用户名: 密码: 验证码:
苹果属无融合生殖相关SERK基因克隆与表达分析及遗传转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平邑甜茶(Malus hupehensis Rehd. var. pingyiensis Jiang)是蔷薇科(Rosaceae)苹果属(Malus)湖北海棠(Malus hupehensis (Pamp.) Rehd.)的一个变种,是典型的无融合生殖型三倍体植物。平邑甜茶具有高度的无融合生殖能力,是无融合生殖型矮化砧木育种的重要母本材料。由于苹果属无融合生殖植物多为兼性无融合生殖,利用这一特点课题组前期以平邑甜茶和扎矮山定子(M. baccata)为亲本进行了有性杂交,获得了四倍性皱叶矮生型杂种后代,经鉴定这些杂种后代的无融合生殖能力显著下降。无融合生殖类型的杂种后代为什么在无融合生殖率上显著下降及其下降原因是否因某种基因调控等分子机理方面的研究国内外鲜有报道。
     本研究以苹果属三倍性平邑甜茶和四倍性杂种后代株系为试材,克隆无融合生殖相关SERK基因,分析无融合生殖基因在生殖过程中的表达差异,并通过构建植物表达载体及遗传转化的研究,以期从分子水平探讨苹果属无融合生殖的分子机理。主要研究结果如下:
     1.采用同源克隆的方法分别从平邑甜茶和杂种后代33#株系基因组DNA中克隆得到4个SERK同源基因家族片段,其长度分别为705bp、671bp、504bp、740bp;705bp、500bp、639bp、675bp。它们的结构基本相同,都具有一个内含子,与其他植物的SERK同源基因具有较高的同源性。
     2.利用已公布的苹果基因组序列从平邑甜茶和杂种后代33#株系中分离出了SERK1和SERK4基因的cDNA全长序列,分别将其命名为MhSERK1、MhdSERK1和MhSERK4、MhdSERK4。其中MhSERK1、MhdSERK1的cDNA长度为1899bp、1881bp,分别编码632、626个氨基酸。比对MhSERK1和MhdSERK1的cDNA序列在696-714bp处存在18bp的缺失差异,分析这段差异可能与其无融合生殖能力有关。MhSERK4、 MhdSERK4的两条片段长度均为1836bp,同源性达到99.40%,分别编码611个氨基酸。氨基酸序列与棕榈科植物椰子同源性最高,达到90%以上;氨基酸编码蛋白激酶结构域高度保守,具有SERK类家族典型的LRR-RLKs结构特点。
     3.根据已获得的cDNA序列,设计引物扩增仅得到了MhSERK1和MhdSERK1的DNA编码区全长序列。MhSERK1和MhdSERK1DNA编码区序列全长分别为6886bp、6719bp,均有11个外显子,10个内含子,MhSERK1和MhdSERK1的内含子分布与龙眼(HM773391)和番木瓜(EF661025)等同源基因类似,都具有11个外显子和10个内含子结构。
     4.利用实时定量RT-PCR的方法分别检测了SERK基因在三倍性平邑甜茶和四倍性杂种后代33#株系不同器官、组织及子房发育不同时期的表达情况o SERK1、SERK2、 SERK3、SERK4基因主要在生殖器官中表达,而且在生殖器官中的表达平邑甜茶明显高于杂种后代33#,说明SERK基因是与无融合生殖相关的基因;在不同花期子房的表达分析SERK1在平邑甜茶花蕾期(花前5天)子房中表达量最高,其次是盛花期,盛花期后(花后5天)的子房中表达量最低;而在杂种后代中盛花期后的表达量最高,其次是花蕾期,在盛花期表达量最低。SERK1无论在平邑甜茶还是在杂种后代33#的子房中都是表达量最高,其次是在雄蕊中;而在平邑甜茶花瓣中表达量最低,在杂种后代33#的叶片、花瓣和雌蕊中表达量都很低,几乎不表达。SERK2基因在平邑甜茶开花后第2d的子房中表达量最高,大约是杂种后代33#表达量的5倍;而在杂种后代33#开花后第3d的表达量最高,大约是平邑甜茶表达量的二倍。SERK3基因在平邑甜茶开花后第2d子房中的表达量最高,大约是杂种后代33#表达量的15倍;SERK4基因在平邑甜茶开花后第1d的表达量最高,而且在平邑甜茶花后1-5d的表达量均高于杂种后代33#株系。
     5.构建了MhSERK1、MhdSERK1和MhSERK4、MhdSERK4植物表达载体,将其分别命名为pBI121-MhSERK1、pBI121-MhdSERK1和pBI121-MhSERK4、 pBI121-MhdSERK4,并成功导入农杆菌菌株EHA105。
     6.通过农杆菌侵染法,利用构建好的pBI121-MhSERK1、pBI121-MhdSERKl植物表达载体,分别以Micro-Tom番茄和烟草为试材进行遗传转化研究,共获得7株和6株烟草抗性植株,通过PCR检测验证转化成功。
Pingyi Tiancha(Malus hupehensis Rehd. var. pingyiensis Jiang), a variety of crabapple (Malus hupehensis (Pamp.) Rehd.), which belongs to the Malus of Rosaceae, is a typical apomictic triploid plant. Pingyi Tiancha has high apomictic ability and is an important female parent in the apomictic dwarf rootstock breeding. Using the character of facultative apomixis in most apomictic plants of Malus, the tetraploid leaf-wrinkled and dwarf hybrids crossed by Pingyi Tiancha and Zha'ai Shandingzi (M. baccata) were obtained in the early study.The further research results showed that in most hybrids their apomictic ability declined significantly. Till now there are very little research and reports in molecular mechanism to reveal why apomixes rate declined significantly in the apomictic hybrids and in the reasons for this decline it is caused by some genes'controlling.
     In this research, using the triploid Pingyi Tiancha and tetraploid hybrid strain33#as paint materials, we investigated the mechanism of apomixes at the molecular level through cloning the apomixis-related genes, analysing the gene expression differences in the reproductive process, constructing vector and making genetic transformation.The main results are as follows:
     1.4homologous SERK genes'fragments were obtained by homologous clone from genome DNA of Pingyi Tiancha and hybrid strain33#, and the full-length of them were705bp,671bp,504bp,740bp and705bp,500bp,639bp,675bp, respectively.The homologous gene fragments had the similar structure of an intron, which had high homology with SERK homologous genes from other plants.
     2. Using the published genome sequence in Malus, cDNA full-length sequences of SERK1and SERK4were isolated from Pingyi Tiancha and the hybrid strain33#, named MhSERK1, MhdSERK, MhSERK4and MhdSERK4. The cDNA full-length sequences of MhSERK1and MhdSERK1were1899bp and1881bp, which encoded632and626amino acids, respectively. After comparing the cDNA sequences between MhSERKl and MhdSERK1it was found that there was18bp difference at696-714bp, which might be related with apomictic ability.The length of MhSERK4and MhdSERK4were both1836bp and had a99.4%homology, encoding611amino acids, respectively. The amino acids sequence has the highest homology of more than90%with coconut, and the kinase structure area was highly conserved which had the typical LRR-RLKs structural character of SERK gene family.
     3. Based on the obtained cDNA sequence, the full-length sequences of MhSERKl and MhdSERK1in DNA coding region were obtained by PCR. The full-length sequences in DNA coding region of MhSERK1and MhdSERKl were6886bp and6719bp, both with11exons and10introns. The distribution of introns in MhSERKl and MhdSERKl were similar with that in Longan (accession number:HM773391) and Papaya (accession number: EF661025).
     4. SERKs expression was detected in different tissues, organs and flower's different developmental stages of triploid Pingyi Tiancha (3n) and tetraploid hybrid strain33#(4n) through Real-time quantitative PCR methodThe expression of SERK1, SERK1, SERK1and SERK4were mainly occurred in the reproductive tissues, and expression was higher in Pingyi Tiancha than in hybrid strain, indicating that SERK gene was related to apomixes. Expression analysis on flower's different developmental stages showed that SERK1expression was highest in the bud period of Pingyi Tiancha, then the full-blossom period, and it was lowest after flowering; while it was highest after flowering in hybrid strain which had lower expression in the bud period and the lowest expression in the full-blossom period. Expression of SERK1was the highest in the ovary of both Pingyi Tiancha and hybrid strain33#, in stamen was higher, In the petal, however, expression was the lowest in Pingyi Tiancha. Expression were occurred in the leaf, petal and pistil of hybrid strain33#, but it was nearly no expression. The highest expression of SERK2gene was occurred in the second day after flowering in Pingyi Tiancha, which was5times more than that in hybrids33#; and the highest expression was occurred in the third day after flowering in hybrid strain33#, which was2times bigger than that in Pingyi Tiancha. SERK3gene expression in Pingyi Tiancha reached the maximum in the second day after flowering and about4times larger than that in hybrid strain33#; the expression of SERK4gene was higher in1-5d in Pingyi Tiancha than in hybrid strain33#, respectively, which were inserted into agrobacterium strain EHA105successfully.
     5. Plant expression vectors of MhSERKl and MhdSERK1as well as MhSERK4and MhdSERK4were constructed, named pBI121-MhSERK1, pBI121-MhdSERKl, pBI121-MhSERK4and pBI121-MhdSERK4, and transformed the SERKl gene into tobacco successfully.
     6. Genetic transplant study was carried out based on Micro-Tom tomato and tobacco as materials by using agrobacterium infection method and constructed pBI121-MhSERKl and pBI121-MhdSERKl plant expression vectors,7and6tobacco resistant plants were obtained, and the PCR detection showed that transformation was successful.
引文
1. 陈小飞,萧浪涛,鲁旭东,刘素纯.2005.体细胞胚胎发生相关类受体蛋白激酶基因(SERK)的研究进展.植物生理学通讯,41(5):570-577.
    2. 蔡英卿,赖钟雄,陈义挺,林玉玲,李惠华,张妙霞.2011.龙眼胚性愈伤组织LEC1基因cDNA克隆以及在体胚发生过程中的表达分析.福建农林大学学报(自然科学版),40(5):494-500.
    3. 邓秀新,胡春根.2005.园艺植物生物技术.北京:高等教育出版社.
    4. 董文轩,景士西,宣景宏等.1996.苹果属植物无融合生殖特性一文献综述.园艺学报,23(4):343-348.
    5. 董绍珍,俞宏.1987.苹果属植物与无融合生殖.果树科学,4(4):27-29.
    6. 伏军.1990.无融合生殖及其在作物育种中的应用.作物研究,4(4):42-45.
    7. 高蓝,傅建熙,王建华.2000.转基因番茄研究进展.西北农业大学学报,28(3):90-93.
    8. 葛艳辉,赵俊英,崔继哲.2007.番茄遗传转化体系的建立.吉林工程技术师范学院学报(自然科学版),23(6):56-58.
    9. 韩振海.2011.苹果矮化密植栽培-理论与实践.北京:科学出版社.
    10.胡昊,李进进,王彩云.2013.反转录实时定量PCR在植物基因表达分析上的研究进展.中国农学通报,29(15):127-134.
    11.胡龙兴,王兆龙.2008.植物无融合生殖相关基因研究进展.遗传,30(2):155-163.
    12.姜鑫.2007.在甜菜M14品系中克隆SERK与BBM基因的保守片段.黑龙江大学硕士论文.
    13.康传红,韩晓云,王志伟,等.2002.利用RAPD标记鉴定甜菜无融合生殖的同一性.生物技术,(4):9-11.
    14.康杰芳,王吉之.2003.头孢霉素类抗生素在转基因烟草中作用的初步研究.西北植物学报,23(1):60-63.
    15.梁东,马锋旺,张军科,管清美,徐凌飞.2005苹果6-磷酸山梨醇脱氢酶(S6PDH)基因cDNA克隆及其植物表达载体构建.农业生物技术学报,13(4):635-636.
    16.刘丹丹.2012.平邑甜茶无融合生殖发育与遗传特性分析及相关基因的功能鉴定.山东农业大学,博士学位论文.
    17.刘阳,董文轩,张蕾,程晓丹.2006b.平邑甜茶胚囊种类与发生特性研究.果树学报,23(3):330-334.
    18.刘阳.2006a.平邑甜茶无融合生殖过程及其非整倍体后代的胚胎特性研究.沈阳:沈阳农业大学,硕士学位论文.
    19.刘月学,邹冬梅,李贺;张志宏;马跃;代红艳.2012.草莓LFY同源基因的克隆及其表达分析.园艺学报,39(5):861-868.
    20.李育农.1999.世界苹果属植物的起源演化研究新进展.果树科学,16:8-19.
    21.李平,陈放,周桂梅.1992.无融合在植物育种中的应用及细胞胚胎学研究方法.四川大学学报(自然科学版),29(2):288-293.
    22.李思建.2006.FIS基因在植物生殖中的调控作用.枣庄学院学报,23(2):85-87.
    23.李立芹.2011.根癌农杆菌介导番茄“白果强丰”遗传转化体系优化.中国农学通报,27(10):179-182.
    24.李松涛,张忠廷,王 斌,等.1995.使用新的分子标记方法(1RAPD)分析小麦抗白粉病基因Pm4a的近等基因系.遗传学报,22(2):103-108.
    25.李明才,何韶衡.2005.一种高效快速的大肠杆菌感受态细胞制备及质粒转化方法.汕头大学医学院学报,18(4):228-230.
    26.李超超.2013.草莓成花相关基因的植物表达载体构建及转化研究.沈阳农业大学,硕士学位论文
    27.李金红.2012.番茄花柄脱落相关基因LelDL和LeHAESA克隆功能验证及LeMKKs和LeMPKs的钙素调控.沈阳农业大学,博士学位论文.
    28.栗茂腾,蔡得田,黄利民,等.2002.小麦和无融合生殖披碱草杂交后代BC2F2的无融合生殖及胚胎发育过程中的异常现象研究.植物学通报,19(2):201-207.
    29.刘捍中,蒲富慎,任庆棉,刘立军.1989.无融合生殖苹果属植物的某些特性.园艺学报,16(1):1-4.
    30.刘进元.2002.分子生物学实验指导.北京:清华大学出版社,1-29
    31.林盛华,刘捍中,蒲富慎.1989.苹果属植物不同倍性的杂种后代染色体数目观察.中国果树,4:15-16.
    32.林庆光,崔百明,彭明.2007.SERK基因家族的研究进展.遗传,29(6):681-687
    33.林春晶,韦正乙,蔡勤安,侯敬尧,邢少辰.2008.几种植物转基因表达载体的构建方法.生物技术,18(5):84-87.
    34.罗婵,汤刚彬,谢体三,等.2005.感受态细胞制备与保存方法的比较研究.生物技术,15(1):52-54.
    35.罗志勇,周刚,陈湘辉,等.2001.高质量植物基因组DNA的分离.湖南医科大学学报,26(2):178-180.
    36.马三梅,王永飞,叶秀麟,赵南先,梁成邺,2002.植物无融合生殖的遗传机理和分子机理的研究进展.遗传,24(2):197-199.
    37.母锡金,蔡雪,孙德兰,时光春,朱至清.2001.被子植物的无融合生殖和它的应用前景.作物学报,27(5):591-560.
    38.孟素琴,张林杰.1991.平邑甜茶与二倍体苹果杂交F染色体数目分离及有关性状分析.果树科学,8(3):145-150.
    39.彭日荷,黄晓敏,等.2001.带内含子卡那霉素抗性基因双元载体构建及烟草转化.植物生理学报,27(1):55-61.
    40.邱立明,王艳,王瑜,代春英,马纪.2008.利用烟草高效转化功能基因体系的建立.新疆大学学报(自然科学版).25(1):23-30.
    41.强风风.2010.金花茶体胚调控及SERK基因的克隆与定量表达分析.福州:福建农林大学,学位论文.
    42.宋志红,崔红,等.2004.Ri质粒转化烟草影响因素的研究.河南农业大学学报,38(3):259-262.
    43.萨姆布鲁克,拉萨尔著.黄培堂等译.2002.分子克隆实验指南.第三版,北京:科学出版社,87-102.
    44. Schmidt, H.1977.对无融合生殖苹果砧木育种的贡献——论无融合生殖的遗传.邓家祺译,国外农学--果树,1983(3):7-11
    45.束怀瑞.1999.苹果学.北京:中国农业出版社.210-235.
    46.石雅丽,张锐,林芹,郭三堆.2012.植物体细胞胚胎发生受体类蛋白激酶的生物学功能.遗传,34(5):551-559.
    47.覃扬.2004.医学分子生物学实验教程.北京:中国协和医科大学出版社,50-92.
    48.唐晔盛,李英,朱静洁,等.2002.菌落PCR在大规模基因组测序中的应用.生物化学与生物物理进展,29(2):316-318.
    49.吴曼,王蓓,董彦,沈向,毛志泉.2010.苹果属植物无融合生殖研究进展.山东农业科学,7:24-28.
    50.王志伟,李荣田,郭德栋.2004.植物无融合生殖研究进展.中国生物工程杂志,24(6):34-7,42.
    51.王颖,商月惠,王玉霞,魏鑫.董文轩.2008.平邑甜茶与扎矮山定子杂交后代的胚胎发育特征研究.园艺学报,35(8):1093-1100.
    52.王林,李荣,牛建新,等.2007核桃AFLP银染技术体系的建立.西北农业学报,16(2)116-119.
    53.王闵霞,马欣荣,王天山,等.2006.应用与环境生物学报,12(3):427-430.
    54.王伟伟,朱长青,刘小花,陈昆松,徐昌杰.2011.番茄叶片基因组DNA快速制备技术及其在基于实时荧光定量PCR的转基因检测中的应用.遗传,33(9):1017-1022.
    55.位芳.2007.几类异质1BL/1RS小麦诱导单倍体及其细胞遗传学和胚胎学机理的研究.西北农林科技大学,硕士学位论文.
    56.夏海武,陈庆榆著.2010.园艺植物基因工程.北京:科学出版社.
    57.徐昌杰,张上隆.2002.柑橘类胡萝卜素合成关键基因研究进展.园艺学报,29:619-623.
    58.徐勇,张美勇,高丽,等.2007.核桃种间杂交新品系选育研究.山东农业科学,3:25-27.
    59.徐丽,蔡俊鹏.2004.菌落PCR方法的建立及其与常规PCR方法的比较.华南理工大学学报(自然科学版),32(5):51-55.
    60.晏惠君,黄兴奇,程在全.2006.cDNA文库构建策略及其分析研究进展.云南农业大学学报, 21(1):1-6.
    61.姚家玲.2005.龙须草无融合生殖机理研究及资源评价.华中农业大学,博士论文.
    62.张莉,毛雪,李润植.2004.种子发育相关基因的研究进展.植物学通报,21(3):288-295.
    63.张蕾,葛钧.2008.平邑甜茶多胚现象研究.安徽农学通报,14(21):61-62.
    64.张宁,王凤山.2004.DNA提取方法进展.中国海洋药物杂志,2:40-47.
    65.张美勇,徐颖.1999.果树的无融合生殖及其在育种中的应用.山东农业科学,2:33-34.
    66.张宁,王蒂.2004.农杆菌介导的烟草高效遗传转化体系研究.甘肃农业科技,9:11-13.
    67.张丽杰,王玉霞,郜亚婷,董文轩.2012.平邑甜茶基因组DNA提取方法的比较.经济林研究,30(1):114-117.
    68.邹喻萍.1994.几种濒危植物及其近缘类群总DNA的提取与鉴定.植物学报,36(7):528-533.
    69. Anna M K, Susan D J, Ross A B.2000. Apomixis is not developmentally conserved in related genetically characterized Hieracium plants of varying ploidy. Sex Plant Reproduction,12:253-266
    70. Albertini E, Barcaccia G, Porceddu A, et al.2001. Mode of reproduction is detected by Parthl and Sexl SCARmarkers in awild range of facultative apomictic Kentucky bluegrass varieties. Mol Breeding,7(4):293-300.
    71. Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F, Falcinelli M.2005. SERK and APOSTAT:Candidate genes for apomixes in Poa prateensis. Plant Physiol,138:2185-2199.
    72. Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S.2005. The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell,17(12):3337-3349.
    73. Abdul MC, Luo M, Celia M, Stuart C, Elizabeth SD, Peacock WJ.1997. Fertilization-independent seed development in Arabidopsis thaliana. PNAS,94:4223-4228.
    74. Agashe B, Prasad C K, Siddiqi I,2002. Identification and analysis of DYAD:a gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis. Development, 129:3935-3943.
    75. Asif M H, Nath P.2005. Expression of multiple forms of polygalacturonase gene during ripening in banana fruit. Plant Physiol Bioch,43:177-184.
    76. Asker S E, L Jerling.1992. Boca Raton CRS Press.49-68,81-101.
    77. Baudino S, Hansen S, Brettschneider R, Hecht VFG, Dresselhaus T, L rz H, Dumas C, Rogowsky PM.2001. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta,213(1):1-10.
    78. Bernacchia G, Primo A, Giorgetti L, Pitto L, Cella R.1998. Carrot DNA-methyltransferase is encoded by two classes of genes with differing patterns of expression. Plant J,13(3):317-329.
    79. Bhat SR, Srinivasan S.2002. Molecular and genetic analyses of transgenic plants:considerations and approaches. Plant Sci,163:673-681.
    80. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM,2002. Van Lammeren A AM, Miki BLA. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell,14:1737-1749.
    81. Braybrook SA, Stone SL, Park S, Bui AQ, Le BL, Fischer RL, Goldberg RB, Harada JJ.2006. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. PNAS,103(9):34-68,34-73.
    82. Bicknell, R.A., Koltunow, A. M.2004. Understanding apomixis:Recent advances and remaining conundrums. Plant Cell,16, S228-S245.
    83. Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI.2005. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell,17(12):3350-3361
    84. Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI.2005. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASESl and 2 are essential for tapetum development and microspore maturation. Plant Cell,17(12):3350-3361.
    85. Cheng J, Zhong YW, Liu Y, Yang JZ.1999. Cloning and sequence analysis of an amastin coding gene from Leishmania major Abdou. Chinese Med J,112:698-700.
    86. Cheng J, Zhong YW, Liu Y, Dong J, Yang JZ. Chen JM.2000. Cloning and sequence analysis of human genomic cDNA of augmenter of liver regeneration. World J Gastroenterol,6:275-277.
    87. Cao X, Springer NM, Muszynski MG, Phillips RL, Kaeppler S, Jacobsen SE.2000. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci USA, 97(9):4979-4984.
    88. Carninci P,Kvam C, Kitamura A,et al.1997. High efficiency selection of full-length cDNA by improved biotinylated cap trapper. DNA Res,4(1):61-66.
    89. Chen Lan-zhuang, Miyazaki C, Kojima A, et al.1999. Isolation and characterization of a gene expressed during early embryo sac development in apomictic guinea grass (Panicum maximum). J of Plant Physiol,154(1):55-62.
    90. Calderini O, Chang S B, Jong H, et al.2006. Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theor. Appl. Genet.112(6):1179-1191.
    91. Czapik R.2000. Apomixis in monocotyledons. In:Grasses systematics and evolution (Ed. by Jacobs S W L and Everett J). CSIRO, Melbourne,316-321.
    92. Chaudhury, A.M., Koltunow, A.M., Payne, T., Luo, M., Tucker, M.R., Dennis, E.S., Peacock, W.J. 2001. Control of early seed development. Annu. Rev. Cell Dev. Biol. (17):677-691.
    93. Dan YH, Yan H, Munyikwa T, Dong J, Zhang YL, Armstrong CL.2006. MicroTom-a high-throughput model transformation system for functional genomics. Plant Cell Rep,25(5): 432-441.
    94. Deepak SA, KottaPalli KA, Rakwal R, Oros G, Rangappa KS, Iwahashi H, Agrawal GK.2007. Real-time PCR:Revolutionizing detection and expression analysis of genes. Curr Genomics,8: 234-251.
    95. Daniel G, Olivier L, Elsa E, et al.1998. Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes. Heredity,80:33-39.
    96. Derman H.1936. Aposporic parthenogenesis in a triploid apple,Malus hupehensisJournal of the Arnold Artoretum,17:90-105.
    97. de Oliveira Santos M, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Arag o FJL.2005. Characterisation of the cacao somatic embryogenesis receptor-like kinase(SERK) gene expressed during somatic embryogenesis. Plant Sci,168(3):723-729.
    98. Espinoza F, Daurelio L D, Pessino S C, et al.2006. Genetic characterization of Paspalum notatum accessions by AFLP markers. Plant Syst. Evol.258(3-4):147-159.
    99. Emidio Albertini, Gianpiero Marconi, Lara Reale, Gianni Barcaccia, Andrea Porceddu, Francesco Ferranti, Mario Falcinelli.2005. SERK and APOSTART candidate genes for apomixis is in Poa pratensis. Plant Physiology.138 (4):2185-2199.
    100. Emidio Albertini, Gianpiero Marconi, Gianni Barcaccia, Lorenzo Raggi and Mario Falcinelli.2004. Isolation of candidate genes for apomixis in Poa pratensis L. Plant Molecular Bioligy,56:879-894
    101. Emidio A, Ibertin J, Gianpiero Marcon J, Lara Reale.2005. Gianni Barcaccia, Andrea Porceddu, Francesco Ferranti, Mario Falcinelli.34:1024-1034.
    102. Frary A, Earle E D.1996. An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Reports,16:235-240.
    103. Finnegan EJ, Dennis ES.1993. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res,21:2383-2388.
    104. Fisher K, Turner S. PXY,2007. a receptor-like kinase essentialfor maintaining polarity during plant vascular-tissue development. Curr Biol,17(12):1061-1066.
    105. Frederic B.1999. Endosperm development. Curr Opin Plant Biol,2:28-32.
    106. G6mez-G6mez L, Boiler T.2000. FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitorflagellin in Arabidopsis. Mol Cell,5(6):1003-1011.
    107. Garcia R, Asins M J, Fomer J, et al.1999. Genetic analysis of apomixis in Citrus and Ponclrus by molecular markers. Theor Appl Genet,99(3/4):511-518.
    108. Grossniklaus, U.2001a. From sexualityto apomixis:molecular and genetic approaches. See Ref, 112a,168-211.
    109. Grimanelli, D., Garcia, M., Kaszas, E., Perotti, E., Leblanc, O.2003. Heterochronic expression of sexual reproductive prosuctive programs during apomictic development in Tripsacum. Genetics, 165,1521-1531.
    110. Grimanelli D, Leblanc O, Perotti E, et al.1996. Studies on the genetic control of apomixis inTripsacum. Maize Genetics Cooperration Newsletters,70:38-39.
    111. Guitton A E, Berger F.2005. Loss of function MULTICOPY SUPPRESSOR OF IRA1 produces nonviable parthenogenetic embryos in Arabidopsis. Current Biology,15:750-754.
    112. Gou XP, He K, Yang H, Yuan T, Lin HH, Clouse SD, Li J.2010. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genomics,11(1):19.
    113. Grebe M, Gadea J, Steinmann T, Kientz M, Rahfeld J U, Salchert K, Koncz C, Jurgens G,2000. A conserved domain of the Arabidopsis GNOM protein mediates subunit interaction and cyclophilin 5 binding. Plant Cell,12:343-356.
    114. Horseh R B, Fry J E, Hoffmann N I, et al.1985. A simple and general method for transferring genes into plants. Science,227:1129-1131.
    115. Hartley J.L., Temple G.F., and Brasch M.A.2000. DNA cloning using in vitro site-specific recombination. Genome Res,10(11):1788-1795.
    116. Hecht V, Vielle-Calzada JP, Hartog MV, Ed Schmidt DL, Boutilier K, Grossniklaus U.2001. The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol,127(3):803-816.
    117. Hu H, Xiong L, Yang Y.2005. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta,222(1):107-117.
    118. He K, Gou XP, Yuan T, Lin HH, Asami T, Yoshida S, Russell SD, Li J.2007. BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol,17(13):1109-1115.
    119. Hamza S, Chupeau Y.1993. Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). Journal of Experimental Botany,44 (269):1837-1845.
    120. HechtV, Vielle-Calzada J P, HartogM Vetal.2001. The Arabidopsis somatic embryogenesis receptor kinasel gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol,127:803-816.
    121. HU L X, Wang Z L.2008. Progress on the research of apomixes related genes in plant. Hereditas, 32(2):155-163.
    122. Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann LJ, Meyerowitz EM.2004. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature,430:356-360.
    123. Ito Y, Takaya K, Kurata N.2005. Expression of SERK family receptor-like protein kinase gene in rice. Biochem Biophys Acta,1730(3):253-258.
    124. Jun Ma, Yehua He, Chenghou Wu, Heping Liu, Zhongyi Hu, Guangming Sun.2012. Cloning and Molecular Characterization of a SERK Gene Transcriptionally Induced During Somatic Embryogenesis in Ananas comosus cv. Shenwan. Plant Mol Biol Rep,30:195-203.
    125. Jinn TL, Stone JM, Walker JC.2000. HAESA, an Arabidopsisleucine-rich repeat receptor kinase, controls floral organabscission. Genes Dev,14(1):108-117.
    126. Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Zakizadeh H, Stummann BM, Lutken H, Miiller R.2010. Isolation and characterization of four somatic embryogenesisreceptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). Plant Cell Tiss Organ Cult,101(3):331-338.
    127. Koltunow A.M. and Grossniklaus U.2003. Apomixis:a developmental perspective. Annual Rev Plant Biol, (54):547-574.
    128. Kita M, Endo-Inagaki T, Moriguchi T, Omura M.2000. cDNA catalogs expressed in albedo of Citrus fruit, a comparative analysis of cDNA libraries from pulp and albedo of Satsuma mandarin (Citrus unshiu Marc.). Acta Hort,521:179-183.
    129. Koltunow A E, R A Bicknell, A M Caudhury, et al. 1995. The Plant Physiol,108:1345-1352.
    130. Kim EN, Rina RI, Ray J, et al.2003. Auxin up-regulates MtSERK1 expression in bothMedicago truncatula root-forming and embryogeniccultures. PlantPhysiol,133(1):218-230.
    131. Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T.2005. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol,46:399-406.
    132. Lotan T, Ohto MA, Yee KM, West MAL, Kwong RW, Yamagishi K.1998. LEAFY COTYLEDON1 is sufficient to in duce embryo development in vegetative cells. Cell,93:1195-1205.
    133. Li J, Wen JQ, Lease KA, Doke JT, Tax FE, Walker JC.2002. BAKl, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 110(2):213-222.
    134. LI Y N.2001. Researches of germplasm resources of Malus Mill. Beijing:China Agricultural Press, (in Chinese)
    135. Liun JY.2003. Real-time PCR technique and its applieation in quantifieation of plant nucleic acid molecules. Acta Bot Sin,45:631-637.
    136. Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, Ferrie A MR, Krochko JE.2007. Transcript profiling and identi fication of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol,144:134-154.
    137. Mercier R, Vezon D, Bullier E, Motamayor J C, Sellier A, Lefevre F, Pelletier G, Horlow C.2001. SWITCH1 (SWI1):a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes and Development,15:1859-1871.
    138. Morisset D, StebihD, CankarK, Zel J, GrudenK.2008. Alternative DNA amPliweation methods to PCR and their applieation in GMO deteetion:a review. Eur Food Res Technol,227:1287-1297
    139. McCormick S, Niedermeyer J, Fry J, et al.1986. Leaf disc transformation of cultivated tomato (L.esculentum) usingAgrobacterium tumefaciens. Plant Cell Reports,5:81-84.
    140. Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A.1997. A new model system for tomato genetics. Plant J,12(6):1465-1472.
    141. Mafra 1, Ferreira IMPLVO, Oliveira MBPP.2008. Food authentieation by PCR- based methods. Eur Food Res Technol,227:649-665.
    142. Masumi E, Yamamoto T, Kobayashi M, et al.1998. Molecular markers of apomixis in guineagrass (Panicum maximumJacq.). In utilization of transgenic plant and genome analysis in forage crops, Proceedings of an international workshop held at the national grassland research institute [M]. Nishinasuno, Tochigi, Japan,20-21.
    143. Nolan KE, Irwanto RR, Rose RJ. Auxin up-regulates MtSERKl expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol,2003,133(1):218-230.
    144. Nolan KE, Kurdyukov S, Rose RJ.2011. Characterisation of the legume SERK-NIK gene superfamily including splice variants:Implications for development and defence. BMC Plant Biol, 11(3):44.
    145. Nam KH, Li JM.2002. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 110(2):203-212.
    146. Noyes, R., Anonymous.2003. Genetic architecture of apomixis in Erigeron (Asteraceae). In Plant Genetics, Mechanisms of Genetic Variation,194,191-198.
    147. Noyes, R.D.2005. Inheritance of apomeiosis (diplospory) in fleabanes (Erigeron, Asteraceae). Heredity,94,193-198.
    148. Nogler G. A.,1984. In B. M. Johri (ed.) "Embryology of Angiosperms", Berlin:Springer-Verlag, pp.475-518.
    149. Ozias P, Roche D, Hanna W W.1998. Molecular mapping of apomixis in Pennisetum.In utilization of transgenic plant and genome analysis in forage crops, Proceedings of an international workshop held at the national grassland research institute. Nishinasuno, Tochigi, Japan,17-18.
    150. Ortiz J P A, Pessino S C, Leblanc O, et al.1997. Genetic fingerprinting for determining the mode of reproduction inPaspalum notatum, a subtropical apomictic forage grass. TheorAppl Genet,95 (5/6): 850-856.
    151. Odell J T, Nagy F, Chua N H.1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature,313 (6005):810-812.
    152. Ohara O, Dorit RL.1989. One-sided polymerase chain reaction:the amplification of cDNA. Proc Natl Sci USA,86:5673-5677.
    153. Olien W.C.1987. Apomictic crabapples and their potential for research and fruit production. Hort Science,22 (4):541-546.
    154. Pradhan S, Cummings M, Roberts RJ, Adams RL.1998. Isolation, characterization and baculovirus-mediated expression of the cDNA encoding cytosine DNA methyltransferase from Pisum sativum. Nucleic Acids Res,26(5):1214-1222.
    155. Perez-Nu ez MT, Souza R, Saenz L, Chan JL, Zu iga-Aguilar JJ, Oropeza C.2009. Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep,28(1):11-19.
    156. Rival A, Jaligot E, Beule T, Finnegan EJ.2008. Isolation and expression analysis of genes encoding MET, CMT, and DRM methyltransferases in oil palm{Elaeis guineensis Jacq.) in relation to the 'mantled' somaclonal variation. J Exp Bot,59(12):3271-3281.
    157. REN B Z,1993. Biochem istry and Clinical medeine, Changsha, Hunan Sience and Technical Press, 34 (2):1311-1315.
    158. Ravil M, Marimutul M P A, Siddiqil I.2008. Gamete formation without meiosis in Arabidopsis. Nature,451:1121-1125.
    159. Shiu SH, Bleecker AB.2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family related toanimal receptor kinases. Proc Natl Acad Sci USA,98(19):10763-10768.
    160. Santos MDO, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Aragao FJL.2005. Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci,168(3):723-729.
    161. Schmidt ED, Guzzo F, Toonen MA, de Vries SC.1997. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development,124(10): 2049-2062.
    162. Sanders P R, Winter J A, Barnason A R, et al.1987. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Res.15(4):1543-1558.
    163. Sun HJ, Uchii S, Watanabe S, Ezura H.2006. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol,47(3):426-431.
    164. Schellenbaum P, Jacques A, Maillot P, Bertsch C, Mazet F, Farine S, Walter B.2008. Characterization of VvSERK1, VvSERK1, VvSERK1 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.). Plant Cell Rep,27(12):1799-1809.
    165. Singla B, Tyagi AK, Khurana JP, Khurana P.2007. Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. Plant Mol Biol,65(5):677-692.
    166. Schmidt ED, Guzzo F, Toonen MA, de Vries SC.1997. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development,124(10): 2049-2062.
    167. Santos MM, Dubreucq B, Miquel M, Caboche M, LepiniecL.2005. LEAFY COTYLEDON1 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett,579:4666-4670.
    168. Suzuki M, Wang HH, McCarty DR.2007. Repression of the LEC1-B3 regulatory network in plant embryo development by the VAL B3 genes. Plant Physiol,143:902-911.
    169. SrivastavaV. OwDW.2001. Single-copy primary transformants of maize obtained through the cointroduction of a recombinase expressing construct. Plant Mol Biol,46:561-566.
    170. Singla B, Tyagi AK, Khurana JP, Khurana P. Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. Plant Mol Biol,2007,65(5):677-692.
    171. Schmidt E D, Guzzo F, Toonen M A, et al.1997. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development,124(10):2049-2062
    172. Shiu SH, Bleecker AB.2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA,98(19):10763-10768.
    173. Shiu SH, Bleecker AB.2003. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol,132(2):530-543.
    174. Santos MDO, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Aragao FJL. Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci,2005,168(3):723-729.
    175. Steward N, Kusano T, Sano H.2000. Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res,28(17):3250-3259.
    176. Singh M, Burson BL, Finlayson SA.2007. Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare). Plant Mol Biol,64:673-682.
    177. Sampson, D R.1969. Use of leaf colos marker gene to detect apomixes in Malus species and observations on the variability of apomictic seedling. Can. J. Plant Sci.,49:409-416.
    178. Spillane C, Curtis MD, Grossniklaus U.2004. Apomixis technology development-virgin births in farmers'fields. NatBiotechnol,22(6):687-911.
    179. Spillane C., Steimer A., Grossniklaus U.2001. Apomixis in agriculture:the quest for clonal seeds. Sex Plant Rep, (14):179-187.
    180. Shimada T, Hirabayashi T, Endo T, Fujii H, Kita M, Omura M.2005. Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERKl) from Citrus unshiu Marc. Sci Hortic,103(2):233-238.
    181. Srinivasan C, Liu ZR, Heidmann I, Darmo E, Supena J, Fukuoka H, Joosen R, Lambalk J, Gerco Angenent, Scorza R, Custers J BM, Boutilier K.2007. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta,225:341-351.
    182. Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y.1996. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell,8(4):735-746.
    183. Teerawanichpan P, Chandrasekharan MB, Jiang Y, Narangajavana J, Hall TC.2004. Characterization of two rice DNA methyltransferase genes and RNAi-mediated reactivation of a silenced transgene in rice callus. Planta,218(3):337-349.
    184. Thomas C, Meyer D, Himber C, Steinmetz A. Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem,2004,42(1): 35-42.
    185. Van Dijk, P.J., Bakx-Schotman, J.M.T.2004. Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum officinale, s.l.) is controlles by a sex-specific dominant locus. Genetics,166,483-492.
    186. Vijcerberg,K., van der Hulst, R.G.M., Lindhout, P., van Dijk, P.J.2004. A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). Theoretical and Applied Genetics,108,725-732.
    187. YU DJ.1979. China fruits taxonomy. Beijing:China Agricultural Press (in Chinese).
    188. Yang WC, Ye D, Xu J, Sundaresan V.1999. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Gene& Dev,13:2108-2117.
    189. YANG Feng, ZHANG Jing-e, YI Kai, LIU Zhi, RONG Zhi-xiang, WANG Dong-mei, YAN Zhong-ye.2010. The genetic trend of hybrid trees from the cross between Pingyi Tiancha (Malus hupehensis var. pingyiensis) and B9 (Malus cv. B9). Journal of Fruit Science,27 (3):323-327.
    190. Zhou Y, YAO J L, Kuang L, Liu C H.2005. Research advances about molecular mechanism of nonfertilization endosperm initiation. Acta Botanica Boreali-Occidentalia Sinica, (in Chinese) 25(12):2562-2568.
    191. Zhao DZ, Wang GF, Speal B, Ma H.2002. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev,16(15):2021-2031.
    192. Zhang XR.1998. Leucine-rich repeat receptor-like kinases in plants. Plant Mol Biol Rep,16:301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700