用户名: 密码: 验证码:
大型冷箱内换热器及其配管系统的流体均配与传热优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型冷箱是化工换热工艺中的重大核心设备,可应用于超大型空分、百万吨级乙烯、大型LNG液化以及大型煤制油等生产装置。由于面临装置大型化与工作条件极端化的发展趋势,冷箱内的流体均配与传热优化已成为其发展的主要技术瓶颈。在浙江省重大科技专项“大型石化冷箱多相流均配与传热优化的关键技术研究”(项目编号:2010C11020)的资助下,本文主要针对大型冷箱内板翅式换热器及其配管系统开展流体均配特性与传热优化研究,探讨了不同工况、结构及介质物性对其内流体分布与流阻的影响,研究了板翅式换热器及其配管系统内工况、流体动力学特性以及传热性能之间的相互耦合作用,并分析了流体分配不均对单台及多台并联换热器组能耗与换热效率的影响,最后提出了相应的板翅式换热器及其配管系统结构优化设计方案,旨在提高大型冷箱开发效率与产品性能,对实际大型冷箱设计、加工及制造具有一定指导意义。本文主要研究内容与创新如下:
     (1)结合多孔介质理论,构建了基于多孔介质的冷箱换热器及其配管系统数值计算模型,通过模拟计算获得了多孔翅片与板翅式换热器对应的分布阻力系数。针对此模型与初步模拟结果,设计并搭建了冷箱换热器及其配管系统流体分配测试台,主要创新在于提出了基于多元并测结构的板翅式换热器两相分离与测量方法,适用于分析不同工况条件下(如流速、气液比)对冷箱换热器及其配管系统内流体分布与流阻的影响。
     (2)分析了进口雷诺数、通道翅片及介质粘度对板翅式换热器内流体分布与流阻特性的影响,并获得了板翅式换热器内流体分配不均匀度与压降、进口雷诺数的关联式,开展了流场与温度场耦合作用下板翅式换热器流体分布失稳效应研究。研究表明,当介质粘度与温度间呈负指数关系且在特定雷诺数范围内,由传热引起的介质粘度变化将导致板翅式换热器内流体分布出现失稳。在此基础上,提出了基于通道阻力修正的板翅式换热器流体均配结构优化方案,经模拟结合试验论证,该方案优于传统在封头内添加挡板的方法。
     (3)研究了稳态与瞬态下多单元并联换热器组的配管系统内流场与压力场分布特性,分析了板翅式换热器与支管结构分别对U型与Z型配管内流体分布和流阻的影响,并揭示了配管系统内的流体均配自适应动平衡效应;深入开展了递增、递减以及脉动等变工况作用下冷箱配管系统内流体瞬态动力学特性。在此基础上,提出了基于动平衡效应及二分法的冷箱配管系统流体均配结构优化方案,经论证,提出的改进方案可较大改善配管系统内流体分布,并且不增加运行能耗。
     (4)构建了流体分配不均对板翅式换热器工作性能影响的理论模型,并研究了流体分配不均对单台及多台并联换热器组传热性能及能耗的影响;鉴于板翅式换热器传热性能与能耗间的矛盾关系,提出了单台及多台并联换热器传热性能与能耗的评估分析方法。研究表明,对于传热单元数(Ntu)较大的板翅式换热器,流体分配不均程度对其传热效率的影响较为敏感。随着传热单元数、热负荷以及进口雷诺数的增加,单台及多台并联板翅式换热器组最佳工作性能对应的压降值趋于增大。
As one of the core equipment in the heat exchange process, large-scale cold box is generally applied in air separation, megaton ethylene production, natural gas and coal liquefaction, etc. Given the growing size of the cold box and extreme operating conditions, flow distribution and heat transfer optimization have become the technical "bottleneck" in the development of the cold box. Under the support of the Major Science and Technology Project of Zhejiang Province "Research on the key technologies of the multiphase flow distribution and heat transfer optimization for the large-scale petrochemical cold box"(No.201OC11020), the flow distribution characteristics and heat transfer optimization of the plate-fin heat exchanger (PFHE) and its manifold piping system in the large-scale cold box were studied in this paper. Effects of operating conditions, structural factors and fluid properties on flow distribution and pressure drop of the PFHE and manifold structure were analyzed. The mutual coupling effects of the operating condition, flow hydrodynamic characteristic and heat transfer performance of the studied structures were investigated. Meanwhile, the influence of the flow nonuniformity on heat transfer efficiency and energy consumption of a single PFHE and multiple parallel PFHEs were further studied. Based on the results, corresponding optimization strategies were proposed in order to effectively improve the efficiency and performance of the cold box, which has certain guiding significance for the design, processing and manufacturing of the large-scale cold box. The main research content and innovations are as follows:
     (1) Numerical models of the PFHE and its manifold system in cold box were established by using the porous media theory, resistance coefficients of the PFHE and its fins were obtained. Based on the models, an experimental platform for measuring flow distribution of the PFHE and its manifold system was designed and implemented. A multiparallel-based flow separation and measurement method for two-phase flow in the PFHE was proposed. Effects of various operating conditions (velocity and gas-liquid ratio) on flow distribution and pressure drop of the PFHE and related manifold system were experimentally studied.
     (2) Effects of the inlet Reynolds number (Re), channel fins, and fluid dynamic viscosity on flow distribution and pressure drop of the PFHE were analyzed. Based on the results, a correlation among the flow distribution standard deviation parameter (STD), pressure drop and Reynolds numbers was obtained. Meanwhile, the velocity-temperature coupling effects on the flow distribution instability of the PFHE were particularly studied. It was found that when the fluid viscosity has negative exponential relationship with the fluid temperature, the flow distribution instability phenomenon, which was caused by the variation of the fluid viscosity due to heat transfer, was observed at a certain range of Re. Finally, a channel resistance-based optimization strategy for improving flow distribution of the PFHE was proposed, which is proved to be better than the traditional strategy by adding baffle inside the header of the PFHE.
     (3) Velocity and pressure distribution in the manifold system of the cold box were studied under steady-state and transient conditions. Meanwhile, effects of the PFHE and branch sizes on flow distribution and pressure drop of the manifold structure were investigated, and a phenomenon termed as adaptive dynamic balance phenomenon was observed. Transient hydrodynamics characteristics of the U-type and Z-type manifold structure were further studied under the increment, decrement and pulsation operating conditions. Based on the results, two novel strategies, named dynamic balance-based strategy and the dichotomy-based strategy, for the attainment of flow uniformity were proposed. It was verified that the strategies can greatly improve flow distribution of the studied manifold structure, and meanwhile cause negligible pressure drop variation.
     (4) A theoretical model was developed for determining the performance deterioration of the PFHE due to flow nonuniformity effect. Based on the model, the effects of the uneven flow distribution on the heat transfer performance and energy consumption of a single PFHE and multiple parallel PFHEs were studied. Given the contradictory relationship between the heat transfer performance and energy consumption, an analysis method to assess the heat transfer performance and energy consumption of a single PFHE and multiple parallel PFHEs was proposed. It was found that for the PFHE with higher number of transfer units (Ntu), its heat transfer performance is sensitive to the flow distribution. As the Ntu, heat load and Re increase, corresponding pressure drop of the optimum performance for a single PFHE and multiple parallel PFHEs tends to increase.
引文
[1]李燕鹏,周丽.空分设备冷箱设计及结构分析计算[J].冶金动力,2011,1:32-36.
    [2]秦燕,阎振贵.百万吨级乙烯冷箱的设计[J].深冷技术,2007,1:19-24.
    [3]NB/T 47006-2009,铝制板翅式热交换嚣[S].2010.
    [4]Alpema Standards, The standards of the brazed aluminium plate-fin heat exchanger [S]. 2000.
    [5]Development of colburn j factor and fanning friction factor f correlations for compact heat exchanger plain fins by using CFD [J]. Heat and Mass transfer,2013,49(7): 991-1000.
    [6]文键,李亚梅,王斯民,等.板翅式换热器平直翅片表面流动及传热特性[J].化学工程,2012,10:25-29.
    [7]Shaeri M.R., Yaghoubi M., Jafarpur K.. Heat transfer analysis of lateral perforated fin heat sinks [J]. Applied Energy,2009,86:2019-2029.
    [8]王伟平,张淑文,杨健,等.多孔式翅片传热与流阻特性分析[J].低温工程,2012,2:40-43.
    [9]Dong J.Q., Zhang Y., Li G.T., et al. Experimental study of wavy fin aluminum plate fin heat exchanger [J]. Experimental Heat Transfer,2013,26:384-396.
    [10]Ismail L.S., Velraj R., Ranganayakulu C. Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers-A review [J]. Renewable and Sustainable Energy Reviews,2010,14:478-485.
    [11]Kim M.S., Lee J., Yook S.J., et al. Correlations and optimization of a heat exchanger with offset-strip fins [J]. International Journal of Heat and Mass Transfer,2011,54: 2073-2079.
    [12]Chennu R., Paturu P.. Development of heat transfer coefficient and friction factor correlations for offset fins using CFD [J]. International Journal of Numerical Methods for Heat & Fluid Flow,2011,21(8):935-951.
    [13]王松汉.板翅式换热器[M].北京:化学工业出版社,1984.
    [14]张祉祐,石秉三.低温技术原理与装置[M].北京:机械工业出版社,1987.
    [15]陈长青,沈裕浩.低温换热器[M].北京:机械工业出版社,1993.
    [16]毛央平,毛绍融.大型空分设备板翅式换热器偏流问题分析[J].深冷技术,2010,2:45-48.
    [17]陈永东,陈学东.LNG成套装置换热器关键技术分析[J].天然气工业,2010,30(1): 96-100.
    [18]唐萍,杨健,郑津洋,等.大型LNG冷箱流体均配技术研究[A].中国动力工程学会工业气体专业委员会2009年技术论坛论文集[C].杭州,2010,pp.88-94.
    [19]Shah R.K., Sekulic D.P.. Fundamentals of Heat Exchanger Design [M]. New Jersey:John Wiley,2003.
    [20]Shah R.K.. Compact Heat Exchangers-Recuperators and Regenerators [M]. Abingdon: Taylor & Francis,2007.
    [21]Chiou J.P.. Thermal performance deterioration in crossflow heat exchanger due to the flow nonuniformity [J]. Journal of Heat Transfer,1978,100(4):580-587.
    [22]Chiou J.P.. The effect of nonuniform fluid flow distribution on the thermal performance of solar collector [J]. Solar Energy,1982,29(6):487-502.
    [23]Chiou J.P.. The effect of the air flow nonuniformity on the thermal performance of automobile air conditioning condenser [Z]. SAE Technical Paper,1984.
    [24]Chiou J.P.. The effect of longitutudinal heat conduction on crossflow heat exchanger [J]. Journal of Heat Transfer,1978,100:346-351.
    [25]Ranganayakulul C.h., Seetharamu K.N., Sreevatsan K.V.. The effects of inlet fluid flow nonuniformity on thermal performance and pressure drops in crossflow plate-fin compact heat exchangers [J]. International Journal of Heat and Mass Transfer,1996,40(1):27-38.
    [26]Ranganayakulul C.h., Seetharamu K.N.. The combined effects of wall longitudinal heat conduction inlet fluid flow nonuniformity and temperature nonuniformity [J]. International Journal of Heat and Mass Transfer,1999,42(2):263-273.
    [27]Mondt J.R.. Effect of nonuniform passages on deepfold heat exchanger [J]. Journal of Engineering for Power,1977,99:657-663.
    [28]London A.L.. Laminar flow gasturbine regenerators the influence of manufacturing tolerances [J]. Journal for Engineering for Power,1970,92(1):46-56.
    [29]Shah R.K., London A.L.. Effects of nonuniform passages on compact heat exchanger performance [J]. International Journal of Heat and Mass Transfer,1980,92(1):653-659.
    [30]Mondt J.R.. Effects of nonuniform passages on deepfold heat exchanger performance [J]. Journal of Engineering for Gas Turbines and Power,1977,99(4):657-663.
    [31]Chowdhurya K., Sarangia S.. Effect of flow maldistribution on multipassage heat exchanger performance [J]. Heat Transfer Engineering,1985,6(4):45-54.
    [32]Muller-Menzel T., Hecht T. Plate-fin heat exchanger performance reduction in special two-phase flow conditions [J]. Cryogenics,1995,35(5):297-301.
    [33]Mueller A.C., Chiou J.P.. Effects of some types of maldistribution on the performance of heat exchangers [J]. Heat Transfer Engineering,1987,8(2):75-86.
    [34]Mueller A.C., Chiou J.P.. Review of various types of flow maldistribution in heat exchangers [J]. Heat Transfer Engineering,1988,9(2):36-50.
    [35]Kitto J.B., Robertson J.M.. Effects of maldistribution of flow on heat transfer equipment performance [J]. Heat Transfer Engineering,1989,10(1):18-25.
    [36]Mishra, M., Das P.K., Sarangic S.. Effect of temperature and flow nonuniformity on transient behaviour of crossflow heat exchanger [J]. International Journal of Heat and Mass Transfer,2008,51(9-10):2583-2592.
    [37]Chin W.M., Raghavan V.R.. On the adverse influence of higher statistical moments of flow maldistribution on the performance of a heat exchanger [J]. International Journal of Thermal Sciences,2011,50(4):581-591.
    [38]巫江虹,焦安军.板翅式换热器分配特性的神经网络计算及实验验证[J].西安交通大学学报,1995,3:15-21.
    [39]巫江虹.板翅式换热器导流片空气流场分布数值计算及实验验证[J].西安交通大学学报,1997,31(4):48-53.
    [40]巫江虹,王世平,陈长青,等.神经网络系统理论在换热器分配特性研究中的应用[J].制冷学报,1997,3:1-5.
    [41]焦安军.换热器入口物流分配特性研究与优化设计[D].西安交通大学,2002.
    [42]焦安军,厉彦忠,张瑞,等.封头结构对板翅式换热器物流分配不均匀性的影响[J].化工学报,2003,54(7):907-912.
    [43]张哲,焦安军,厉彦忠.板翅式换热器封头结构的数值模拟[J].化工学报,2002,53(11):1182-1187.
    [44]张哲,厉彦忠,许箐.翅式换热器物流分配特性的实验研究[J].西安交通大学学报,2003,37(9):920-924.
    [45]张哲,田津津.板翅式换热器封头结构的物流分配特性[J].化学工程,2009,37(1):15-18.
    [46]田津津,张哲,厉彦忠,等.封头结构对板翅式换热器流体分配性能的影响[J].低温工程,2013,4:19-22.
    [47]周爱民,厉彦忠,文键,等.封头对板翅式换热器流动及阻力特性的影响[J].石油机械,2006,3(5):10-14.
    [48]王江,厉彦忠,张哲,等.封头结构对板翅式换热器温度分布特性的影响[J].化工学报,2005,56(8):]413-1418.
    [49]沈素萍,蒲亮,厉彦忠.封头形状对板翅式换热器入口段流场影响的数值研究[J].低温工程,2013,3:26-34.
    [50]Zhang Z, Li Y.Z.. CFD simulation on inlet configuration of plate-fin heat exchangers [J]. Cryogenics,2003,43:673-678.
    [51]Jiao A.J., Zhang R., Jeong S.. Experimental investigation of header configuration on flow maldistribution in plate-fin heat exchanger [J]. Applied Thermal Engineering,2003, 23(10):1235-1246.
    [52]Jiao A.J., Baek, S.. Effects of distributor configuration on flow maldistribution in plate-fin heat exchangers [J]. Heat Transfer Engineering,2005,26(4):19-25.
    [53]王少华,文键,李亚梅,等.带有导流翼的板翅式换热器封头结构优化研究[J].化学工程,2013,41(7):24-28.
    [54]文键.基于PIV技术的换热器内部场分布特性研究[D].西安交通大学,2006.
    [55]文键,厉彦忠,周爱民,等.板翅式换热器封头内部流场的测量与改进研究[J].西安交通大学学报,2006,40(1):10-13.
    [56]文键,厉彦忠,周爱民,等.板翅式换热器入口结构内流场的数值模拟[J].华中科技大学学报,2006,34(7):5-8.
    [57]文键,厉彦忠,王斯民,等.基于PIV技术对换热器入口流场的可视化研究[J].哈尔滨工业大学学报,2008,40(1):113-117.
    [58]Wen J., Li Y.Z., Zhou A.M., et al. An experimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger [J]. International Journal of Heat and Mass Transfer,2006,49(9-10):1667-1678.
    [59]Wen J., Li Y.Z., Wang S.M., et al. Experimental investigation of header configuration improvement in plate-fin heat exchanger [J]. Applied Thermal Engineering,2007, 27(11-12):1761-1770.
    [60]Wen J., Li Y.Z., Zhou A.M., et al. PIV investigations of flow patterns in the entrance configuration of plate-fin heat exchanger [J]. Cryogenics,2006,46:37-48.
    [61]Zhang L.Z.. Flow maldistribution and thermal performance deterioration in a cross-flow air to air heat exchanger with plate-fin cores [J]. International Journal of Heat and Mass Transfer,2009,52(19-20):4500-4509.
    [62]黄超进.板翅式换热器物流分配特性研究[D].上海交通大学,2010.
    [63]Splawski B.A., Clarke R.H.. Preliminary predictions of the flow and temperature distributions in a plate-fin heat exchanger geometry using the Harwell Flow3D finite difference code [A].26th National Heat Transfer Conference [C]. Philadelphia,1989, pp. 312-317.
    [64]Lalot S., Florent P., Lang S.K., et al. Flow maldistribution in heat exchangers [J]. Applied Thermal Engineering,1999,19(8):847-863.
    [65]Wasewar K.L., Hargunani S., Atluri P., et al. CFD simulation of flow distribution in the header of plate-fin heat exchangers [J]. Chemical Engineering & Technology,2007, 30(10):1340-1346.
    [66]Habib M.A., Ben-Mansour R., Said S.A.M., et al. Correlations of fow maldistribution parameters in an air cooled heat exchanger [J]. International Journal for Numerical Methods in Fluids,2008,56(2):143-165.
    [67]Habib M.A., Ben-Mansour R., Al-Qahtani M.S., et al. Evaluation of flow maldistribution in air-cooled heat exchangers [J]. Computers & Fluids,2009,38:677-690.
    [68]Rebrov E.V., Schouten J.C., Mart H.J.M.. Single-phase fluid flow distribution and heat transfer in microstructured reactors [J]. Chemical Engineering Science,2011,66: 1374-1393.
    [69]Robertson J.M.. Review of boiling, condensing and other aspects of two-phase flow in plate-fin heat exchangers [A]. Compact Heat Exchanger, Technology Advance[C]. San Diego:ASME Heat Transfer,1979, pp.17-27.
    [70]Clarke, R.H., Blundell, N.. Two-phase flow patterns occurring inside a plain-fin passage of a plate-fin heat exchanger [A]. AIChE Symposium Series,26th National Heat Transfer Conference [C]. New York:AIChE,1989:pp.287-292.
    [71]Wadekar V.V.. Plate-fin heat exchangers for cryogenic applications with special emphasis on two-phase flow [J]. Low Temperature and Cryogenic Refrigeration NATO Science Series,2003,99:435-450.
    [72]Wadekar, V.V., Kenning, D.B.R.. Flow boiling heat transfer in vertical slug and churn flow region [A]. Proc.9th International Heat Transfer Conference [C]. Jerusalem,1990, pp.449-454.
    [73]巫江虹,陈长青,吴业正.板翅式换热器两相流分配特性及实验研究[J].西安交通大学学报,1995,29(11):117-125.
    [74]巫江虹,陈长青,侯喜胜,等.板翅式换热器两相流入口分配结构机理分析[J].低温与特气,1996,2:38-45.
    [75]巫江虹,陈长青,吴业正,等.板翅式换热器两相流封头设计及其分配特性[J].低温工程,1996,93:10-14.
    [76]Wu J.H., Wang X.H., Guang O.Y.. Numerical investigation on two-phase flow distribution in plate-fin heat exchangers and experimental verification [A].2009 International Conference on Computer Technology and Development [C]. Kota Kinabalu, 2009, pp.77-80.
    [77]Xu Q., Li Y.Z., Zhang Z.. Study of two phase flow distribution and its influence in a plate-fin heat exchanger [A]. Twentieth International Cryogenic Engineering Conference [C]. Beijing,2004, pp.833-836.
    [78]张哲.板翅式换热器物流分配特性及换热的研究[D].西安交通大学,2004.
    [79]许箐,厉彦忠,张哲.两相流板翅式换热器入口分配特性的实验研究[J].西安交通大学学报,2004,38(3):243-246.
    [80]Wang S.M., Li Y.Z., Wen J.. Experimental investigation of header configuration on two-phase flow distribution in plate-fin heat exchanger [J]. International Communications in Heat and Mass Transfer,2010,37(2):116-120.
    [81]文键,王斯民,厉彦忠.板翅式换热器二相流的分配特性[J].化学工程,2010,38(12):26-29.
    [82]王勤.板翅式换热器两相流体的均布[J].低温与特气,1999,2:20-22.
    [83]吴裕远,吴铁晖,陈流芳.双相变换热器气液均匀分配特性及典型结构研究的新进展[J].西安交通大学学报,2007,41(4):383-388.
    [84]吴裕远,陈流芳.双相变换热器气液均匀分配典型结构的研究新进展[A].第九届全国低温工程大会论文集[C].合肥,2009,pp.59-65.
    [85]袁培,姜国宝,张菲妮,等.板翅式换热器两相流分配器[J].西安交通大学学报,2011,62:31-36.
    [86]Yuana P., Jianga G.B.. Experimental study on the performance of a novel structure for two-phase flow distribution in parallel vertical channels [J]. International Journal of Multiphase Flow,2013,53:65-74.
    [87]李焱,李玉星,胡其会,等.一种新型板翅式换热器气液分配器分配特性的敏感性分析[J].化工学报,2013,64(6):2007-2014.
    [88]Saad S.B., Clement P., Gentric C, et al. Experimental distribution of phases and pressure drop in a two-phase offset strip fin type compact heat exchanger [J]. International Journal of Multiphase Flow,2011,37(6):576-584.
    [89]Saad S.B., Clement P., Fourmigue J.F., et al. Single phase pressure drop and two-phase distribution in an offset strip fin compact heat exchanger [J]. Applied Thermal Engineering,2012,49(6):99-105.
    [90]卫飞飞,缪正清,黄荣国,等.带三通锅炉集箱的数值模拟和实验研究[J].锅炉技术,2010,41(6):19-23.
    [91]梁倩.集箱静压分布与流量分配的仿真研究[D].华中科技大学,2007.
    [92]钟崴,谢金芳,王志新,等.锅炉集箱系统并联管组流量不均匀性与热负荷间的关系[J].中国电机工程学报,2011,31(32):23-30.
    [93]Ghani F., Duke, M., Carson J.K.. Effect of flow distribution on the photovoltaic performance of a building integrated photovoltaic/thermal (BIPV/T) collector [J]. Solar Energy,86(5):1518-1530.
    [94]胡明辅,别玉,卜江华.太阳能集热器阵列流量均布模型[J].太阳能学报,2011,32(1):60-65.
    [95]Govindarasu R., Parthiban R., Bhaba P.K.. Investigation of flow mal-distribution in proton exchange membrane fuel cell stack [J]. International Journal of Renewable Energy Research,2012,2(4):652-656.
    [96]Kim K.N., Jeon D.H., Nam J.H., et al. Numerical study of straight-parallel PEM fuel cells at automotive operation [J]. International Journal of Hydrogen Energy,2013,37(11): 9212-9227.
    [97]Chen C., Wang H.L., Gan G.H., et al. Pressure drop and flow distribution in a group of parallel hydrocyclones:Z-Z-type arrangement [J]. Separation and Purification Technology, 2013,108:15-27.
    [98]Pan M.Q., Tang Y., Pan L., et al. Optimal design of complex manifold geometries for uniform flow distribution between microchannels [J]. Chemical Engineering Journal, 2008,137:339-346.
    [99]Mohammadi M., Jovanovic G.N., Sharp K.V.. Numerical study of flow uniformity and pressure characteristics within a microchannel array with triangular manifolds [J]. Chemical Engineering Journal,2013,52:134-144.
    [100]Kumaran R.M., Kumaraguruparan G., Sornakumar T.. Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels [J]. Applied Thermal Engineering,2013,58(1-2):205-216.
    [101]Datta A.B., Majumdar A.K.. Flow distribution in Parallel and reverse flow manifolds [J]. International Journal of Heat and Fluid Flow,1980,2(4):253-262.
    [102]Kikas N.P.. Laminar flow distribution in solar systems [J]. Solar Energy,1995,54(4): 209-217.
    [103]罗永浩.单相流体在并联管组分配集箱中流动机理的研究[J].动力工程,1998,5:31-36.
    [104]卞韶帅,罗永浩,陆方.并联管组离散模型分析及其关键系数的确定[J].上海交通大学学报,2002,36(11):1685-1688.
    [105]别玉,胡明辅,毛文元,等.并联管组内流量均匀分布的数学模型[J].动力工程学报,2011,31(4):279-284.
    [106]Bajura R.A., Jones E.H.. Flow distribution manifolds [J]. Journal of Fluids Engineering, 1976,98(4):654-665.
    [107]Bassiouny M.K., Martin H.. Flow distribution and pressure drop in plate heat exchangers-Ⅰ U-type arrangement [J]. Chemical Engineering Science,1984,39(4): 693-700.
    [108]Bassiouny M.K., Martin H.. Flow distribution and pressure drop in plate heat exchangers-Ⅱ Z-type arrangement [J]. Chemical Engineering Science,1984,39(4): 701-704.
    [109]Maharudrayya S., Jayanti S., Deshpande A.P.. Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells [J]. Journal of Power Sources,2005, 144:94-106.
    [110]Robert J.K., Pavan K., Kevin W., et al. A generalized model of the flow distribution in channel networks of planar fuel cells [J]. Journal of Power Sources,2002,109(1): 148-159.
    [111]缪正清,徐通模.Z型集箱连接系统单相流体的流动特性[J].上海交通大学学报,1998,32(7):81-85.
    [112]缪正清,田子平,王恩禄.电站锅炉汇集集箱系统单相流体流动特性的研究[J].动力工程,1998,18(2):16-49.
    [113]缪正清,徐通模.集箱与并联管屏系统单相流体的流动特性[J].上海交通大学学报,2000,34(9):1206-1210.
    [114]Wang J.Y.. Pressure drop and flow distribution in parallel-channel of configurations of fuel cell:U-type arrangement [J]. International Journal of Hydrogen Energy,2008, 33(21):6339-6350.
    [115]Wang J.Y.. Pressure drop and flow distribution in parallel-channel of configurations of fuel cell:Z-type arrangement [J]. International Journal of Hydrogen Energy,2010, 35(11):5498-5509.
    [116]Wang J.Y.. Pressure drop and flow distribution in parallel-channel of configurations of fuel cell:Z-type arrangement [J]. Chemical Engineering Journal,2011,168:1331-1345
    [117]Kim S., Choi E., Cho Y.I.. The effect of area ratio on the flow distribution in liquid cooling module manifolds for electronic packaging [J]. International Communications in Heat and Mass Transfer,1993,20(2):221-234.
    [118]Kim S., Shin S.Y., Cho Y.I.. The effects of the Reynolds number and width ratio on the flow distribution in manifolds of liquid cooling modules for electronic packaging [J]. International Communications in Heat and Mass Transfer,1993,20(5):607-617.
    [119]Kim S., Choi E., Cho Y.I.. The effect of header shapes on the flow distribution in a manifold for electronic packaging applications [J]. International Communications in Heat and Mass Transfer,1995,22(3):329-341.
    [120]Tonomura O., Tanaka S., Kano M., et al. CFD-based optimal design of manifold in plate-fin microdevice [J]. Chemical Engineering Journal,2004,101:397-402.
    [121]Tong J.C.K., Sparrow E.M., Abraham J.P.. Geometric strategies for attainment of identical outflows through all of the exit ports of a distribution manifold in a manifold system [J]. Applied Thermal Engineering,2009,29(17-18):3552-3560.
    [122]Tong J.C.K., Sparrow E.M., Abraham J.P.. Attainment of flowrate uniformity in the channels that link a distribution manifold to a collection manifold [J]. Journal of Fluids Engineering,2007,129(9):1186-1192.
    [123]Chen A.W., Sparrow E.M.. Systematic Approaches for design of distribution manifolds having the same per-port outflow [J]. Journal of Fluids Engineering,2009,131(6): (061101)1-9.
    [124]Chen A.W., Sparrow E.M.. Effect of exit-port geometry on the performance of a flow distribution manifold [J]. Applied Thermal Engineering,2009,29(13):2689-2692.
    [125]朱玉琴,缪斌.并联管组流动特性的数值模拟[J].西安石油大学学报,2011,26(3):94-96.
    [126]Solovitz S.A., Mainka J.. Manifold design for micro-channel cooling with uniform flow distribution [J]. Journal of Fluids Engineering,2011,133(5):(051103)1-11.
    [127]Gandhi M.S., Ganguli A.A., Joshi J.B., et al. CFD simulation for steam distribution in header and tube assemblies [J]. Chemical Engineering Research and Design,2012, 90(4):487-506.
    [128]Huang C.H., Wang C.H.. The design of uniform tube flow rates for Z-type compact parallel flow heat exchangers [J]. International Journal of Heat and Mass Transfer,2013, 57:608-622.
    [129]Wang C.C., Yang K.S., Tsai J.S., et al. Characteristics of flow distribution in compact parallel flow heat exchangers, part I Typical inlet header [J]. Applied Thermal Engineering,2011,31:3226-3234.
    [130]Wang C.C., Yang K.S., Tsai J.S., et al. Characteristics of flow distribution in compact parallel flow heat exchangers, II Modified inlet header [J]. Applied Thermal Engineering,2011,31:3235-3242.
    [131]蔡忠轩.单相流在密集型平行流热交换器的流量分布特性[J].台湾云林科技大学, 2010.
    [132]Chen I.Y., Tsai J.S., Wang C.C., et al. Liquid flow distribution in compact parallel flow heat exchangers [A]. Communication Software and Networks (ICCSN) [C]. Taiwang, 2011, pp.333-337.
    [133]Shi J.Y., Qu X.H., Qi Z.G, et al. Effect of inlet manifold structure on the performance of the heater core in the automobile air-conditioning systems [J]. Applied Thermal Engineering,2010,30(8-9):1061-1021.
    [134]Ingle S.B, Maurya R.S.. Experimental investigation of manifold induced flow maldistribution in U- and Z-tum flow configurations [J]. Applied Mechanics and Materials,2012,110-116:4677-4683.
    [135]韦晓丽,缪正清.Z型和U型集箱并联管组流动特性的实验研究[J].动力工程,2008,28(4):514-518.
    [136]Liu H., Li P.W., Lew J.V., et al. Experimental study of the flow distribution uniformity in flow distributors having novel flow channel bifurcation structures [J]. Experimental Thermal and Fluid Science,2012,37:142-153.
    [137]Liu H., Li P.W.. Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels [J]. International Journal of Heat and Fluid Flow,2013,40: 165-179
    [138]Luo L.G, Fan Z.W., Gall H.L., et al. Experimental study of constructal distributor for flow equidistribution in a mini crossflow heat exchanger [J]. Chemical Engineering and Processing:Process Intensification,2008,47(2):229-236.
    [139]王福军.计算流体动力学分析[M].北京:清华大学出版社,2012.
    [140]Launder B.E., Spalding D.B.. Lectures in mathematical models of turbulence [M]. London:Acdemic press,1972.
    [141]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [142]贝尔.多孔介质流体动力学(李竟生,陈崇希译)[M].北京:中国建筑工业出版社,1983.
    [143]Reint D.B.. Reflections on the development of the theory of porous media [J]. Applied Mechanics Reviews,2003,56(6):27-42.
    [144]Deboer R.. Development of porous-media theories-a brief historical review [J]. Transport in Porous Media,1992,9(1-2):155-164.
    [145]Patankar S.V., Spalding D.B.. A calculation procedure for the transient and steady state behavior of shell and tube heat exchangers [A]. Heat exchangers:Design and Theory Source Book [C]. New York,1974, pp.155-176.
    [146]Sha W.T., Yang C., Kao T.T.. Multidimensional numerical modeling of heat exchangers [J]. Journal of Heat Transfer,1982,104:417-427.
    [147]Theodossious V.M., Sousa A.C.M.. Flow field prediction in a model heat exchanger [J]. Computational Mechanics,1988,3(4):419-428.
    [148]Prithiviraj M., Andrews M.J.. Three dimensional numerical simulations of shell and tube heat exchangers. Part 1:foundation and fluid mechanics [J]. Numerical Heat Transfer Part A,1998,33(7):799-816.
    [149]王定标,董其伍,刘敏珊,等.纵流壳程换热器数值模拟的应用研究[J].郑州工业大学学报,1999,20(2):18-20.
    [150]黄兴华,王启杰,陆震.管壳式换热器壳程流动和传热的三维数值模拟[J].化工学报,2000,51(3):297-301.
    [151]Shi J.R., Xie M.Z., Xue Z.J., et al. Experimental and numerical studies on inclined flame evolution in packing bed [J]. International Journal of Heat and Mass Transfer, 2012,56:54-71.
    [152]Fin J., Apte S.V.. Relative performance of body fitted and fictitious domain simulations of flow through fixed packed beds of spheres [J]. International Journal of Multiphase Flow,2013,55(23-24):7063-7071.
    [153]孙志翱,毛军华,魏利岩,等.基于多孔介质模型的大型循环流化床锅炉流化特性的数值模拟[J].现代电力,2011,2:65-68.
    [154]Haque S.M.E., Rasul M.G., Khan M.M.K.. Flow distribution inside an electrostatic precipitator:Effects of uniform and variable porosity of perforated plate [A]. Mathematics and Computers in Science and Engineering [C]. Athens:World Scientific and Engineering Acad. and Soc.,2007, pp.61-66.
    [155]Hayes A.M., Khan J.A., Shaaban A.H., et al. The thermal modeling of a matrix heat exchanger using a porous medium and the thermal non-equilibrium model [J]. International Journal of Thermal Sciences,2008,47(10):1306-1315.
    [156]Wang Y.A., Brannock M., Cox S., et al. CFD simulations of membrane filtration zone in a submerged hollow fiber membrane bioreactor using a porous media approach [J]. Journal of Membrane Science,2010,363(1-2):57-66.
    [157]Stahl S., Leipert C, Nirschl H.. The cleanability of particle loaded woven filter media in solid-liquid separation [J].2013,110:196-201.
    [158]Carluccio E., Starace G. Numerical analysis of a cross-flow compact heat exchanger for vehicle application [J]. Applied thermal engineering,2005,25:1995-2003.
    [159]张毅.车辆换热器模块流动与传热问题的数值分析与试验研究[D].浙江大学, 2006.
    [160]郭丽华,覃峰,陈江平,等.板翅式机油冷却器的性能仿真与优化[J].上海交通大学学报,2006,40(2):311-315.
    [161]Fluent 6.3 User's Guide. Lebanon (NH):Fluent Inc,2006.
    [162]Kays W.M., London A.L.. Compact Heat Exchangers [M]. New York:McGraw-Hill, 1984.
    [163]陈长青,沈裕浩.低温换热器[M].北京:机械工业出版社,1993.
    [164]Zuradzman M.R., Hiroaki G., Masafumi H., et al. Gas-liquid flow distributions in multipass channels with vertical upward branches [J]. The Open Transport Phenomena Journal,2011,3:17-30.
    [165]Bejan A., Lorente S.. Design with Constructal Theory [M]. New Jersey:Wiley,2008.
    [166]Li P.W., Coopamah D., Dhar N.. Analysis and optimization of flow distribution channels for uniform flow in fuel cells [A]. Proceedings of FEDSM2008 [C]. New York, 2008, pp.915-920.
    [167]Zhu Y.H., Li Y.Z.. Three-dimensional numericalsimulation on the laminar flowand heat transfer in four basic fins of plate-fin heat exchangers [J]. Journal of Heat Transfer, 2008,130:111801(1-8).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700