用户名: 密码: 验证码:
新疆棉花长期连作土壤养分时空变化及可持续利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单一作物长期连作,由于作物专性吸收而引起土壤某些养分亏缺或比例失衡是连作的主要障碍因子之一。新疆棉花种植比例高,连作年限长,在长期棉花生产过程中,集成了高度机械化作业,增加化肥投入,采用先进的节水滴灌以及全面秸秆还田等农田集约管理组合,使得新疆棉花产量水平稳步提高。然而近年来新疆长期连作棉田棉花生长势差、早衰、死苗等现象普遍,病虫为害严重,农药、化肥用量不断上升,而产出和投入比不断下滑,出现明显的报酬递减规律,严重影响了新疆棉花的可持续生产。基于上述问题,结合新疆农田偏重氮磷施用,不施钾肥,少施或盲目施用微量元素肥料的施肥管理特点,本论文从土壤养分时空变化角度,研究了不同连作年限棉田养分变化规律,探讨棉田养分消耗特征及不同耕作方式的调节效应,为新疆棉花生产中养分科学管理和土壤可持续利用提供理论依据。
     试验地点选择在棉花连作问题突出,同时改良措施类型多的南疆沙井子垦区进行;研究采用空间替代法,以不同连作年限棉田(初垦1年、连作5年、15年、20年、30年)以及经不同耕作措施改良的棉田(长期连作棉田出现障碍后进行深翻(翻60cm)或稻棉轮作)为研究对象,系统分析了现代集约综合管理模式下,土壤有机质、大量元素(N、P、K)、微量元素(Mo、Cu、Zn、Mn、Fe)、盐基元素(Ca、Mg、Na)等几种主要养分,在不同年限连作棉田和经不同方式改良的棉田土壤100cm剖面中的变化特征及生物循环规律,取得以下主要研究结果:
     1.新疆棉花长期连作伴随秸秆还田,长期连作棉田土壤有机碳库持续增加,随连作年限延长,剖面0~40cm各土层有机质含量均呈逐年上升态势,具有碳汇功能。经深翻改良的棉田,0-60cm土壤得以充分混合,短期内耕作层(0~20cm)以下相对较深土层有机质含量显著增加,而在后茬棉花生长期间,有机质分解较快,至收获期含量大幅下降,春季深翻较冬季深翻下降更快。经一季水稻轮作改良的棉田,土壤经干湿交替,剖面不同深度有机质含量有不同程度下降,砂性质地土壤中,0~60cm均显著降低,而重壤质地土壤中,短期内下降不明显,但在后茬棉花生长期间下降较多。
     2.由于长期偏重氮、磷肥投入,长期连作棉田土壤氮、磷养分含量逐年上升,剖面0~40cm各土层全氮、碱解氮、全磷、有效磷含量均随连作年限延长而持续增加。全氮、碱解氮、全磷含量随连作年限延长大幅度提高,而有效磷在连作15年以后,增长速度明显减慢。深翻打破了土壤氮、磷养分在长期连作下形成的剖面分化格局,两种不同形态养分均在20~40cm达含量峰值,与40~60cm土层的含量一并得到大幅度提升,并使该土层段在后茬棉花全生育期的关键生育时期一直保持较高的有效含量。经水稻轮作改良的棉田,重壤质地土壤中,全氮、碱解氮、全磷、有效磷含量未发生明显变化,而砂壤质地土壤中,0-40cm全氮和全磷含量显著降低,且全氮在剖面中呈明显向底部迁移的运移趋势,而碱解氮和有效磷变化不大。
     3.新疆农田一般不施钾,在秸秆还田和棉花生物吸收作用下,棉花长期连作土壤钾含量在剖面不同深度发生分异。随连作年限延长,上部0-20cm耕作层含量先升后降,一般在棉花连作15年以后开始下降;中部20-70cm逐年下降,砂壤土中以40-50cm耗竭最重,重壤土中较浅,以20-30cm下降最快;下部70-100cm有累积趋势,但在年限之间无明显规律。深翻打破了钾在剖面中自上而下先降后升的分布状态,使0-60cm各土层含量趋于平均化,并促进速效钾的释放,使中部土层在棉花全生育期维持较高的速效钾含量。稻棉轮作虽然在克服连作障碍中有积极作用,但易造成土壤钾沿剖面向底部的淋溶损失,尤其在砂壤质地土壤上种植水稻,下茬棉花全生育期0-40cm土层速效钾水平普遍较低,因此应注重对下茬作物的钾肥补充。
     4.新疆棉田微量元素施用少,通过秸秆归还和产品器官输出,棉花长期连作,耕作层0-20cm土层全Mo随连作年限增加持续下降,与连作年限呈一元负线性关系;全Cu、全Zn、全Mn含量随年限增加先升后降,与年限呈二次函数关系,分别在连作7-10、10-12、17-18年达到最高累积量,之后持续下降,分别在14-17、20-22、32-34年回到初垦水平。0-30cm有效Cu、有效Mn、有效Fe含量亦随连作年限增加先升后降,在15-20年之后转而下降。中部20-70cm一定深度会因棉花大量吸收消耗而形成低谷,并随连作年限延长而逐年下降,与年限呈一元负线性关系,砂壤土表现较深,一般位于30-50cm处,重壤土中较浅,位于20-30cm处。深翻对微量元素全量和有效含量的剖面分布均有明显的影响,有较强的匀化土层养分的作用;稻棉轮作能明显提升耕作层微量元素有效性,这种作用在重壤土上尤为明显,而在砂壤土上,可使有效Zn在剖面产生一定程度的淋溶。
     5.新疆农田土壤盐碱化较重,在传统冬灌压盐和生育期膜下滴灌作用下,棉花长期连作,随连作年限延长,Ca、Mg元素由表层向底部迁移的趋势增强,使得耕作层0-20cm及以下20-40cm土层含量有不同程度下降,Na在重壤土表层含量增加,而在砂壤土中30-50cm随连作年限延长逐渐累积。深翻由于人为强烈的扰动,翻耕涉及的深度范围内盐基元素出现平均化分配格局;稻棉轮作在水分的淋洗作用下,盐基元素自上而下运移,可使土壤向脱盐方向转变。
     6.由于棉花对不同元素的吸收以及不同器官富集养分能力的差异,棉花对土壤不同元素的消耗量和归还量各异。经过多年棉花的连续生产,棉田土壤中部分微量元素和常量元素均有一定程度的贫化趋势,且在土壤中含量水平越低的元素,贫化越明显。棉花对Mo的吸收能力最强,导致长期连作土壤中Mo耗竭最重;随籽棉的收获,棉田微量元素Zn、Cu和常量元素Mg、K的输出较多,而Mn、Fe、Ca、Na等元素在秸秆中富集较多,会随秸秆还田归还农田,消耗不大。
     7.在现代集约综合管理模式下,新疆棉花长期单一种植,应适当减少N、P肥投入量,改进措施提高养分有效性;应重点补充Mo、Zn和Cu微量元素肥料,酌情补充Mg、K常量元素肥料。并对连作达20年以上的棉田结合土壤深度翻耕,肥料深施等措施提高中部土层K及微量养分含量。棉田Ca、Na含量较新疆士壤背景低,预示着棉田土壤在向着脱盐碱方向发展,然而两元素在秸秆中的比例较高,因此棉花长期连作农田,应注意防止耕作层土壤向次生盐碱化方向发展。
To long term monocropping, one of the main obstacle factors of soil is lack or imbalance of nutrients which caused by long-term specific absorption of the same crop. In Xinjiang, the cotton planting either occupy highly proportion or has long continuous monoculture history. Farmland intensive management combination as high degree mechanized operations, large amount chemical fertilizer input, advanced water-saved dripping irrigation, and entire straw returning etc. formed during long term cotton production process, and make the production amount of Xinjiang cotton raise stably year by year. However, weak growth vigour, plants presenility, widespread dead seedling, serious diseases and pests, the raising dosage of pesticide and chemical fertilizer of Xinjing contiuous cropping cotton has appered in recent years which induced the ratio of outputs and inputs glided constantly, law diminishing return occurred seriously impact on sustainable production of cotton in Xinjiang. Based on the above issues, and combined the fertilizer input characters in Xinjiang farmland about emphasis on N and P fertilizer application, no K fertilizer, less or blindly application of microelement fertilize trace element fertilizer, this paper studied the nutrients variation laws of cotton farmland in different continuous cropping years from the angle of temporal and spatial variation of nutrients, discuss the consumption characters of cotton farmland nutrients and the regulating effect of different cultivation practices. The result could supplied theoretical basis for the scientific management to nutrients and soil sustainable utilization of the sustainable production of Xinjiang cotton.
     The study was conducted in Shajingzi of south Xinjiang where question of monoculture stood out and has more types of improved tillage practices. The study adopted the method of spatial substitution, choose the cotton field with different continuous cropping years (reclaimed for 1year,continuous cropping for 5 years,15 years,20 years, and 30 years) and the farmland improved by different tillage practices of cotton (deep tillage of 60cm or rice-cotton rotation after obstacles occurred on long term monoculture cotton field), analysised either the variation characteristics of the main nutrient included soil organic matter, macro-elements (N, P, K), micro-elements (Mo,Cu Zn, Mn, Fe), base salinization elements (Ca, Mg, Na) etc. in the 0-100cm soil profile of the cotton field of different continuous cropping years and improved by different methods, or the characteristics of nutrient bio-cycling under the modern intensive management models, and got the following main results:
     1. The soil organic carbon pool rises constantly in long term monocultural cotton field due to long term straw returning in Xinjiang. The organic carbon content of 0-40cm soil depth tended to increase year by year and brings carbon sequestration functions into play. To the cotton field improved by deep tillage, soil of 0-60cm depth gets sufficent mixing, the organic matter content of relative deep soil layer which below the plowing layer (0~20cm) rieses significantly in short term, but the organic matter decompose rapiddly during the growth of following cotton, and its content significantly decreased till harvest time, especially deep tillage in spring, organic matter content declined quicker than in winter. To the cotton field improved by rotation for one season, organic matter content redued inordiniately of different profile after dry and wet alternation in soil, In the sandy loam, the organic matter content of 0-60cm soil depth was significantly decreased, and the reduce in heavy loam is not significant in short term, but significant during the growing period of following cotton.
     2. Due to long term laying particular stress on the input of N and P fertilizer in Xinjiang, the soil N and P content in monocultral cotton field rises year by year. The content of Total-N, Alkeline-N, Total-P, available-P in various layers with 0-40cm profile rises constantly with the extending of the continuous cropping years. The content of Total-N, Alkeline-N, and Total-P rises quickly with the extending of years while available phosphorus rises slowly after 15-year continuous cropping. Deep tillage breaks the profile differentiation situation of N and P formed with long term continuous cropping, the two nutrients reach peak content value in 20~40cm, rise quickly together with the content in 40~60cm soil layer, and make the soil layer section keeping high efficient content during the key growing stage of the whole growth of following cotton. To the cotton field improved by rice rotation, the content of Total-N, Alkeline-N, and Total-P, available-P in heavy soil do not change significantly while the content of Total-N and Total-P of 0~40cm soil layer in sandy soil significantly dropped, and Total-N in profile moves to the bottom significantly while Alkeline-N and available-P have no significant change.
     3. Due to not fertilize potassium to the farmland, with of straw returning and the function biological uptake of cotton, soil K content differentiates in different depth of profile after long term monocultral cotton. With the extending of years, the soil K content in 0~20cm rises first and decreases later, generally decreases after 15 years for cotton monoculture; in 20~-70cm decreases year by year, the content of 40-50cm decrease most significantly in sandy loam, and the content of 20~30cm decreases quickest in heavy loam; in 70~100cm accumulates, but have no significant difference indifferent years. Deep tillage breaks the distribution of K which rise first then decrease from upper to bottom and in whole profile, makes the content in various layer within 0-60cm to equalize, promotes the release of available K, and makes the medium soil layer keeping high content of available K during the whole growth of cotton. Although rice-cotton rotation has positive function in overcoming the obstacle of continuous cropping, but it may cause leaching loss for potassium along profile to the bottom, especially cropping rice in sandy soil, available K content is low in 0-40cm soil layer during the whole growth of following cotton, hence, we should pat attention to the potassium supplementary for cotton after rice.
     4. Due to less fertilization of microelement, with the cropping going on, through straw returning and the output of crops organ, Total Mo of plowing layer (0~20cm) decreases with the extending of years of continuous cropping, in the plow layer (0~20cm) total Mo decreased, showing a unitary negative linear relationship, while total Cu, total Zn and total Mn first rose up, peaking in year 7~10,10~12 and 17~18, separately and then declined, dropping back in year 14~17,20~22 and 32~34 separately to the initial value, showing a quadratic functional relationship. The content of available Cu, available Mn and available Fe of 0-30cm layer rises first decrease later with the extending of continuous cropping years, and turns decrease in 15~20 years after continuous cropping. Certain position of 20~70cm in medium will form low valley due to the large absorption and consumption of cotton, decreases year by year with the extending of continuous cropping, takes on the relationship of unitary negative linear correlation, sandy soil distributes in 30~50cm depth, and heavy soil distribute in 20~30cm depth. Deep tillage has significant affect on the profile distribution of total element and available content of microelement, and has strong equalization function to soil layer. Rice-cotton rotation can significantly rise the availability of microelement in plowing layer, the function are more significant on heavy loam, and available Zn can have certain leaching on profile in sandy soil by the affect of the function.
     5. Due to high salinization and solonization, with conventional lavement in winter and mulch-drip irrigation during growth stage, Ca and Mg moved remarkably from surface to deep soil layer and bring the result as the content of Ca and Mg reduced differently. The content of Na increased in upper of heavy loam and accumulated in the depth of 30~50cm. Deep tillage, as strongly soil jamming, the content of base salinization elements were meaned at the depthes which deep tillage could touch. Rice-cotton rotation, under the eluviation, base salinizaton elelments were moved from upper to deep, it can take soil changes to desalinization.
     6. Nutrient consumption and return which come from cotton are different due to the difference of cotton absorbed nutrient or organs accumulated nutrient. To some extent, not only microelement but also microelement have leanness trend in the fields after long-term cotton monoculture.and the lower the microelement in content in the soil, the more apparent the fall of its content, such as Mo. With getting in the cotton, quantities and ratio of Zn and Cu have output much more in cotton fields, in the same Mg, K. most of Mn, Fe, Ca, Na were accumulated in the straw. with turning straw, there will be a lot in farming soils.
     7. Under the modern intensive management mode, Xinjiang cotton is monocrop for a long time which needs to be reduced the inputs of N, P fertilizer appropriately and improves the nutrient validity by updating the measures; at the same time, the microelement fertilizer of Mo, Zn and Cu should be added importantly and the microelements fertilizer of Mg, K should be added appropriately. Combined with the measures of soil deep tillage and fertilizer deep fertilizing, improves the content of K and microelement in the central earth layer. The content of Ca, Na is lower than background of Xinjiang soil which indicate that the cotton soil trends to the direction of desalinization, while the contents of two elements take higher percentage in the straws, the continuous cropping farmland with cotton for long time should be prevented the plough horizon soil to change to soil secondary salinization.
引文
[1]鲍士旦.土壤农化分析.北京:中国农业出版社,1999
    [2]陈怀满.土壤中化学物质的行为与环境质量.北京:科学出版社,2001
    [3]陈铭,谭见安,尹崇仁,等.北京石灰性草甸土冬小麦营养元素生物循环的特点与锰、锌肥效应.植物生态学报,1995,19(1):64-71
    [4]陈素兰,胡冠九,陈波,等.微波消解ICP-AES法测定土壤及底泥等中常量及微量元素.干旱环境监测,2006,20(2):69-72,82
    [5]崔玉亭,韩纯儒,卢进登.集约高产农业生态系统有机物分解及土壤呼吸动态研究.应用生态学报,1997,8(1):59-64
    [6]崔玉亭,韩纯儒.集约高产过程中土壤有机质动态初探.生态学杂志,1993,12(2)37-38
    [7]单鸿宾,梁智,王纯利,等.棉田连作对土壤微生物及酶活性的影响.中国农业科技导报,2009,11(1):113-117
    [8]党廷辉,郭胜利,郝明德.黄土旱塬长期施肥下硝态氮深层累积的定量研究.水土保持研究,2003,10(1):58-60
    [9]邓福军,陈冠文,余渝,等.中国棉业科技进步30年-新疆兵团篇.中国棉花,2009,36(增刊):30-35
    [10]丁峰,徐万里,梁智,周勃,朱敏,秦巧.新疆天山北坡经济带滴灌棉田土壤质量演变趋势分析.农业科技通讯,2009(3):42-45
    [11]丁海兵.连作对烟草生长和不同粒径土壤酶活性的影响.西南大学硕士学位论文,2006
    [12]窦森.土壤有机质.北京:科学出版社,2010
    [13]杜占池,钟华平.红三叶人工草地营养元素的生物循环.植物生态学报,1998,22(2):149-156
    [14]范君华,,龚明福,刘明,等.南疆干旱区连作棉田土壤养分及生物活性的初步研究.棉花学报,2009,21(2):127-132
    [15]郑德明,姜益娟.棉花连作对土壤肥力的影响.塔里木农垦大学学报,1997,9(1):41-44
    [16]范明生,江荣风,张福锁,吕世华,刘学军.水旱轮作系统作物养分管理策略.应用生态学报,2008,19(2):424-432
    [17]范小峰,俞诗源,范亚娜,等.黄土高原大棚黄瓜不同年限连作对土壤主要理化性状的影响.中国土壤与肥料,2006(6):20-22
    [18]方怡向,赵成义,串志强.膜下滴灌条件下水分对棉花根系分布特征的影响,水土保持学报,2007,21(5):196-200
    [19]付明鑫,王广友,鲍明运,李献民. 氮磷钾在滴灌棉田土壤中的移动性研究.新疆农业科学,2005,42(6):426-429
    [20]高明,车福才,魏朝富,等.长期施有机肥对紫色水稻土铁、锰、铜、锌形态的影响.植物营养与肥料学报.2000,6(1):11-17
    [21]龚明福,赵夏博,郑贺云,等.疆连作棉田几种有益细菌的动态变化规律.
    [22]顾美英,徐万里,茆军,等.连作对新疆绿洲棉田土壤微生物数量及酶活性的影响.干旱地区农业研究,2009,27(1):1-11
    [23]韩凤朋,郑纪勇,张兴昌.黄土退耕坡地植物根系分布特征及其对土壤养分的影响.农业工程学报,2009,25(2):50-55
    [24]韩丽梅,鞠会艳,等.大豆连作微量元素营养研究Ⅲ.连作对锰营养的影响.大豆科学,1999,18(3):207-211
    [25]韩丽梅,童朝阳,王树起.大豆专用复混肥对轮作、连作大豆增产机理的研究.吉林农业科学,2000,25(2):45-49
    [26]何斌,秦武明,余浩光,等.不同年龄阶段马占相思(Acaciamangium)人工林营养元素的生物循环.生态学报,2007,27(12):5158-5167
    [27]侯振安,李品芳,吕新,等.不同滴灌施肥方式下棉花根区的水、盐和氮素分布. 中国农业科学,2007,40(3):549-557
    [28]胡诚,曹志平,叶钟年,等.不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响.生态学报,2006,26(3):808-814
    [29]胡江春,王书锦.大豆连作障碍研究Ⅰ.大豆连作紫青霉菌的毒素作用研究.应用生态学报,1996,7(4):396-400
    [30]胡立峰,胡春胜,安忠民.不同土壤耕作法对作物产量及土壤硝态氮淋失的影响.水土保持学报,2005,19(6):186-189
    [31]胡守林,郑德明,邓成贵,万素梅. 不同耕作方式棉花根系发育能力的研究. 水土保持研究,2006,13(6):115-116,119
    [32]胡元森.黄瓜连作障碍因子分析及其生物修复措施探讨.南京农业大学博士学位论文,2005
    [33]胡兆璋.深化改革促进农业全面发展.中国农垦,1997,(3):4-5
    [34]黄昌勇.土壤学.北京:中国农业出版社.2000
    [35]黄瑞农.环境土壤学.上海.高等教育出版社,1987
    [36]黄玉芬,姜益娟,郑德明.新疆棉田地下滴灌方式下土壤速效磷空间分布规律的研究. 新疆农业科学,2008,45(3):42843
    [37]姜超英,潘文杰.作物连作的土壤障碍因子综述.中国农村小康科技,2007,(3):26-28
    [38]姜益娟,郑德明,吕双庆,等.新疆农田土壤有机质含量及组成特征.土壤,2004,36(1):43-45
    [39]姜益娟,郑德明,吕双庆,柳维杨,王家强. 新疆膜下滴灌棉田土壤有效态氮空间分布特征. 新疆农业科学,2007,44(6):808-813
    [40]姜益娟,郑德明,翟云龙.不同灌溉方式的棉花根系在土壤中的分布特征.塔里木大学学报,2008,20(1):1-5
    [41]姜勇,郝伟,张玉革,等.潮棕壤不同利用方式营养元素随剖面深度的变化特征.水土保持学报,2006,20(3)93-95
    [42]解迎革,薛绪掌,王国栋,等.非表层剖面层次土壤生产力评价研究. 中国生态农业学报,2006,14(4):57-60
    [43]金琳,李玉娥,高清竹,刘运通,万运帆,秦晓波,石锋. 中国农田管理土壤碳汇估算.中国农业科学,2008,41(3):734-743
    [44]晋艳,杨宇虹,段玉琪,等.烤烟轮作、连作对烟叶产量质量的影响.西南农业学报,2004,(17):267-271
    [45]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中N03-N在土壤剖面的累积及移动.土壤学报,2003,40(4):538-546
    [46]赖先齐,刘建国,蒋桂英.棉花连作限度问题的调查.新疆农垦科技,1997,S1:71-73.
    [47]赖先齐.中国绿洲农业学.北京:中国农业出版社,2005
    [48]劳秀荣,孙伟红,王真,郝艳如,张昌爱.秸秆还田与化肥配合施用对土壤肥力的影响.土壤学报,2003,40(4):618-623.
    [49]劳秀荣,吴子一,高燕春.长期秸秆还田改土培肥效应的研究.农业工程学报,2002,18(2):49-52.
    [50]雷娟利,周艳虹,丁桔,等.不同蔬菜连作对土壤细菌DNA分子水平多态性影响的研究.中 国农业科学,2005,38(10):2076-2083
    [51]李辉.中国新疆棉花产业国际竞争力研究.华中农业大学博士学位论文,2006
    [52]李俊义,刘荣荣,王润珍等.北疆棉花根系分布规律研究.中国棉花,1999,26(6):18-26
    [53]李丽霞,郝明德.黄土高原地区长期施用微肥土壤Cu、Zn、Mn、Fe含量的时空变化.植物营养与肥料学报,2006,12(1):44-48
    [54]李培岭,张富仓,贾运岗.沙漠绿洲地区膜下滴灌棉花水分利用的水氮耦合效应. 千旱地区农业研究,2009,27(3):53-59
    [55]李雪源,郑巨云,王俊铎,等. 中国棉业科技进步30年-新疆篇. 中国棉花,2009,36(增刊):24-29
    [56]李彦斌,刘建国,程相儒,等.秸秆还田对棉花生长的化感效应.生态学报.2009.29(9):4942-4948
    [57]李勇,张晴雯,李璐,等. 黄土区植物根系对营养元素在土壤剖面中迁移强度的影响. 植物营养与肥料学报2005,11(4):427-434
    [58]李志安,王伯荪,张宏达.关于植物营养生态学.生态科学,1999,18(4):43-47
    [59]李宗新,董树亭,王空军,刘鹏,张吉旺,王庆成,刘春晓.不同施肥条件下玉米田土壤养分淋溶规律的原位研究.应用生态学报,2008,19(1):65-70
    [60]梁银丽,陈志杰,徐福利,等.黄土高原设施农业中的土壤连作障碍.水土保持学报,2004,18(4):134-136
    [61]梁智.新疆长绒棉连作减产原因及采取的技术措施.中国棉花,2005,33(9):36-37
    [62]廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社,1992
    [63]林大仪.土壤学实验指导.北京:中国林业出版社,2004
    [64]刘冬碧,陈防,熊桂云,等.东南地区土壤养分的空问变异性与取样策略Ⅱ.中微量元素.湖北农业科学,2006,45(6):730-733
    [65]刘方,卜通达,何藤兵,等.连作烤烟土壤养分变化分析.贵州农学院学报,1997,16(2):1-4
    [66]刘方春,聂俊华,刘春生,等.不同施肥措施对土壤硝态氮垂直分布的特征影响.土壤通报,2005,36(1):50-54.
    [67]刘洪涛,郑国砥,陈同斌,等.农田土壤中铜的主要输入途径及其污染风险控制.生态学报,2008,28(4):1774-1785
    [68]刘建国,卞新民,李彦斌,等.长期连作和秸秆还田对棉田土壤生物活性的影响.应用生态学报,2008,19(5):1027-1032
    [69]刘建国,张伟,李彦斌,孙艳艳,卞新民.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响.中国农业科学,2009,42(2):725-733.
    [70]刘建国. 新疆棉花长期连作的土壤环境效应及其化感作用的研究.南京农业大学博士学位论文,2008
    [71]刘鹏,郝朝运,陈子林,等.不同群落类型中七子花器官营养元素分布及其与土壤养分的关系.土壤学报,2008,45(2):304-312
    [72]刘晓利,何园球.不同利用方式和开垦年限下红壤水稳性团聚体及养分变化研究.土壤,2009,41(1):84-89
    [73]刘新永,田长彦.棉花膜下滴灌水氮耦合效应研究. 植物营养与肥料学报2007,13(2):286-29
    [74]刘杏兰,高宗,刘纯寿,等.有机—无机肥配施的增产效应及对土壤肥料影响的定位研究.土壤学报.1996,33(2):138-147
    [75]刘宴良.新疆特色农业发展的总体思路与对策.新疆农业科学,2001,38(3):111-116
    [76]泷岛.防止连作障碍的措施.日本土壤肥料学杂志,1983(2):170-178
    [77]卢良恕.中国农业现代化之路—现代集约持续农业.生态经济,2008,(8):8-10
    [78]吕宁,侯振安,龚江等.不同灌溉方式下成水灌溉对棉花根系分布的影响.灌溉排水学报,2007,26(5):58-62
    [79]吕卫光,余延园,诸海涛,等,黄瓜连作对土壤理化性状及生物活性的影响研究. 中国生态农业学报,2006,14(2):119-121
    [80]吕卫光,张春兰,袁飞,等.化感物质抑制连作黄瓜生长的作用机理.中国农业科学,2002,35(1):106-109
    [81]马旭,田长彦,冯固,等. 新疆农田投入化肥时空变化及趋势分析. 干旱区地理,2006,29(3):439-444
    [82]马琳,刘文利. 保护地连作对土壤养分状况的影响.吉林农业科,2007,32(1):33-34,39
    [83]马淑萍,王戈,龙熹. 中国棉花生产与政策60年.中国棉花,2009,36(9):5-22
    [84]马兴旺,钟新才,徐万里等.宽膜覆盖下土壤环境研究Ⅰ.土壤盐分运移分布特点,土壤通报,2001(增刊).32:128-130
    [85]马毅杰,陈家坊.水稻土物质变化与生态环境.北京:科学出版社,1999
    [86]毛端明,向敏超.新疆三种主要农田土壤尿素氮的损失研究.西北农业学报,1993,2(4):34-38
    [87]毛树春.中国棉花可持续发展研究.北京:中国农业出版社,1999年
    [88]缪卫国,田逢秀.新疆棉花枯、黄萎病发生趋势及研究现状.新疆农业科学,1999,2(3):107-109
    [89]彭有才,刘挺,赵俊杰,等.连作对土壤性状影响的研究进展.江西农业学报2009,21(9):100-10
    [90]秦静,孔祥斌,姜广辉,等. 北京典型边缘区25年来土壤有机质的时空变异特征. 农业工程学报,2008,24(3):124-129.
    [91]秦祖平,徐琪,熊毅.太湖地区两种稻麦轮作制中营养元索的循环.生态学报,1989,9(3)215-216,247-252
    [92]青长乐,牟树森.地球化学原理.北京:中国农业出版社,2001.37-41
    [93]任志雄.打破传统耕作方式促使棉花生产再上新台阶.中国棉花,2008,35(7):42-43
    [94]沈鸿,戴俊生,陶永红,戴健.新疆棉花可持续发展的思路.新疆农业科学,2001,38(5):291-292
    [95]盛建东,侯秀玲,文启凯.新疆棉花生产对生态环境影响的分析.中国棉花,2004,31(5):6-8
    [96]宋春雨,张兴义,刘晓冰,等. 土壤有机质对土壤肥力与作物生产力的影响. 农业系统科学与综合研究,2008,24(3):358-361
    [97]孙加力.政府政策与新疆棉花生产发展.中国农业大学博士学位论文,2004
    [98]孙建船,任福成,詹有俊,等.棉花连作对产量的影响及应采取的措施.甘肃农业科技,2004,(3):15-16
    [99]孙莉,张清,陈曦,等.精准农业技术系统集成在新疆棉花种植中的应用.农业工程学报,2005,21(8):83-88
    [100]孙淑荣,吴海燕,刘春光,张桂芝.玉米连作对中部农区主要土壤微生物区系组成特征影响的研究.玉米科学2004,12(4):67-6
    [101]谭斌.新疆棉花产量的分析与预测.安徽农业科学,2007,35(19):5693-5694
    [102]谭长银,吴龙华,骆永明,等.典型潮土剖面主要性质和微量金属垂直分布特征.土壤学报,2009,46(5):817-824
    [103]谭长银,吴龙华,骆永明,等.不同肥料长期施用下稻田镉、铅、铜、锌元素总量及有效态的变化.土壤学报,2009,46(3):412-417
    [104]谭军利,王林权,李生秀. 不同灌溉模式下水分养分的运移及其利用. 植物营养与肥料学报2005,11(4):442-48
    [105]谭明.滴灌棉花根系生长状况调查启示.节水灌溉,2007,(1):41-42.
    [106]田秀平,薛菁芳,韩晓日.长期轮作和连作对白浆土中氮素的影响. 水土保持学报,2007,21(1):185-187
    [107]同延安,高宗,刘杏兰,等.有机肥及化肥对塿土中微量元素平衡的影响.土壤学报.1995,32(3):135-139
    [108]佟小刚,徐明岗,张文菊,卢昌艾.长期施肥对红壤和潮土颗粒有机碳含量与分布的影响.中国农业科学,2008,41(11):3664-3671
    [109]王芳.茄子连作障碍机理研究.中国农业大学博士学位论文,2003
    [110]王国梁,周生路,赵其国,等.菜地土壤剖面上重金属元素含量随时间的变化规律研究.农业工程学报,2006,22(1):79-84
    [111]王辉,董元华,安琼,孙红霞,刘庆淮,刘正柱.高度集约化利用下蔬菜地土壤养分累积状-以南京市南郊为例.土壤,2006,38(1):61-65
    [112]王季春,任昌福,易光平,等.水旱连作高产田能量和养分转换效率研究.西南农业大学学报,1995,17(5)443-446
    [113]王家平,吕新,孙学,等.膜下滴膜农田盐分运移情况调查与分析[J].新疆农业科学,2006,45(4):682-686
    [114]王景宏,陈建平.实施水旱轮作克服连作障碍——对江苏沿海棉作方式转变的分析.中国棉花,2008,35(12):36-37
    [115]王敬国.植物营养元素的土壤化学.北京:北京农生大学出版杜,1995
    [116]王俊,李凤民,贾宇. 半干旱黄土区苜蓿草地轮作农田土壤氮、磷和有机质变化.应用生态学报,2005,16(3):439-444
    [117]王克如,李少昆,曹连莆,宋光杰,陈刚,曹栓柱.新疆高产棉田氮、磷、钾吸收动态及模式初步研究.中国农业科学,2003,36(7):775-780
    [118]王立刚,邱建军,马永良,王迎春.应用DNDC模型分析施肥与翻耕方式对土壤有机碳含量的长期影响.中国农业大学学报,2004,9(6):15-19
    [119]王平,陈新平,长彦,等.新疆南部地区棉花施肥现状及评价[J].干旱区研究,2005,22(2):246-269.
    [120]王庆仁,崔岩山.不同轮作制对农田生态系统中土壤硫攫取与归还途径的研究. 应用生态学报,2003,14(6):935-940
    [121]王晓蜀.新疆昌吉洲棉花连作调查与思考.甘肃农业,2006(12):249-250
    [122]王玉峰,张淑香,李世东,等. 黑土中大豆连作障碍诊断系统的建立初报—主要障碍因子的确立.农机化研究,2007,(2):164-165
    [123]王兆斌.深翻耕作对重茬棉田的增产效果研究.现代农业科技,2009,(2):139,141
    [124]王周琼,李述刚,程心俊.荒漠绿洲农田生态系统中养分循环.北京:科学出版社,2002
    [125]危常州,马富裕,雷咏雯等.棉花膜下滴灌根系发育规律的研究.棉花学报,2002,14(4):209-214
    [126]魏孝荣,郝明德,苏蕾.长期施用微量元素肥料对土壤养分的影响.水土保持研究,2003,10(1):29-30,45
    [127]文启凯.新疆作物覆膜土壤生态与栽培.乌鲁木齐:新疆科技卫生出版社,1993:252—256
    [128]吴凤芝等,赵凤芝,刘元英,设施蔬菜连作障碍原因分析与防治措施.
    [129]吴乐,蔡祖聪.中国土壤有机质含量变异性与空间尺度的关系. 地球科学进展,2006,21(9):965-972
    [130]吴志勇,张玲,闫静,白义成,熊学海.兵团土壤养分资源的现状及其高效利用.新疆农垦科技,2005,(3):46-47
    [131]武丽,戴万宏. 土壤养分剖面分布规律及影响因素研究进展. 安徽农业科学,,2009,37(5):2078-2080
    [132]西尾道德.连作障害的发生危害.日本土壤肥料杂志,1983,54(1):64-73
    [133]向晶,唐亚. 集约化农业及其环境效应.世界科技研究与发展,2005,27(6):81-87
    [134]谢建昌,周建民.钾与中国农业.南京:河海大学出版社,2000:26-28
    [135]新疆生产建设兵团土壤普查办公室主编.新疆生产建设兵团垦区土壤.乌鲁木齐:新疆科技卫生出版社,1993
    [136]新疆维吾尔自治区农业厅.新疆土壤[M].北京:科学出版社,1996.304-336.
    [137]徐万里,张云舒,刘骅.新疆盐渍土壤氮肥氨挥发损失特征初步研究[J].生态环境,2007,16(1):176-179.
    [138]徐文修.新疆绿洲耕作制度演变规律及棉花生产可持续发展研究, 河北农业大学博士学位论文,2008
    [139]许信旺,潘根兴从,汪艳林,曹志宏. 中国农田耕层土壤有机碳变化特征及控制因素. 地理研究,2009,28(3):601-612
    [140]许艳丽,刘晓冰,韩晓增.大豆连作对生长发育动态及产量的影响.中国农业科学,1999,32(增刊):64-68.
    [141]薛泉宏,同延安.土壤生物退化及其修复技术研究进展.中国农业科技导报,2008,10(4):28-35
    [142]闫映宇,赵成,盛钰,等.膜下滴灌对棉花根系、地上部分生物量及产量的影响.应用生态学报,2009,20(4):970-97
    [143]杨景成,韩兴国,黄建辉,等.土壤有机质对农田管理措施的动态响应. 生态学报,2003,23(4):787-796
    [144]杨景成,韩兴国,黄建辉,等.土壤有机质对农田管理措施的动态响应. 生态学报,2003,23(4):787-795
    [145]杨荣,苏永中.农田利用方式和冬灌对沙地农田土壤硝态氮积累的影响.应用生态学报,2009,20(3):615-623
    [146]姚源松.新疆棉花高产优质高效理论与实践.新疆:新疆科学技术出版社,2004,132-139.
    [147]于广武,许艳丽,刘晓冰,王光华.大豆连作障碍机制研究初报.大豆科学,1993,12(3):237-243
    [148]于学敏,李琳,高景和,等.土壤全量多元素的ICP-AES分析.现代仪器,2001,(2):30-32
    [149]喻敏,余均沃,曹培根,梁火娣,潇洪东,王蕴波,崔志新. 土壤通报,2004,35(3):377-379
    [150]曾希柏,黄雪夏,刘子刚,等.种植年限对三江平原农田土壤剖面性质及碳、氮含量的影响.中国农业科学,2006,39(6):1186-1195
    [151]张丹,罗格平,许文强,朱磊.新疆耕地土壤养分时空变化.干旱区地理,2008,31,(2):254-263
    [152]张甘霖,龚子同. 淹水条件下土壤中元素迁移的地球化学特征.土壤学报,1993,33(4): 355-365
    [153]张国荣,李菊梅,徐明岗,等.长期不同施肥对水稻产量及土壤肥力的影响.中国农业科学,2009,42(2):543-551
    [154]张红旗,王立新,章予舒.我国西北绿洲的合理规模及其农业发展方向. 中国农业资源与区划,2007,28(1):7-11
    [155]张会民,徐明岗,吕家珑,刘红霞.不同生态条件下长期施钾对土壤钾素固定影响的机理.应用生态学报,2007,18(5): 1009-1014
    [156]张桃林,李忠佩,王兴祥.高度集约农业利用导致的土壤退化及其生态环境效应.土壤学报,2006,43(5):843-850
    [157]张桃林,潘剑君,刘绍贵,王兴祥,李忠佩.集约农业利用下红壤地区土壤肥力与环境质量变化及调控.土壤学报,2007,44(4):585-590
    [158]张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较.生态学报,2006,26(2):373-382
    [159]张小川,蔡蔚祺,徐琪,等.草原生态系统土壤一植被组分中氮、磷、钾、钙和镁的循环.土壤学报,1990,27(2):140-150
    [160]张小川,蔡蔚祺,徐琪.草原土壤-植被系统中硅、铝、铁和锰的循环.生态学报,1990,10(2):109-115
    [161]张晓玲,潘振刚,周晓锋.自毒作用与连作障碍.土壤通报,2007,38(4):781-784
    [162]张鑫,蔡焕杰,邵光成,张振华.膜下滴灌的生态环境效应研究.灌溉排水,2002,21(2):1-4
    [163]张炎,史军辉,罗广华,等. 新疆农田土壤养分与化肥施用现状及评价. 新疆农业科学,2006,43(5):375-379
    [164]张炎,王讲利,李磐,等.新疆棉田土壤养分限制因子的系统研究.水土保持学报,2005,19(6):57-60
    [165]章明奎,方利平.砂质农业土壤养分积累和迁移特点的研究.水土保持学报,2006,20(2):46-49
    [166]赵明,蔡葵,赵征宇.微波消解技术在农业样品分析中的应用.理化检验-化学分册,2006,42(11):923-925
    [167]郑德明,姜益娟,柳维扬.新疆棉田土壤速效养分的时空变异特征研究. 棉花学报,2006,18(1):23-26
    [168]郑德明,姜益娟,朱朝阳,吕双庆,伍维模.新疆农田土壤有效态微量元素含量现状.塔里木农垦大学学报.2003,15(2):8-10
    [169]郑德明,姜益娟.棉花连作对土壤肥力的影响.塔里木农垦大学学报,1997,9(1):41-44
    [170]郑良永,胡剑非,林昌华,等.作物连作障碍的产生及防治.热带农业科学,2005,25(2):58-62
    [171]郑重,赖先齐,邓湘娣,等.新疆棉区秸秆还田技术和养分需要量的初步估算.棉花学报,2000,12(5):264-266
    [172]朱和明. 新疆土壤微量元素状况及矫正其缺乏的对策.新疆农垦科技,1992,(6):32-33
    [173]朱敏,梁智,徐万里,等.新疆绿洲棉田土壤养分时空分布特点.新疆农业科学,2009,46(5):1076-1081
    [174]朱启荣,李宁,朱昌好.中国主产棉区棉花生产布局变化的经济因素分析.新疆农垦经济,2005,(1):21-27
    [175]朱先进,宇万太.农田生态系统微量元素循环研究进展.土壤通报,2009,40(4):962-967
    [176]Duvigenaud P, Denayeayr-De S S,陈佐忠译.陆地生态系统的矿物循环.植物生态学译丛.北 京:科学出版社,1982
    [177]Frissel M J,夏荣基,金鸿志,等译.农业生态系统中矿质养分的循环.北京:农业出版社,1981
    [178]Acosta V N, Zobeck T M, Vivien A. Soil microbial, chemical and physical properties in continuous cotton and integrated crop-livestock systems. Soil Science,2004,68:1875-1884
    [179]Adeli A, Varco J J. Potassium management effects on cotton yield, nutrition and soil potassium level. Journal of Plant Nutrition,2002,25 (10):2229-2242.
    [180]Adger W N, Brown K, Shiel R S, Whitby M C. Carbon dynamics of land use in Great Britain. Journal of Environmental Management,1992,36 (2):117-133.
    [181]Agbenin J Q. Pbosphate-induced zinc retention iu a tropical semi-arid European journal of Soil Science,1998,49 (4):693-700
    [182]Ana D S, Jose M Q, Antonio D. Long-term effects of tillage on the availability of iron, copper, manganese, and zinc in a Spanish Vertisol. Soil & Tillage Research,2008,98:200-207
    [183]Anaya A L, Mata M R, Miranda R. Allelopathic potential of compouds isolated from Ipomoea tricolor. J. Chem. Ecol,1990,16:2145-2152
    [184]Angers D A, Ndayegamiye A and Cote D. Tillage induced difference in organic matter of particle-size fractions and microbial biomass. Soil Sci. Soc. Am. J,1993,57:512-516
    [185]Bostick W M, Bado V B, Bationo A, et al. Soil carbon dynamics and crop residue yields of cropping systems in the Northern Guinea Savanna of Burkina Faso. Soil & Tillage Research,2007 (93):138-151.
    [186]Cambardella C, Elliott E. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Science Society of America Journal,1994,58:122-130.
    [187]Campbell C A, McConkey B G, Zentner R P, et al. Long-term effects of tillage and rotations on soil organic C and total N in a clay soil in southwestern Saskatchewan. Can. J. Soil Sci.1996, 76:395-401.
    [188]Campo J, Maass J M, Jaramillo V J, etal. Calcium, potassium, and magnesium cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry,2000,49:21-36
    [189]Cole C V, Tracy P W,Westfall D G, et al. Carbon, phosphorus, nitrogen and sulfur mineralization in plow and no till cultivation. Soil Sci. Soc. Am. J.1990,54:457-462
    [190]Daroub S H, Pierce F J,. Ellis B G. Phosphorous fractions and fate of phosphorus in soils managed under plowing and no-tillage. Soil Sci Soc. Am. J.2001,64:170-176
    [191]Debosz K, Rasmussen P H, Pedersen A R. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils:Effect of organic matter input. Applied Soil Ecology, 1999,13:209-218
    [192]Debosz K, Rasmussen P H, Pedersen A R. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils:Effect of organic matter input. Applied Soil Ecology, 1999,13:209-218
    [193]Dersch G. Effects of agronomic practices on the soil carbon storage potential in arable farming in Austria. Nutrient Cycling in Agroecosystems,2001,60:49-55.
    [194]Dobermann A, Cassman K G, Sta P C, et al. Fertilizer inputs, nutrient balance and soil nutrient supplying power in intensive, irrigated rice systems. Ⅲ. Phosphorus. Nutrient Cycling in Agroecosysrems,1996,46:111-125
    [195]Dobermann A, Cassman K G, Staruz P C. Fertilizer inputs, nutrient balance, and soil nutrient supplying power in intensive, irrigated rice systems. Ⅱ. Effective soil K supplying capacity. Nutrient Cycling in Agroecosystems,1996a,46:11-21.
    [196]Dobermann A, Staruz P C, Cassman K G. Fertilizer input, nutrient balance, and soil nutrient supplying power in intensive. irrigated rice system. I. Potassium uptake and K balance. Nutrient Cycling in Agroecosystems,1996b,46:1-10.
    [197]Doran J W, elliott E T, Paustian K. Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management. Soil &Tillage Research, 1998, (49):3-18
    [198]Drausman S L R, Whiteney K A. Soil properties after twenty years of fertilization with different nitrogen sources. Soil Science Society of America Journal.1991,55 (4):1097-1100
    [199]Eltz F L F, Norton L D. Surface roughness changes as affected by rainfall erosivity, tillage, and canopy cover. Soil Science Society of America Journal,1997,61:1746-1754
    [200]Fehrmann. Replant disease and its importance for fruit roduction. Acta Horticulturuae,1988 (233):17-19
    [201]Fontaine S B, Barot S B, Barre P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature,2007,450 (8):277-281
    [202]Franzluebbers A J, Hons F M, Zuberer D A. Tillage and crop effects on seasonal soil carbon and nitrogen dynamics. Soil Sci Soc. Am. J,1995,59:1618-1624
    [203]Franzluebbers A J, Hons F M. Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no tillage. Soil Till. Res.1996,39:229-239
    [204]Govi M, Francioso O, et al. Influence of long-term residue and fertilizer application on soil humic substances:A Study by electrofococusing. Soil Science.,1992,154 (1):8-13
    [205]Groenigen K J V, Six J, Hungate B A, et al. Element interactions limit soil carbon storage. PNAS,2006,103 (17):6571-6574
    [206]Havlin J L, Kissel D E, Maddux L D, et al. Crop rotation and tillage effects on soil carbon and nitrogen. Soil Sci. Soc. Am. J.1990,54:448-453
    [207]Hedley M J, Stewart J W, Chauhan B S. Changes in inorganic and organic soil phosphorus fraction induced by cultivation practices and laboratory incubations. Soil Sci. Soc. Am. J.1982,46: 970-976
    [208]Holanda F S R, Mengel D B, Paula M B, Carvaho J G, Bertoni J C. Influence of crop rotations and tillage systems on phosphorus and potassium stratification and root distribution in the soil profile. Communications in Soil Science and Plant Analysis,1998.29,2383-2394
    [209]Hulugalle N R, Weaver T B, Finlay L A, et al. Soil properties and crop yields in a dryland Vertisol sown with cotton-based crop rotations. Soil & Tillage Research,2007 (93):356-369.
    [210]Jobbage E G, Jackson R B. The distribution of soil nutrients with depth:Global patterns and theimprint of plants. Biogeochemistry,2001,53:51-77
    [211]Kaur B, Gupta S R, Singh G. Soil carbon, microbial activity and nitrogen availability inagroforestry systems on moderately alkaline soils in northern India. Applied Soil Ecology, 2000,15 (3):283-294.
    [212]Liu J G, LiYB, Jiang G Y, et al. Allelopathic effects of cotton in continuous cropping. Allelopathy Jounal,2008,21 (2):299-306
    [213]Liu, XJ, Liao X Y. Zhang Y Z, et al. Effects of ricebased cropping system on the distribution of manganese in the profile of paddy soil derived from red earth. Acta Ecol. Sin.2002,22:1440-1445
    [214]Lodehi M A, Bilal K R, Malik K A. Allelopathy in agroecosystems:wheat phytotocxi city and its possible roles in crop rotation. J. Chem. Ecol,1987,13:1881-1891
    [215]Logan T J, Lal R, and Dick W A. Tillage systems and soil properties in North America. Soil Tillage Research,1991,20:241-270.
    [216]Machado S, Petrie S, Rhinhart K, et al. Long-term continuous cropping in the Pacific Northwest: Tillage and fertilizer effects on winter wheat, spring wheat, and spring barley production. Soil & Tillage Research,2007,94:473-481
    [217]Mallarino A P, Borges R. Phosphorus and potassium distribution in soil following long-term band fertilization in different tillage systems. Soil Science Society of America Journal,2006,70,702-707
    [218]Martin R I, Mun L M, Yunta F, Esteban E, Tenorio J L, Lucena J J. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil & Tillage Research, 2007,92,1-9.
    [219]Materechera S A. Tillage and tractor traffic effects on soil compaction in horticultural fields used for peri-urban agriculture in a semi-arid environment of the North West Province, South Africa. Soil & Tillage Research 2009,103:11-15
    [220]Mathur S P, Levesgue M P. The effect of using copper for migrating histosol subsidence. Soil Sci.1983,135:166
    [221]Matson P A, Parton W J, Power A G, et al. Agricultural intensification and ecosystem properties. Science,1997,277:504-509
    [222]Michael, Essington, Donald.et al. Phosphorus availability andspeciation in long-term no-till and disk-till soil. Soil Sci.2000,165:144-152
    [223]Mullins G I, Burmester C H, Reeves D W. Cotton response to in-row sub-soiling and potassium fertilizer placement in Alabama. Soil& Tillage Research,1997,40:145-154.
    [224]Papini R, Piovanelli C, Brandi G, et al. Tillage effects on seasonal nitrate dynamics, leaching and microbial activity in continuous maize production. Fresenius Environ. Bull,1998,7:472-477
    [225]Piovanelli C, Gamba C, Brandi G. Tillage choices affect biochemical properties in the soil profile. Soil & Tillage Research,2006,90:84-92
    [226]Potter K N, Torbert H A, Johnson H B, Tischler C R. Carbon storage after long-term grass establishment on degraded soils. Soil Science,1999,164:718-725.
    [227]Ramkens P F A M, Salomons W. Cd, Cu and Zn solubility in arable and forest soils:consequences of land use changes for metal mobility and risk assessment. Soil Science,1998,163:859-871.
    [228]Raper R L, Reeves D W, Burmester C H, et al. Tillage depth, tillage timing, and cover crop effects on cotton yield, soil strength, and tillage energy requirements. Applied Engineering in Agriculture,2000,16 (4):379-385
    [229]Rathke G W, Wienhold B J, Wilhelm W W, et al. Tillage and rotation effect on corn-soybean energy balances in eastern Nebraska. Soil & Tillage Research,2007,97:60-70
    [230]Rego T J, Nageswara R V, Seeling B, et al. Nutrient balances:a guide to improving sorghum-and groundnut-based dryland cropping systems in semi-arid tropical Iindia. Field Crops Research, 2003,81:53-68
    [231]Rueda I M, Guerra L M M, Yunta F, et al. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil & Tillage Research 2007,92:1-9
    [232]Saif H T, Smeck N E, Bigham J M. Pedogenic influence on base saturation and calcium /magnesium ratios in soils of Southeastern Ohio. Soil Science Society of America Journal,1997, 61:509-515
    [233]Sall SN, Masse D, Ndour N Y B, Chotte J L. Does cropping modify the decomposition function and the diversity of the soil microbial community of tropical fallow soil? Applied Soil Ecology, 2006,31:211-219
    [234]Scbulten H R, Leinweber E Influence of long-term fertilization with farmyard manure on soil organic matter:Characteristics of particle Size fractions. Biology and Fertility of Soils,1991, 12:81-88.
    [235]Schnitzer M. Soil organic matter-the next 75 years. Soil Sci,1991, (151):41-58·
    [236]Schroth G, Ferreira L D S, Seixas R, et al. Subsoil accumulation of mineral nitrogen under polyculture and monoculture plantations, fallow and primary forest in a ferralitic Amazonian upland soil. Agriculture, Ecosystems and Environment,1999,75:109-120
    [237]Shaw J N, WestLT, Hajek B F. Ca-Mg ratios for evaluating pedogenesis in the piedmont province of the southeasternUnited States ofAmerica. Canadian Journal of Soil Science,2001,81: 415-421
    [238]Shen J, Li R, Zhang F, et al. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops Research,2004,86:225-238
    [239]Shuman L M. Effect of phosphours level on extractable micronutents and their distribution among soil fractions. Soil Soc. Am J,1988,52(1):136-141
    [240]Shuman L M. Effects of organic matter on the distribution of manganese, copper, iron, and zinc in soil fractions. Soil Sci.1988,146,192-198
    [241]Sieling C, Stahl C, Winkelmann. Growth and yield of winter wheat in the first 3 years of a monoculture under varying N fertilization in Germany. Eur. J. Agron.2005,22:71-84
    [242]Singh B, Malhi S S. Response of soil physical properties to tillage and residue management on two soils in a cool temperate environment. Soil & Tillage Research,2006 (85):143-153.
    [243]Sommerfeldt T G, Chang G, Entz T. Long-term annual applications increase soil organic matter and nitrogen and decrease carbon to nitrogen ratio. Soil Science.1998,52:1668-1672
    [244]Soon Y K, Arshad M A. Effects of cropping systems on nitrogen, phosphorus and potassium forms and soil organic carbon in a Gray Luvisol. Biol. Fertil. Soils,1996,22,184-190
    [245]Studeert G A, Echeverria H E. Crop rotation and nitrogen fertilization to manage soil organic carbondynamic. Soil Science,2000,64:1495-1503
    [246]Thompson C A, Whitney D A, Effects of 30 years of cropping and tillage systems on surface soil test changes. Commun. Soil Sci. Plant Anal,2000,31,241-257.
    [247]Tiessen H J, Stewart W B, Betteny J R. Cultivation effects on the amounts and concentration of carbon, nitrogen and phosphorus in grassland soils. Agron.1982,14:831-835
    [248]Timsina J U, Singh M. Badaruddin C, et al. Cultivar, nitrogen, and water effects productivity, and nitrogen-use efficiency and balance for rice- wheat sequences of Bangladesh. Field Crops research,2001,72:143-61
    [249]Turco R R, Bischoff M, Breakwell D P. Contribution of soil-borne bacteria to the rotation effect in corn. Plant Soil.1990,122:115-120
    [250]Upendra M S, Thecan C T, Andrew W L, et al. Tillage and cropping sequence impacts on nitrogen cycling in dryland farming in eastern Montana, USA. Soil Tillage Res. (2008), doi: 10.1016/j. still.2008.10.024
    [251]Varsa E C, Ebelhar S A. Effect of potassium rate and placement on soil test variability across tillage systems. Communications in Soil Science and Plant Analysis,1999,31,2155-2161
    [252]Wander M M, Traina S J, Stinner B R, et al. The effect of organic and conventional management on biologicallyactive soil organic matter pools. Soil Sci. Soc. Am. J.1994,58,1130-1139.
    [253]Wei X R, HaoMD, Shao M A, et al. Changes in soil properties and the availability of soil micronutrients after 18 years of cropping and fertilization. Soil & Tillage Research,2006,91: 120-130
    [254]Williams A, Xing B S, Veneman P. Effect of cultivation on soil organic matter and aggregate stability. Pedosphere,2005,15 (2):255-262
    [255]WuT, Schoenau J J,LiFM,Qian P Y_Malhi S S,Shi Y C. Influence of fertilization and organic amendments on organic carbon fractions in Heilu soil Oll the loess plateau of China. Journal of Plant Nutrition and Soil Science,2005,168:100-107
    [256]Yuan KN, Soil Chemistry of Plant Nutrients. Beijing:Science Press,1983
    [257]Zibilske L M, Bradford J M, Smart J R. Conservation tillage induced changes in organic carbon, total nitrogen, and available phosphorus in a semi-arid alkaline subtropical soil. Soil & Tillage Research,2002,66,153-163
    [258]Zu Y Q. Li Y. Christian S. et al. Accumulation of Pb, Cd, Cu and Zn in plants and hyper accumulator choice in Lanping Lead-zinc mine area. Environ Int,2004,30 (4):567-576

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700