用户名: 密码: 验证码:
基于稀酸水解法的纤维素糖化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能源具有广阔的市场前景,对解决日益严峻的能源危机具有极其重要的意义。其中,农业废弃物资源化利用备受关注。本文以玉米秸秆及糖厂制糖残渣纤维素为原料,通过稀酸水解法,以还原糖得率为指标,优化反应条件,主要研究结果如下:
     针对木质纤维素类生物质水解的主要成分,以医用脱脂棉和定性滤纸为模化物,以高温高压溶弹为反应器,选取各反应条件的梯度水平,以确立纤维素稀酸水解基本条件。以还原糖得率为指标优化反应条件,得出180℃温度下,反应80min、硫酸浓度4%的最优工艺条件,为后续采用玉米秸秆和制糖残渣进行稀酸水解实验提供了参考数据。
     基于解决当前农作物秸秆和糖厂制糖残渣废弃物再利用的实际问题,以自行设计反应器为平台,采用正交实验设计,考查了硫酸浓度、原料粉碎度、液固比和金属盐催化剂浓度对玉米秸秆、甘蔗渣、甜菜粕和甜高粱秸水解还原糖得率的影响。正交实验中玉米秸秆、甘蔗渣、甜菜粕和甜高粱秸分别得到60.42%、69.89%、64.88%和70.28%的最高还原糖得率,并得到各自最优工艺条件。实验对金属盐助催化剂进行了重点研究,通过与空白实验对比发现,所采用的金属盐助催化剂Fe2+、Cu2+均使还原糖得率提高。其中,以Fe2+的催化效果最好,Cu2+的催化效果略次于Fe2+。
     在综合对比糖类产物定量和定性分析方法的基础上,对玉米秸秆稀酸水解液中葡萄糖和木糖进行了定量。结果表明,水解液中木糖含量远低于葡萄糖;另外,副产物分析结果表明,金属助催化剂对减少甲酸、乙酸、乙酰丙酸、丙酮、糠醛五种副产物含量具有明显作用。未使用金属盐助催化剂的反应所得水解液中的副产物含量基本高于有助催化剂参与反应所得水解液中副产物的含量。
     本实验对稀酸糖化水解纤维素进行了系统的理论和实验研究,为促进农作物秸秆和糖厂制糖残渣纤维素的资源化利用打下基础。
The biomass resource is potential at present,as will play an important role in dealing with the severe fuel crisis.The reuse of agricultural offal is payed more attention.The corn straw and residue from the sugar plant were used as material to hydrolyse under the dilute acid,and the reaction condition was optimized by the reducing sugar yield.The main results are as follows.
     The pledget and qualitative filter were chosen to represent the main component of lignocellulose,and the vessel that can endure high temperature and pressure was used as reactor.The reaction conditions grads were chosen to ascertain the basic condition of hydrolysis of cellulose under dilute acids.The reducing sugar yield is used to optimize reation conditions.And the best reation conditions are temperature 180℃and sulfur acid concentration 4% in 80minutes,which provided reference for hydrolysis of straw and residue from the sugar plant under dilute acids.
     To carry out the reuse of residue from the sugar plant such as corn straw,saccharum officinarum residue,beet residue and sweet sorghum residue,the reactor was designed.Orthogonal experiment was carried out to research the influence of the sulfur acid concentration,granularity,the ratio of liquid and solid and metal salt catalyst.The results of orthogonal experiment indicated that the highest reducing sugar yields of straw,officinarum residue,beet residue and sweet sorghum residue were 60.42%、69.89%、64.88% and 70.28%.The best reaction conditions of the materials were also reckoned.The experiment did an important research on metal salt catalyst,which concluded that the catalyst such as Fe2+ and Cu2+ could raise the reducing sugar yield by the contrast to CK.There was a good effect of Fe2+,which is better than Cu2+.
     On the basis of contrast to quantitative and qualitative analyse of sugar offspring,the glucose and xylose were quantitated.The results indicated that the xylose was less than glucose.And the results to analyse the byproducts indicated that the catalyst played an important role on reducing formic acid,acetic acid,levulinic acid,acetone and furfural.The content of byproducts with catalyst in the liquid was more than that without catalyst in the liquid.
     A systemic research about saccharification of lignocellulose under dilute acids was carried out,which will benefit the utilization of straw and residue from the sugar plant.
引文
1. 陈明.利用玉米秸秆制取燃料乙醇的关键技术研究 [博士学位论文] .浙江:浙江大学,2007.
    2. 高洁,汤烈贵.纤维素科学.北京:科学出版社, 1999,10.
    3. 郭成勋.甜菜糖厂“三废”处理及综合利用.北京:中国轻工业出版社, 1990,10.
    4. 韩鲁佳,闫巧娟,刘向阳,等.中国农作物秸秆资源及其利用现状.农业工程学报, 2002,18(3):87~91.
    5. 何北海,林鹿,孙润仓,等.木质纤维素化学水解产生可发酵糖研究.化学进展, 2007,19(7/8):1142~1145.
    6. 胡忠鲠.现代化学基础.北京:高等教育出版社, 2000,1.
    7. 黄忠乾,龙章富,彭卫红.农作物秸秆资源的综合利用.资源开发与市场, 1999,15(1):32~34.
    8. 蒋剑春.生物质能源应用研究现状与发展前景.林产化学与工业, 2002,22(2):75~80.
    9. 李琪,蒲俊文,李雍,等.甜高粱秆酿酒前后化学组成纤维特性及制浆性能的研究.林业科技, 2007,32(5):48~50.
    10. 李伟,蔺树生,谭豫之,等.作物秸秆综合利用的创新技术.农业工程学报, 2000,16(1):14~17.
    11. 李玉颖,张立科,贺德明,等.甜菜渣是制取沼气的好原料.可再生能源, 1988,Z1:46~47.
    12. 黎锡流,曾利容.甘蔗糖厂综合利用.北京:中国轻工业出版社, 1998,10.
    13. 梁凌云.秸秆热化学液化工艺和机理的研究 [博士学位论文] .北京:中国农业大学,2005.
    14. 刘书钗.制浆造纸分析与检测.北京:化学工业出版社, 2003:17~31.
    15. 刘穗,高培基.半纤维素酶的分子生物学.纤维素科学与技术, 1998,6(1):9~15.
    16. 刘仲齐.生物乙醇转化技术的研究进展.西南农业学报, 1999,12:64~68.
    17. 梅文泉,隋启君,佴注,等.马铃薯块茎中还原糖测定的一种方法.云南农业科技, 2003,3:23~24.
    18. 聂艳丽,刘永国,李娅,等.甘蔗渣资源利用现状及开发前景.林业经济, 2007,5:61~63.
    19. 钱名宇,杨秀山.燃料酒精生产中对木质纤维素稀酸水解液的脱毒处理.太阳能, 2005,(02):49.
    20. 全国农业技术推广服务中心.高产高糖甘蔗种植技术手册.北京:中国农业科学技术出版社, 2004,32~40.
    21. 薛珺,蒲欢,孙春宝.纤维素稀酸水解产物中发酵抑制物的去除方法.纤维素科学与技术, 2004,12(3):48~54.
    22. 薛连海,王禹,王建刚等.毛细管气相色谱法测定甘蔗渣水解液中的糖含量.吉林化工学院学报, 2001,18(3):9~11.
    23. 王冰凝.中国急需建立石油能源战略储备参与国际合作.新京报, 2004.09.22.
    24. 汪昆华,罗传秋,周啸.聚合物现代仪器分析(第二版).北京:清华大学出版社, 2000.
    25. 王丽丽,刘汉成,王葵阳,等.HPLC 法测定半纤维素水解液中糖的研究.分析测试学报, 1994,13(3),51~53.
    26. 王树荣,庄新姝,骆仲泱,等.木质纤维素类生物质超低酸水解试验及产物分析研究.工程热物理学报, 2006,27(5):741~744.
    27. 伍世文.天然纤维素类物质的糖化及转化为酒精的研究.西部粮油科技, 2000,25(3):46~48.
    28. 吴创之,马龙隆.生物质能现代化利用技术.北京:化学工业出版社, 2003,173.
    29. 吴伟志,罗廉,余世袁.植物单糖的高效液相色谱分析.色谱, 1994,12(3):210~211.
    30. 无锡轻工业学院,天津轻工业学院.食品分析.北京:中国轻工业出版社, 1983,131~177.
    31. 邬义明.植物纤维化学.北京:北京轻工业出版社, 1997.
    32. 阎蔚.甜菜废粕利用的现状与前景.中国甜菜糖业, 1994,2:19~20.
    33. 颜涌捷.任铮伟.纤维素连续催化水解研究.太阳能学报, 1999,20(1):57~58.
    34. 杨立忠,杨钧锡,别义勋.新能源技术——跨世纪国民经济的动力.北京:中国科学技术出版社, 1994:230.
    35. 宇正祥.食品分析手册.北京:中国轻工业出版社, 1998.
    36. 袁传敏.纤维素废弃物稀酸水解制取还原性单糖的研究 [博士学位论文] .上海:华东理工大学,2004.
    37. 章克昌.酒精与蒸馏工艺学.北京:中国轻工业出版社, 1995,2.
    38. 中国农业年鉴编辑委员会.中国农业统计年鉴 2000.北京:中国农业出版社,2000,52.
    39. 钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用.资源科学, 2003,25(4):62~67.
    40. 中华人民共和国国家技术监督局.GB/T 2677.2.造纸原料水分的测定.北京:中国标准出版社, 1994.
    41. 中华人民共和国国家技术监督局.GB 6438-92.北京:中国标准出版社, 1994.
    42. 中华人民共和国国家发展计划委员会基础产业发展司.中国能源与可再生能源 1999 白皮书.北京:中国计划出版社,2000.
    43. 庄新姝.生物质超低酸水解制取燃料乙醇的研究 [博士学位论文] .浙江:浙江大学,2005.
    44. 庄新姝,王树荣,安宏,等.纤维素低浓度酸水解制取液体燃料的试验研究.浙江大学学报(工学版), 2006,40(6),997~1001.
    45. 庄新姝,王树荣,骆仲泱,等.纤维素低浓度酸水解试验及产物分析研究.太阳能学报, 2006,27(5):521~522.
    46. 庄新姝,王树荣,袁振宏,等.纤维素超低酸水解产物的分析.农业工程学报, 2007,23(2):177~181.
    47. Aguilar R., Ramirez J.A., Garrote G, Vazquez M. . Kinetic study of the acid hydrolysis of sugar cane ba-gasse. Journal of Food Engineering, 2002, 55: 309~318.
    48. Alma M.H., Shiraishi N. . Novolak resin-type moldings prepared from phenolated wood in the presence of sulfuric acid as catalyst. Journal of Polymer Engineering, 1998,18(3): 197~220.
    49. Antonio R.C., Jose A.R., Gil G., et al. . Hydrolysis of sugar cane bagasse using nitric acid: A kinetic assessment. Journal of Food Engineering, 2004, 61: 143~152.
    50. Axel F, Ralf C. . Effect of temperature on the rate limiting step in the methanogenic degradation pathway in rice field soil. Biology and Biochemistry, 2003, 35: 1~8.
    51. Banerjee R., Pandey A. . Bio-industrial applications of sugarcane bagasse: A technological perspective. International Sugar Journal, 2002, 104(1238): 64~67.
    52. Bozell J.J.,Moens L.,Elliott D.C., et al. . Production of levulinlic acid and use as a platform chemical for derived products. Resources,Conservation and Recycling, 2002, 28: 227~239.
    53. Farone W.A.,Cuzens J.E(Arkenol Inc). . Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials. US, 5562777, 1996.
    54. Gamez S., Ramirez J.A., Arrote G., et al. . Manufacture of fermentable sugar solutions from sugar cane bagasse hydrolyzed with phosphoric acid at atmospheric pressure. J Agric Food Chem. 2004, 52(13): 4172~4177.
    55. Herrera A., Tellez-Luis S.J., Gonzalez-Cabriales J.J. . Production of xylose from sorghum straw using hydrochloric acid. Journal of Food Engineering, 2004, 63: 103~109.
    56. Himmel M.E., Baker J.O., Overend R.P. . Enzymatic conversion of biomass for fuels production. Washington DC: ACS, 1994, 292~324.
    57. Irnmahboob J., Nadim F., Monemi S. . Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass and Bioenergy, 2002, 22(5): 401~404.
    58. Jerome F., Saeman. . Kinetics of wood saccharification hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial and Engineering Chemistry, 1945, 1: 43~52.
    59. Jun S.K., Lee Y.Y., Torget R.W. . Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. Applied Biochemistry and Biotechnology, 2001,91~93: 331~340.
    60. Korbitz W. . Biodiesel production in Europe and North America, an encouraging prospect. Renewable Energy, 1999, 16: 1078~1083.
    61. Lee Y.Y., Iyre P., Torget R.W. . Dilute-acid hydrolysis of lignocellulosic biomass. Advances in Biochemical Engineering/Biotechnology, 1999, 65: 93~115.
    62. Lin L, Naksgame S., Yao Y., et al. . Liquefaction mechanism of β-0-4 lignin model compound in the presence of phenol under acid catalysis. Part 2. Reaction Behavior and Pathways. Holzforschung, 2001, 55(6): 625~630.
    63. Lin L., Yao Y., Shiraishi N. . Liquefaction mechanism of β-0-4 lignin model compound in the presence of phenol under acid catalysis. Part 1. Identification of the Reation Products. Holzforschung, 2001, 55(6): 617~624.
    64. Lin L., Yao Y., Yoshioka M., Shiraishi N. . Molecular weights and molecular weight distributions of liquefied wood obtained by acid-catalyzed phenolysis. Journal of Applied Polymer Science, 1997, 64(2): 351~357.
    65. Lisbeth O., Barbel H.H. . Fermentation of lignocellulosic hydrolysate for ethanol production. Enzyme and Microbial Technology, 1996, 18(5): 312~331.
    66. Mok W.S-L, Antal M.J. . Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose. Industrial and Engeneering Chemistry Research, 1992, 31(2): 94~100.
    67. Nagle N., Ibsen K., Jennings E.A. . Process economic approach to develop a dilute-acid cellulose hydrolysis process to produce ethanol from biomass. Applied Biochemistry and Biotechnology, 1999, 77~79: 595~607.
    68. Nathan S., Mosier, Ayda Sarikaya, Christine L., et al. . Characterization of dicarboxylicacid for cellulose hydrolysis. Biotechnol.Prog., 2001, 17: 474~480.
    69. Nguyen, Quang A., Tucker, Melvin P. . Dilute acid / metal salt hydrolysis of lignocellulosics. US 6423145, 2002.
    70. Nigam J.N. . Ethanol production from hardwood spent sulfite liquor using an adapted strain of pichia stipitis. Journal of Industrial Microbiology Biotechnology, 2001, 26: 145~150.
    71. Oliva J.M., Negro M.J., Saez F.,et al. . Effects of ace-tic acid,furfural and catechol combinations on ethanol fermentation of kluyveromyces marxianus. Process Biochem, 2006, 41: 1223~1228.
    72. ParajoA J.C., Alonso J.L., VaAzquez D. . On the behaviour of lignin and hemicelluloses during the Acetosolv processing of wood. Bioresource Technology, 1993, 46: 233~240.
    73. Palmqvist E., Barbel H.H. . Fermentation of lig-nocellulosic hydrolysates II:inhibitors and mecha-nisms of inhibition. Bioresource Technology, 2000, 74: 17~33.
    74. Qian X., Lee Y.Y., ParO P., et al. . Heterogeneous aspects of acid hydrolysis α-cellulose. Applied Biochemistry and Biotechnology, 2003, 105~108: 505~514.
    75. Raymond R., Tina E. . Determination of carbohydrates in biomass high performance liquid chromatography. Chemical Analysis and Testing Task Laboratory Analytical Procedure LAP-002, 1996.2.14.
    76. Raymond R, Tina E. . HPLC analysis of liquid fractions of process samples for monomeric sugars and cellobiose. Chemical Analysis and Testing Task Laboratory Analytical Procedure LAP-013, 1996.6.28.
    77. Raymond R., Tina E. . Dilute acid hydrolysis procedure for determination of total sugars in the liquid fraction of process samples. Chemical Analysis and Testing Task Laboratory Analytical Procedure LAP-014, 1996.3.6.
    78. Raymond R., Tina E. . HPLC analysis of liquid fractions of process samples for byproducts and degradation products. Chemical Analysis and Testing Task Laboratory Analytical Procedure LAP-015, 1996.8.22.
    79. Rodriguez-romos E. . Process for jointly producing furfural and levulinic acid from bagasse and other ligocellulosic material. US 3701789, 1972.
    80. Sun Y., Cheng J.Y.. . Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresource Technology, 2002, 83: 1~11.
    81. Wang L., Bruce E., Dale, Lale Y., et al. . Cost estimates and sensitivity analyses for the ammonia fiber explosion process. Applied biochemistry and biotechnology, 1998,70~72: 51~66.
    82. William S.L.M., Michael J.A., Jr. . Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose. Industrial and Engineering Chemistry Research, 1992, 31(1): 94~100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700