用户名: 密码: 验证码:
高压功率MOSFET终端结构击穿特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐压能力是功率MOSFET的最重要性能,通常在器件的应用选型中,击穿电压是作为首要的考虑指标。对于击穿电压小于100V的VDMOS器件,达到规格要求的击穿电压难度不大,对于这类器件的耐压设计主要是考虑其与导通电阻之间的折衷与优化;而对于高压VDMOS器件而言,提高击穿电压是芯片设计的最难点,因为在高逆向偏压下,在最外圈的元胞区如果没有保护措施则会导致芯片的提前击穿。终端结构的作用就是,利用特别设计的横向结构将漏源之间的高电势差,从元胞平缓过渡到芯片边缘。一般而言,在高压VDMOS的设计中,只要终端结构的击穿电压达到了设计规格,则芯片的整体耐压就能得到保证。
     本论文研究的是高压VDMOS的终端结构。作为高压器件的典型规格,耐压为600V的VDMOS终端结构是本论文的优化与设计目标。
     首先研究雪崩击穿的机制及其发生条件,代入平行平面结与圆柱结两种模型得到击穿电压的解析方程。平行平面结模型适用于外延片掺杂浓度与厚度的参数选取,通过计算得到的外延片参数与仿真值误差在0.3%,并且得到的是导通电阻与击穿电压折衷的最优解。圆柱结模型应用于主结边缘的击穿电压计算,获得结曲率半径与击穿电压之间呈正比的强烈关系。该结论是多种基本的终端技术原理的根基,特别是场限环技术及其他结终端技术,就是通过增大耗尽层曲率半径的方式获得高击穿电压。
     接着对多场限环场板复合的终端结构进行设计与优化,分别对单场限环和单场板的模型进行仿真,探究其形状与位置的改变导致终端电性能特性的变化,包括表面电场分布,碰撞电离率分布,耗尽层曲线形状以及击穿电压的变化趋势等。这将指导复合结构终端的调整与优化。通过TCAD仿真软件ISE优化得到的6场限环场板复合终端耐压为690.2V,终端宽度为150μm。
     本论文还基于表面变形的原理设计了浅沟槽负斜坡终端结构。优化后得到宽度为126.7μm,击穿电压为724.8V的终端结构,达到了同外延材料同制程条件下元胞区击穿电压的90%。
     具有应用意义的终端结构还需考虑到其面积大小,因为终端结构的唯一功能就是使芯片的击穿电压尽量接近于元胞区耐压。在芯片正常工作时,终端并不提供电流通路,所以终端面积过大会造成同成本下芯片的导通电阻增加,同时增加的还有漏电流。本论文设计的两种终端结构中,浅沟槽负斜坡的终端宽度比多场限环场板结构的小得多,但是对工艺技术的要求有所增加。
Blocking capacity is the key parameter of Power MOSFET. Usually in the device selection, the breakdown voltage is considered as a primary indicator. For breakdown voltage less than100V VDMOS devices, it is not difficult to design to meet the target breakdown voltage, which mainly focus on the trade-off between on resistance and breakdown voltage. But for high voltage VDMOS devices, to improve the breakdown voltage is the most difficult work of the chip design. Under high reverse bias, if no protective measures in the outer ring of the cell area will lead to chip breakdown ahead. The role of the termination is the use of the special design of a lateral structure for gentle transition of the high electric potential difference between the drain and the source. Generally, as long as the termination breakdown voltage reaches the target specifications, then the overall blocking capacity of the chip can be guaranteed.
     This thesis is the research of the high voltage VDMOS termination. Typical specifications as a high voltage device,600V VDMOS termination had been optimized design in this work.
     First of all, the mechanism of avalanche breakdown occuring conditions was been studied, substituted into the electric field equation of each model of the plane junction and the cylindrical junction, then the breakdown voltage analytical solution had been got. Infinite plane junction model is suitable for the selection of epitaxial wafers doping concentration and thickness, and what we get is the optimal solution between on-resistance and breakdown voltage trade-off.
     Cylindrical junction model is applied to calculate the breakdown voltage of the edge of the main junction, the junction curvature radius and the breakdown voltage were calculated to be direct proportion. This theory is the foundation of a variety of basic principles of termination technology, especially the field limiting ring technique and other junction termination technique, that is, by increasing the curvature radius of the depletion layer to get a high breakdown voltage.
     Then design and optimize the structure of Multi-FLR-FP termination. Single field limiting ring and a single field plate model had been simulated to explore the shape and location led to changes in the characteristics of the termination electrical properties, including the surface electric field distribution, the impact ionization rate distribution, the depletion boundary shape, and breakdown voltage of the trend. This will guide the adjustment and optimization of the composite structure of the termination. After works of simulation with TCAD software ISE, optimized Multi-FLR-FP structure termination had been designed, which breakdown voltage is690.2V, and the width is150μm.
     In this paper, a shallow trench negative slope termination structure had also been designed, which was based on the principle of surface deformation. Get a width of126.7μm, and the breakdown voltage of724.8V termination structure.
引文
[1]B.Jayant.Baliga. Fundamentals of Power Semiconductor Devices. Springer,2008
    [2]B. Jayant Baliga. Advanced Power MOSFET Concepts. Springer,2010
    [3]B. Jayant Baliga. The Future of Power Semiconductor Device Technology. Proceedings of IEEE.2001,89 (6):822-832
    [4]B. Jayant Baliga. MOS Devices For Power Electronic Applications. Solid-State Device Research Conference,1998. IEEE:81-87
    [5]M. Darwish, C. Yue, K.H. Lui, F. Giles, B. Chan, K.-I. Chen, D. Pattanayak, Q. Chen, K. Terrill and K. Owyang. W-gated trench power MOSFET (WFET). Circuits Devices and Systems.2004,151(3):238-242
    [6]B. Jayant Baliga, B. Tech. High-voltage Device Termination Techniques:A comparative review. Solid-State and Electron Devices.1982,129(5):173-179
    [7]S. M. Sze, Physics of Semiconductor Devices 2nd. Edition, Ch.1, John Wiley and Sons, New York. Chichester. Brisbane. Toronto.Singapore,1981.
    [8]B. Jayant Baliga. Analytical Solutions For the Breakdown Voltage of Abrupt Cylindrical and Spherical Junctions. Solid-State Electronics.1976,19(9):739-744
    [9]Krishna Shenai. A 55-V,0.2-mΩ·cm2 Vertical Trench Power MOSFET. Electron Device Letters.1991,12(3):108-110
    [10]Tarui Y, Hayasui Y, Sekigawa T. Diffusion self-aligned enhance-depletion MOS-IC. Proceedings of the 2nd Conference Solid State Devices, Tokyo, Japan.1970:157-162.
    [11]Qinsong Qian, Weifeng Sun, Member, IEEE, JingZhu,andSiyangLiu. A Novel Charge-Imbalance Termination for Trench Super Junction VDMOS. Electron Device Letters.2010,31 (12):1434-1436.
    [12]Yoshiya Kawashima, Hisao Inomata, Koichi Murakawa, and Yoshinao Miura. Narrow-Pitch N-Channel Super Junction UMOSFET for 40-60 V Automotive Application.22nd ISPSD, Hiroshima,2010. IEEE:329-332.
    [13]F. Udrea, T. Trajkovic, J. Thomsonb, L. Coulbeckb, P.R. Waindb, G.A.J. Amaratunga and P. Taylorb. Ultra-high voltage device termination using the 3D RESURF (Super-Junction) concept-experimental demonstration at 6.5 kV. ISPSD 2001, Osaka. IEEE:129-132.
    [14]Chen X B. Optimum design parameters for different pattern of CB-structure. Chinese Journal of Electronics,2000,9 (1):6-11.
    [15]Chen X B, SIN JKO. Optimization of the specific on-resistance of the COOLMOS. IEEE Transaction On Electron Device,2001,48(2):344-348.
    [16]Wataru S, Ichiro O. Semi-superjunction MOSFETS:new design concept for low on-resistance and softer reverse-recovery body diode. IEEE Trans on Electron Devices,2003,50 (8):1801-1806.
    [17]L. Theolier, H. Mahfoz-Kotb, K. Isoird, F. Morancho. A new junction termination technique:the Deep Trench Termination (DT2). ISPSD 2009, Barcelona. IEEE: 176-179.
    [18]Chanho Park, Jinmyung Kim, Taehoon Kim, Deok J. Kim. Deep trench terminations using ICP RIE foe ideal breakdown voltages. ISPSD 2003. Cambridge, UK. IEEE:199-202.
    [19]Krishna Shenai. Optimized Trench MOSFET Technologies for Power Devices. Transactions on Electron Devices.1992,39(6):1435-1443
    [20]Ying Wang, Hai-Fan Hu, Wen-Li Jiao, and Chao Cheng. Gate Enhanced Power UMOSFET With Ultralow On-Resistance. Electron Device Letters.2010,31(4): 338-340
    [21]Dejan Krizaj, Slavko Amon, Corinne Mingues, and Georges Charitat. Spiral Junction Termination. Transactions on electron devices.1997,44(11):2002-2010
    [22]Dejan Kritaj, Sass Sokolic and Slavko Amon. A New Approach to Field-Plate Junction Termination Modeling.6th Electrotechnical Conference,1991. IEEE:91-94
    [23]F. CONTI and M. CONTI. Surface Breakdown in Silicon Planar Diodes Equipped with Field Plate. Solid-State Electronics.1972,15:93-105
    [24]Adler, M.S, Temple V.A.K., Ferro A.P., Rustay R.C. Theory and Breakdown Voltage for Planar Devices with A Single Field Limiting Ring. Transactions on Electron Devices.1977,24(2):107-113
    [25]Antoine A. Tamer, Ken Rauch and John L. Moll. Numerical Comparison of DMOS, VMOS, and UMOS Power Transistors. Transactions on Electron Devices.1983, 30(1):73-76
    [26]Siemieniec, R.; Hirler, F.; Geissler, C.; Space-saving edge-termination structures for vertical charge compensation devices. EPE, Barcelona, Spain,2009. IEEE:1-10
    [27]Andrew S. Grove, Otto Leistiko, JR. and William W. Hooper. Effect of Surface Fields on the Breakdown Voltage of Planar Silicon p-n Junctions. Transactions on Electron Devices.1967,14(3):157-162
    [28]Tomowki Tanaka, Yasuhiro Mochizuki and Masahiro Okamura. Analysis of a Junction Termination Structure for Ideal Breakdown Voltage in p-n Junction Devices. Transactions on Electron Devices.1980,27(1):261-265
    [29]Mohamed N. Darwish and Kenneth Board. Optimization of Breakdown Voltage and On-Resistance of VDMOS Transistors. Transactions on Electron Devices.1984, 31(12):1769-1773
    [30]B. Jayant Baliga, Tsengyou Syau, and Prasad Venkatraman. The Accumulation-Mode Field-Effect Transistor:A New Ultralow On-Resistance MOSFET. Electron Devcie Letters.1992,13(8):427-429
    [31]B. Jayant Baliga. Trends in Power Semiconductor Devices. Transactions on Electron Devices.1996,43(10):1717-1731
    [32]C. Basavana Goud, and K. N. Bhat. Two-Dimensional Analysis and Design Considerations of High-Voltage Planar Junctions Equipped with Field Plate and Guard Ring. Transactions on Electron Devices.1991,38(6):1497-1504
    [33]Findlay W J, Coulbeck L. Edge termination for very high voltage IGBT devices [J]. IPEMC'97,1997,1:67
    [34]Kamibaba R., Takahama K., Omura I. Design of trench termination for high voltage devices. ISPSD, Hiroshima,2010. IEEE:107-110
    [35]Chien-Nan Liao, Ping-hung Lai, Tien-Chun Li, Feng-Tso Chien, and Yao-Tsung Tsai. Comparison of Termination Structure Design by Device Simulator. International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, 2010. IEEE:530-533
    [36]Gan K P, Liang Y C, Samudra G S. Poly flaned VDMOS (PFVDMOS):a superior technology for superjunction device. Proceedings of Power Electronics Specialists Conference of IEEE the 32nd Annual. Vancouver, Canada,2001,4:2156-2159.
    [37]Vishnu Khemka, Vijay Parthasarathy, Ronghua Zhu, and Amitava Bose. A Floating RESURF (FRESURF) LD-MOSFET Device Concept. Electron Device Letters.2003, 24(10):664-666
    [38]Victor A. Emelyanov, Valentine V. Baranov, Ivan I. Rubtsevich and Dmitry L. Anufriev.Simulation and Optimization of Power DMOS Transistors Parameters. Electronics System integration Technology Conference, Dresden, Germany,2006. IEEE:666-670
    [39]D. Jaume, G. Charitat, J. M. Reynes, and P. Rossel. High-Voltage Planar Devices Using Field Plate and Semi-Resistive Layers. Transactions on Electron Devices.1991, 38(7):1681-1684
    [40]Maurizio Boscardin, Luciano Bosisio, Andrea Candelori, Gian Franco Dalla Betta, Selenia Dittongo,Paolo Gregori, Claudio Piemonte, Irina Rachevskaia, Sabina Ronchin, and Nicola Zorzi. An Improved Termination Structure for Silicon Radiation Detectors With All-P-Type Multi-guard and Cut-Line Implants. Transactions on Nuclear Science.2003,50(4):1001-1007
    [41]Chi Liu, Quanyuan Feng. Optimum Design of A Step-Oxide Trench Gate Power MOSFET with Low On-Resistance. International Conference on Energy Systems and Electrical Power.2011.
    [42]Fairchild Korea Semiconductor. MOSFET Basics. Fairchild Semiconductor.1999.
    [43]Shigeto Honda, Ryoich Fujii, Tsuyoshi Kawakami, Seiji Fujioka, Atsushi Narazaki, Kaoru Motonami. A concept of a novel edge termination technique:Junction Termination(RJT).22nd ISPSD, Hiroshima,2010. IEEE:111-114
    [44]S. Hidalgo, D. Flores, I. Obieta, I. Mazarredo, J.Millan. Study of A Positive Bevel Angle Edge Termination For High Voltage Power Structures. Semiconductor Conference,2002. IEEE:261-264
    [45]陈星弼.功率MOSFET与高压集成电路.东南大学出版社,1990
    [46]施敏.半导体器件物理与工艺.赵鹤鸣,钱敏,黄秋萍.第二版.苏州大学出版社,2002
    [47]陈星弼,唐茂成.《晶体管原理与设计》.P 35~37,成都电讯工程学院出版社,1987
    [48]冯玉春.功率半导体器件的发展和市场.半导体技术.2000,25(6):12-15
    [49]尹光,周涛,石广源.晶体管二次击穿特性研究.辽宁大学学报自然科学版.2009,36(1):30-34
    [50]秦祖新,刘三清.MOS型硅功率器件平面终端结构. 微电子学.1992,22(2):37-44
    [51]苏延芬,刘英坤.Trench MOSFET的研究与进展.半导体技术.2007,2(4):277-280
    [52]何进,陈星弼,王新.VDMOS均匀掺杂外延区优化设计的简单理论.电子器件.1999,22(3):143-148
    [53]陈文高,荆吉利,孙伟峰.半超结VDMOS的研究.半导体学报,2006,27(6): 1089-1093.
    [54]王彩琳,于凯.沟槽负斜角终端结构的耐压机理与击穿特性分析.固体电子学研究与进展.2011,31(4):345-349
    [55]宋文斌,蔡小五.一种新型高压功率器件终端技术.微电子学.2011,41(4):567-569
    [56]陈龙,沈克强.VDMOS场效应晶体管的研究与进展.电子器件.2006,29(1):290-295
    [57]刘三清,秦祖新,应建华.500V VDMOS功率器件终端结构设计.微电子学.1991,21(5):40-44
    [58]梁苏军,罗晋生.高压终端结构场分析边界元数值方法.半导体学报.1993,14(7):416-422
    [59]殷丽,王传敏.高压功率FRED结终端保护技术及其组合优化设计.电力电子.2010,2:51-55
    [60]胡佳贤,韩雁,张世峰,张斌,韩成功.高压VDMOS结终端技术研究.半导体技术.2010,35:52-54
    [61]陈利,李开航,郭东辉.高压功率MOSFET结终端保护技术及其组合优化设计.现代电子技术.2006,11:71-74
    [62]Gray S.May,施敏.半导体制造基础.代永平.人民邮电出版社,2007
    [63]石广源,李永亮,李严,高嵩.新型结终端技术.辽宁大学学报自然科学版.2006,33(2):172-174
    [64]吴正元,张硕,董晓敏,于军.高压VDMOS场板终端技术的研究.华中理工大学学报.1999,27(4):43-45
    [65]张雯,张俊松.功率VDMOSFET结终端技术研究.辽宁大学学报自然科学版.2006,33(2):180-183
    [66]高东岳.一种600V VDMOS终端保护环结构的设计.中国集成电路.2009,123:58-61
    [67]孙伟锋,王佳宁,易扬波.单个浮置场限环终端结构击穿电压模型.微电子学.2009,39(6):848-851
    [68]郝晓波.200V大功率VDMOSFET设计研究.南京:东南大学,.2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700