用户名: 密码: 验证码:
有机聚合物整体柱的制备以及对生物大分子的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体柱具有渗透性好、制备简单、无需塞子制作等优点,从而避免了由塞子所引起的问题,已引起人们越来越多的关注,已在反相色谱、离子交换色谱、疏水作用色谱、亲和色谱、体积排阻色谱中获得了应用。
     本文结合本研究室的工作,对有机聚合物整体柱的制备条件以及该柱对生物大分子的应用作一概述。
     本文通过原位聚合制备了一种以甲基丙烯酸缩水甘油酯(GMA)为单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂的连续棒状色谱柱,并考察了单体、交联剂、制孔剂等条件对柱结构的影响,以此色谱柱为基质进行多方面的研究。
     首先通过硫酸水解将整体柱处理为高效疏水色谱柱并建立了蛋白质非线性色谱保留行为的数学模型,利用此种色谱柱对蜗牛酶进行了分离,考察了致孔剂及单体对柱体疏水性及蜗牛酶分离效果的影响。
     然后建立了蛋白质非线性色谱保留行为的数学模型,应用此数学模型对梯度洗脱条件下连续棒状疏水色谱柱上不同蛋白质非线性行为的保留时间进行了预测和实验验证。
     最后通过键合氨基的方法成功合成连续棒状弱阴离子交换柱,通过优化色谱条件,对IL-18粗提液进行了分离,考察了在不同条件对白介素-18在该色谱柱上分离效果的影响。
In contrast to traditional packed column, monolithic column has the advantage of easy preparation, excellent permeability, low backpressure at chromatographic runs and large capacity for samples. This kind of column has been applied in many fields.
    This paper consists of the following parts: preparation of monolithic polymer column, investigation of polymerization conditions and its application to bio-molecules.
    First, a continuous rod hydrophobic interaction chromatographic column consisting of poly(glycidyl methacrylate and ethylene dimethacrylate) was prepared by a free radical polymerization and used in the separation of snailase. The influences of polymerization conditions on the hydrophobility of the rod and on the separation of snailase were investigated.
    Second, a mathematical model predicting the non-linear retention behavior protein was established. Using this model, the non-linear retention behaviors of different proteins under the gradient elution in high performance hydrophobic interaction chromatographic column have been predicted.
    Third, a continuous ion-exchange chromatographic column with glycidyl methacrylate as the functional monomer and ethylene dimethacrylate as the cross linker was prepared by a free radical polymerization and applied to the separation of IL-18. After the factors influencing the separation were investigated, an optimum condition for separating EL-18 from its related proteins was obtained.
引文
[1] Kubin M, et al. A generalized exponential function as a model of polymer distribution curves Chem. Commun., 1967,32(4): 1505-1517
    [2] Hjerten S, Liao J L, Zhang R. High-performance liquid chromatography on continuous beds J. Chromatogrophy, 1989(473):273-281
    [3] Svec F, Frechet J M. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media Anal. Chem. 1992,64:820-822
    [4] 平贵臣,袁湘林,张维冰,张玉奎.整体柱的制备方法及其应用.分析化学.2001.29.(12):1464-1469
    [5] 何炜,雷建都,谭天伟.连续床色谱分离技术 化工进展.2002,21(4):262
    [6] Mihelic I, Koloini T, Podgornik A, Strancar A. Dynamic capacity studies of CIM(convective interaction media) monolithic columns. J. High Resol. Chromatogr.,2000,23(1):39-43
    [7] Minakuchi H, Nakanishi K, Soga N, Tanaka N. Performance of an octadecylsilylated continuous porous silica column in polypeptide separations J. Chromatogr. A, 1998, 828: 83~90
    [8] Ericson C, Nakazato K, Hjerten S. J. Preparation of continuous beds for electrochromatography and reversed-phase liquid chromatography of low-molecular-mass compounds.J.Chromatogr. A, 1997, 767:33~41
    [9] Minakuchi H, Nakanishi K, Soga N, Tanaka N. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography J. Chromatogr. A, 1997, 762:135~146
    [10] Fujimotoj C, Fujise Y, Matsuzawa E. Fritless Packed Columns for Capillary Electrochromatography: Separation of Uncharged Compounds on Hydrophobic Hydrogels. Anal.Chem., 1996, 68:2753-2757
    [11] Seubert A, Klingenberg A. Sulfoacylated macroporous polystyrene-divinylbenzene: a new type of cation exchanger for the analysis of multivalent metal cations J. Chromatogr. A, 1997, 782:149~157
    
    
    [12] Sykora D, Svec F, Frechet J M J. Separation of oligonucleotides on novel monolithic columns with ion-exchange functional surfaces. J.Chromatogr. A, 1999,852:297-304
    [13] 张敏莲,白妹,孙彦.聚(GMA-DVB-TAIC)型连续床的制备及其对蛋白质的色谱分离性能.离子交换与吸附,2000,16(3):199-206
    [14] Svec E Frechet J M J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem, 1992, 64:820-822
    [15] Svee F, Freehet J M J. Modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) continuous rod columns for preparative-scale ion-exchange chromatography of proteins J. Chromatogr., 1995, 702:89~95
    [16] 卫引茂,黄晓冬,陈强,耿信笃,新型连续棒状疏水色谱柱的制备及其色谱性能研究.离子交换与吸附 2001,17(5):310~315
    [17] Xie S F, Svec F, Frechet J M J. Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins J. Chromatogr. A, 1997, 775:65~72
    [18] 刘彤,罗权舟,秦晓娟,耿信笃.连续棒状疏水色谱柱的制备及表征。分析化学 1999,27(7):764-767
    [19] Amatschek K, Necina R, Hahn R, Schallaun E. Schwinn H, Josic D, Jungbauer A. Affinity chromatography of human blood coagulation factor Ⅷ on monoliths with petides from a combinatorial library. J. High Resol. Chromatogr., 2000,23(1): 47-58
    [20] 罗权舟 邹汉法 汪海林 毛希琴 孔亮 倪坚毅。固载蛋白A交联聚甲基丙烯酸缩水甘油酯连续床亲合色谱柱的制备及性能考察。分析化学2001,29(5):497-501
    [21] Mihelic I, Koloini T, Podgomik A, Strancar A. Dynamic capacity studies of CIM(convective interaction media) monolithic columns. J. High Resol. Chromatogr.,2000,23(1):39-43
    [22] Majed Al-Bokari, Djamel Cherrak, Georges Guiochon。D etermination of the porosities of monolithic columns by inverse size-exclusion chromatography J.Chromatog A. Stationary Phases in Capillary Electrochromatography Anal. Chem., 1997,69:4499-4507
    
    2002,975:275-284
    [23] Peters E C, Petro M, Svec F, Frechet J M J. Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. 2. Effect of Chromatographic Conditions on the Separation Anal. Chem., 1998, 70:2296~2302
    [24] Fujimoto C, Kino J, Sawda H. Capillary electrochromatography of small molecules in polyacrylamide gels with electroosmotic flow. J. Chromatogr. A, 1995,716:107~113
    [25] Yu C, Svec F, Frechet J M J. Towards stationary phases for chromatography on a microchip:molded porous polymer monoliths prepared in capillaries by photoinitiated in suit polymerization as separation media for electrochromatography. Electrophoresis, 2000, 21(1): 120-127
    [26] Moore R E, Licklider L, Schumann D, Lee T D. A Microscale Electmspray Interface Incorporating a Monolithic, Poly(styrene-divinylbenzene) Support for On-Line Liquid Chromatography/Tandem Mass Spectrometry Analysis of Peptides and Proteins. Anal. Chem, 1998, 70:4879-4884
    [27] Podgomik A, Barut M, Jancar J, Strancar A. Isocratic separations on thin glycidyl methacrylate-ethylenedimethacrylate monoliths. J.Chromatogr. A, 1999, 848:51-60
    [28] Peters E C, Petro M, Svec F, Frechet J M J. Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. 2. Effect of Chromatographic Conditions on the Separation. Anal. Chem, 1998,70:2296-2302
    [29] Petro M, Svec F, Gitsov I, Frechet J M J. Molded Monolithic Rod of Macroporous Poly(styrene-co-divinylbenzene) as a Separation Medium for HPLC of Synthetic Polymers: "On-Colunm" Precipitation-Redissolution Chromatography as an Alternative to Size Exclusion Chromatography of Styrene Oligomers and Polymers. Anal. Chem.,1996, 68:315-321
    [30] Petro Miroslav, Svec F, Frechet J M J. Molded continuous poly(styrene-co-divinylbenzene) rod as a separation medium for the very fast separation of polymers Comparison of the chromatographic properties of the monolithic rod with columns packed with porous and non-porous beads in high-performance liquid chromatography of polystyrenes. J. Chromatogr. A, 1996, 752:59-66
    
    
    [31] Fujimoto C, Kino J, Sawda H. Capillary electrochromatography of small molecules in polyacrylamide gels with electroosmotic flow. J.Chromatogr.A, 1995,716:107~113
    [32] Wang C Q, Svec F, Frechet J M J. Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography. Anal. Chem., 1993,65:2243-2248
    [33] Bidling B, Unger K K, Doehren N V, Comparative study on the column performance of microparticulate 5-μm C_(18)-bonded and monolithic C_(18)-bonded reversed-phase columns in high-performance liquid chromatography. J. Chromatogr. A, 1999, 832: 11-16
    [34] Petro M, Svec F, Gitsov I, Frechet J M J. Molded Monolithic Rod of Macroporous Poly(styrene-co-divinylbenzene) as a Separation Medium for HPLC of Synthetic Polymers: "On-Column" Precipitation-Redissolution Chromatography as an Alternative to Size Exclusion Chromatography of Styrene Oligomers and Polymers. Anal. Chem., 1996, 68:315-321
    [35] Hjerten S, Eaker D, Elenbring K, Valtcheva L, Li Y M. A simple method for clesalting and concentration of microliter volumas of protein solutions with special reference to capillary electrophoresis. Jpn J Electrophoresis, 1995,39:105
    [36] 高文惠,杨静,杨更亮,胡汉芳,刘海燕 硅胶整体柱的制备及制备条件对整体柱的影响 化学通报 2004,67(3):214-217
    [37] 高文惠,杨更亮,杨静,刘海燕,尹俊发,陈义.硅胶整体柱的制备及对苯取代物的分离 2004,32(3):295-298
    [38] 杨更亮,高文惠,杨静.硅胶整体柱的研究进展 色谱 2003,21(7):32-335
    [39] 宛彤昕,宛英敏。分子烙印技术及其应用 辽宁化工 2002,31(5):214-217
    [40] Sreenivasan, R.Sivakumar. Imparting recognition sites in poly(HEMA) for two compands through moleculer imprinting J.Appl.Poly.Sci. 1999,71(11):1823-1826
    [41] Matsui J, Kato T, Suzuki M, Yokoyama K, Yamika E, Karube I. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique Anal. Chem., 1993,65:2223-2224
    [42] Nilsson S, Schweitz L, Petersson M. Three approaches to enantiomer separation of β
    
    -adrenergic antagonists by capillary chromatography. Electrophoresis, 1997,18(6):884-890
    [43] Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of local anaesthetics. J. Chromatogr. A,1997, 792:401-409
    [44] Schweitz L, Anderson L I, Nilsson S. Capillary Electrochromatography with Predetermined Selectivity Obtained through Molecular Imprinting. Anal. Chem, 1997,69:1179-1183
    [45] Schweitz L, Anderson L I, Nilsson S. Molecular imprinting for chiral separations and drug screening purposes using monolithic sationgary phases in CEC. Chromatographia, 1999,49:S93-S94
    [46] Crego A L, Gonzalez A, Marina M L. Chiral separation of polychlorinated biphenyls by micellar electrokinetic chromatography with γ-cuclodextrin as modifier in the separation Crit.Rev.Anal.Chem., 1996,26:261-272
    [47] Knox J H.. Volimn espasion and loss of samples due to initial self-healing in capillary electroseparation J.Chromatogr., 1994,680:3-8
    [48] 李前锋,陈宏丽,陈兴国,胡之德。毛细管电色谱中整体式高聚物毛细管柱技术的进展 分析化学 2002,302(6):754~759
    [49] Liao J L, Chen N, Ericson C, Hjerten S. Preparation of Continuous Beds Defivatized with One-Step Alkyl and Sulfonate Groups for Capillary Electrochromatography Anal. Chem.,1996, 68: 3468-3472
    [50] Palm A, Novotny M V. Maeroporous Polyacrylamide/Poly(ethylene glycol) Matrixes as Stationary Phases in Capillary Electrochromatography Anal. Chem., 1997,69:4499-4507
    [51] 卫引茂,黄晓冬,耿信笃。一种金属螯合连续棒色谱柱的制备及色谱性能高等学校化学学报 2001,22(10):1664-1666
    [52] K. Branovic, G. Lattner, M. Barut, A. Strancar, Dj. Josic, A. Buchacher Very fast analysis of impurities in immunoglobulin concentrates using conjoint liquid
    
    chromatography on short monolithic disks Journal of Immunological Methods 2002, 271:47-58
    [53] Hang Zeng, Yuzhong Deng, Jing-Tao Wu Fast analysis using monolithic columns coupled with high-flow on-line extraction and electrospmy mass spectrometric detection for the direct and simultaneous quantitation of multiple components in plasma Journal of Chromatography B, 2003,788:331-337
    [54] Liao Jia L, Zhang.R, Hjerten.S Continuous beds for standard and micro high-performance liquid chromatography J. Chromatogr. 1991,(586):21-28
    [55] David Sykora, Frantisek Svec, Jean M.J. Frechet Separation of oligonucleotides on novel monolithic columns with ion-exchange functional surfaces J.Chromatogr.A, 1999,852: 297-304
    [56] Sanchayita Ghose, Steven M. Cramer Characterization and modeling of monolithic stationary phases:application to preparative chromatography J.Chromatogr.A 2001,928:13-23
    [57] Shaofeng Xie, Robert W. Allington, Frantisek Svec, Jean M.J. Frechet Rapid reversed-phase separation of proteins and peptides using optimized 'moulded' monolithic poly(styrene-co-divinylbenzene) columns J.Chromatogr.A 865(1999) 169-174
    [58] Majed Al-Bokari, Djamel Cherrak, Georges Guiochon Determination of the porosities of monolithic columns by inverse size-exclusion chromatography J.Chromatogr.A 975 (2002) 275-284
    [59] Quanzhou Luo, Xiqin Mao, Liang Kong, Xiaodong Huang, Hanfa Zou High-performance affinity chromatography for characterization of human immunoglobulin G digestion with papain Journal of Chromatography B, 2002, 776:139-147
    [60] Karmen Branovic, Dubravko Forcic, Jelena Ivancic, Ales Strancar Application of short monolithic columns for improved detection of viruses Journal of Virological Methods 2003, 110:163-171
    [61] Arndt Asperger, Jurgen Efer, Therese Koal, Werner Engewald Trace determination of priority pesticides in water by means of high-speed on-line solid-phase extraction-liquid
    
    chromatography-tandem mass spectrometry using turbulent-flow chromatography columns for enrichment and a short monolithic column for fast liquid chromatographic separation J.Chromatogr.A 2002,960:109-119
    [62] 王云,王峥 疏水色谱法在生化研究中的应用 常熟高专学报 2000,14(7):78-80
    [63] YANG, Geng-Liang(杨更亮), TIAN, Bao-Juan(田宝娟),CHEN, Yi(陈义), WANG, De-Xian(王德先). Prediction of Retention Time of Solutes under Lmear Gradient Elution Conditions in RP-HPLC Chinese J. of Chemistry 2003, 21, 1084-1087
    [64] Dolan W, Lommen D C, Snyder L R. Process optimization via simulated annealing application to network design. J. Chromtogr.,1989,485: 91-112
    [65] Snyder L R, Dolan W. Initial experiments in high-performancer liquid chromatographic method development. 1 .Use of a starting gradient runs. J. Chromtogr., 1996,721:3-14
    [66] Heinish S, Rocca J L. Optimization of the mobile phase composition and the column length in reversed-phase chromatography. Analyst, 1990,18:83-95
    [67] Heinish S, Rocca J L, Kolosky M. Computerized optimization of the mobile phase composition in gradient elution reversed-phase HPLC. Chromatographia, 1990, 29: 482-488
    [68] 单亦初,赵瑞环,张维兵,张玉奎。反相高效液相色谱中流动相线性梯度洗脱条件下溶质保留时间预测的新方法。色谱,2001,19(3):256-259
    [69] 王云,郭敏亮,姜守磊,陈天,姜涌明,陈云 一种疏水色谱填料的特性及应用的研究色谱 2000,18(7):354-356
    [70] Berkovsky, Aaron L.; Potapov, Pavel P. Development of a purification procedure for the placental protein 14 involving metal-chelate affinity chromatography and hydrophobic interaction chromatography Journal of Chromatography B 1997, 692:273-279
    [71] Diogo, M.M.; Queiroz, J.A.; Prazeres, D.M.F. Assessment of purity and quantification of plasmid DNA in process solutions using high-performance hydrophobic interaction chromatography J.Chromatogr.A 2003,998:109-117
    [72] Ghosh, Raja Separation of proteins using hydrophobic interaction membrane chromatography J.Chromatogr.A 2001, 923: 59-64
    [73] 袁航,周培根.蜗牛酶降解部分乙酰化甲壳素的动力学[J].上海水产大学学报,
    
    2001,10(3):243-247.
    [74] 黄月文,卓仁禧.蜗牛酶在聚(N-异丙基丙烯酰胺)中的固定化及应用 功能高分子学报1996,4:523-531
    [75] Snyder L R,.;Dolan J. W., Initial experiments in high-performance liquid chromatographic method development I. Use of a starting gradient run J. Chromatogr, 1996,721:3-14
    [76] 卫引茂 赵建国 姚丛 耿信笃 用芳香醇同系物研究疏水色谱的保留机理分析化学 2002,30(6):641-644
    [77] Yang, G-L.;Tian, B.-J.;Chen, Y.Predietion of Retention Time of Solutes under Linear Gradient Elution Conditions in RP-HPLC Chinese J. of Chemistry 2003, 21: 1084-1087
    [78] 师治贤,王俊德.生物大分子的液相色谱分离和制备(第二版)[M],北京:科学出版社,1999
    [79] 黄仕和.白介素-18 生命的化学,1996,16:477
    [80] 文建军,刘世贵.白介素-18的研究进展 医学新知杂志,2000,10:77-79
    [81] 张瑞军,田志刚,魏海明,王增鑫,刘金生,王郡甫,张捷.重组人白细胞介素-18的纯化及其生物学活性研究 中国免疫学杂志,2001,17(8):411-415
    [82] 裴冬生,胡书群,赵惠仁.人白细胞介素-18在大肠杆菌中的表达、纯化和复性生物化学与生物物理学报,2000,32(4):397-400
    [83] 杜勇,汪涛,杜桂鑫,徐静,侯利华.人PBMC中IL-18基因的克隆及在E.coli中的高效表达与纯化 免疫学杂志,1999,15(10):226-228
    [84] 王雪 宋长征.离子交换色谱法对大肠杆菌表达的人重组骨形态发生蛋白7的纯化中国 生物工程杂志2004,24(1):77-80
    [85] 路秀玲 苏志国.人血清白蛋白纯化技术研究进展 生物工程学报 2002,18(11)761-766
    [86] 孔毅 吴梧桐 吴如金 新型离子交换柱分离蛋白质类药物的研究 药物生物技术 2001,8(1):33~35
    [87] 常建华,郭治安。分离蛋白质的高效强阳离子交换色谱填料的合成及性能研究 色谱 1997,15(7):352-353

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700