    [65]Papageorgiou I, Nicholls PK, Wang F, et al. Expression of nodal signalling components in cycling human endometrium and in endometrial cancer[J].Reprod Biol Endocrinol.2009,7:122.
    [66]Yoon HJ, Hong JS, Shin WJ, et al. The role of Cripto-1 in the tumorigenesis and progression of oral squamous cell carcinoma[J]. Oral Oncol.2011,47(11): 1023-1031.
    [67]Lawrence MG, Margaryan NV, Loessner D, et al. Reactivation of embryonic nodal signaling is associated with tumor progression and promotes the growth of prostate cancer cells[J].Prostate.2011,71(11):1198-1209.
    [68]Byrne RL, Autzen P, Birch P, et al. The immunohistochemical detection of cripto-1 in benign and malignant human bladder[J].J Pathol.1998,185 (1):108-111.
    [69]Cocciadiferro L, Miceli V, Kang KS, et al.Profiling cancer stem cells in androgen-responsive and refractory human prostate tumor cell lines[J].Ann N Y Acad Sci.2009,1155:257-262.
    [70]Strizzi L, Bianco C, Hirota M, et al.Development of leiomyosarcoma of the uterus in MMTV-CR-1 transgenic mice[J].J Pathol.2007,211(1):36-44.
    [71]Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J]. J Cell Biol.1982,95:333-339.
    [72]Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol.2010,21:212-222.
    [73]L6pez-Novoa JM, Nieto MA. Inflammation and EMT:an alliance towards organ fibrosis and cancer progression[J]. EMBO Mol Med.2009,1:303-314.
    [74]Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell.2009,139:871-890.
    [75]Mani SA, Guo W, Liao MJ, et al.The epithelial-mesenchymal transition generates cells with properties of stem cells[J].Cell.2008,133(4):704-715.
    [76]Nadia Pereira Castro, Maria Cristina Rangel, Tadahiro Nagaoka, et al.Cripto-1: At the Crossroads of Embryonic Stem Cells and Cancer, Embryonic Stem Cells-Basic Biology to Bioengineering[M],InTech,2011:347-368.http://www. intechopen.com/books/embryonic-stem-cells-basic-biology-to-bioengineering/ cripto-1-at-the-crossroads-of-embry onic-stem-cells-and-cancer.
    [77]Nusse R, Fuerer C, Ching W, et al.Wnt signaling and stem cell control[J]. Cold Spring Harb Symp Quant Biol.2008,73:59-66.
    [78]Morkel M, Huelsken J, Wakamiya M, et al.Beta-catenin regulates Cripto-and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation[J]. Development.2003,130:6283-6294.
    [79]Tao Q, Yokota C, Puck H, et al.Maternal Wnt11 activates the canonical Wnt signaling pathway required for axis formation in xenopus embryos[J]. Cell.2005, 120:857-871.
    [80]Watanabe K, Nagaoka T, Lee JM, et al.Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1[J].J Cell Biol. 2009,187(3):343-353.
    [81]Vallier L, Mendjan S, Brown S, Chng Z, Teo A, Smithers LE, Trotter MW, Cho CH, Martinez A, Rugg-Gunn P, Brons G, Pedersen RA:Activin/Nodal signalling maintains pluripotency by controlling Nanog expression[J]. Development.2009, 136:1339-1349.
    [82]郝晓健,郑茹,郭磊等.抗Cripto单抗与羧胺三唑的联合抗肿瘤作用研究[J].癌症进展,2009,7(6):635-641.
    [83]胡秀凤,S.Vandervalk,邢培祥,.抗表皮生长因子Cripto抗体在恶性肿瘤免疫治疗中的实验研究[J].肿瘤防治研究,2008,35(S1):52.
    [84]De Luca A, Arra C, D'Antonio A, et al.Simultaneous blockage of different EGF-like growth factors results in efficient growth inhibition of human colon carcinoma xenografts[J].Oncogene.2000,19(51):5863-5871.
    [85]Seno M, DeSantis M, Kannan S, et al. Purification and characterization of a recombinant human cripto-1 protein[J].Growth Factors.1998,15(3):215-229.
    [86]Kelly RK, Olson DL, Sun Y, et al. An antibody-cytotoxic conjugate, BIIB015, is a new targeted therapy for Cripto positive tumours [J].Eur J Cancer. 2011,47(11):1736-1746.
    [87]Xing PX, Hu XF, Pietersz GA, et al.Cripto:a novel target for antibody-based cancer immunotherapy[J].Cancer Res.2004,64(11):4018-23.
    [88]Shi Y, Bao YL, Wu Y, et al. Alantolactone inhibits cell proliferation by interrupting the interaction between Cripto-1 and activin receptor type II A in activin signaling pathway[J]J Biomol Screen.2011,16(5):525-535.
    [89]Bianco C, Salomon DS.Human Cripto-1 as a target for a cancer vaccine: WO2008040759[J].Expert Opin Ther Pat.2009,19(2):141-144.
    [90]Bianco C, Strizzi L, Mancino M, et al. Identification of cripto-1 as a novel serologic marker for breast and colon cancer[J].Clin Cancer Res.2006,12(17): 5158-5164.
    [91]Normanno N, De Luca A, Maiello MR, et al. CRIPTO-1:a novel target for therapeutic intervention in human carcinoma[J].Int J Oncol.2004,25 (4): 1013-1020.
    [92]Miyoshi N, Ishii H, Mimori K, et al. TDGF1 is a novel predictive marker for metachronous metastasis of colorectal cancer[J].Int J Oncol.2010,36(3): 563-568.
    [93]Strizzi L, Postovit LM, Margaryan NV, et al.Nodal as a biomarker for melanoma progression and a new therapeutic target for clinical intervention[J].Expert Rev Dermatol.2009,4(1):67-78.
    [94]Chen L, Kasai T, Li Y, et al.A model of cancer stem cells derived from mouse induced pluripotent stem cells[J].PLoS One.2012,7(4):e33544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700