用户名: 密码: 验证码:
樟树缺铁成因及其矫治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
樟树为中亚热带常绿阔叶林的代表树种,是中国南方珍贵用材和经济树种,分布广泛,是城乡园林绿化、用材、药材和生物化工原料重要来源。樟树喜欢湿润肥沃的微酸性土壤、不耐干旱和瘠薄,而市区土壤瘠薄,污染严重,特别是在滨海地区的市区难以获得适宜的生存条件,致使黄化现象普遍而严重,从而导致巨大的经济和生态损失。本研究以樟树为供试材料,通过室内研究和实地调查,对樟树黄化成因作了分析,并提出有效的防治措施,结果如下:
     1.对位于钱塘江北岸杭州市经济技术开发区六号路两旁黄化和正常樟树叶片和土壤因子年周期变化规律进行了研究,得出黄化樟树立地土壤pH、HCO3-、磷浓度都较高,有效铁浓度和有机质含量较低,有效磷、pH和HCO3-与有效铁为拮抗作用,且拮抗性差异不大,有机质与有效铁表现为增效作用;黄化叶片磷浓度明显高于正常叶片,而叶绿素计读数(SPAD值)、活性铁、全铁、氮、钾、过氧化氢酶和过氧化物酶活性明显低于正常叶片,磷与活性铁之间表现为拮抗作用,其余营养元素与活性铁之间表现为增效作用。4个取样时期樟树黄化从轻到重顺序依次为2007-08、2007-06、2007-03和2006-10,路南比路北黄化程度要轻,表层土质差。并在此基础上对樟树施肥提出建议,为预防和治理樟树黄化提供新的依据。
     2.砂培条件下,对不同磷酸根和碳酸氢根浓度对樟树幼苗吸收铁、锰和锌的影响进行了研究,从樟树幼苗生长及对铁、锰和锌吸收等方面分析,其生长最适PO43-浓度为0.1 mmol L-1,适宜PO43-浓度为0.1 mmol L-1-1 mmol L-1,大于1mmol L-1的PO43-浓度对生长有一定的抑制作用,当浓度达到10 mmol L-1时这种抑制作用已相当明显;HCO3-浓度为10 mmol L-1时,樟树幼苗生长基本不受影响,20 mmol L-1时有一定程度的抑制作用,30 mmol L-1时这种抑制作用已相当明显。
     3.砂培条件下对樟树幼苗缺铁矫治技术进行了研究,提出樟树高效铁肥配方及其用量。从樟树幼苗生长及对铁锰锌方面分析,最佳铁肥种类是Fe2 (NH4) 2(SO4)3,其最佳施用浓度为0.2克/盆,Fe2(NH4)2(SO4)3的最佳的配料为H3BO3,其最佳施用浓度为0.5克/盆。
     4.通过对杭州市钱塘江北岸滨海地区黄化樟树使用长效复合铁肥,研究了樟树立地土壤主要理化性质和叶片主要因子变化规律及其变化规律的原因。结果表明,施长效铁肥均减少了土壤的pH值、HCO3-和有效磷,HCO3-减少的最多,有效磷次之,pH值最少,增加了土壤其余养分,增加次序为有机质>有效铁>速效钾>水解氮>有效铜>有效锌>有效锰;施长效铁肥均减少了叶片的磷浓度,增加叶片的过氧化氢酶、过氧化物酶、SPAD值、活性铁、全铁、氮和钾的浓度,增加高低顺序为活性铁>过氧化氢酶>过氧化物酶>钾>SPAD值>全铁>氮。5kg铁肥和7.5 kg铁肥两处理发挥肥效迅速,5 kg铁肥+25kg红壤和7.5 kg铁肥+25kg红壤两处理次之,5kg铁肥+50 kg红壤和7.5 kg铁肥+50 kg红壤两处理肥效发挥的最持久,在条件允许下,红壤用量越多越好。土壤的pH值、HCO3-、有效磷和叶片的磷浓度均为5 kg铁肥>7.5kg铁肥,5kg铁肥+25 kg红壤>7.5kg铁肥+25 kg红壤,5kg铁肥+50kg红壤>7.5kg铁肥+50 kg红壤,其余养分正好相反,在适宜的施肥量下,铁肥越多,效果越好。不同取样时间规律性不强,仅叶片SPAD值和活性铁,土壤有机质和水解氮、土壤有效铜和有效锌变化规律一致,多数养分在8月较高;不同处理叶片养分变化规律性不强,仅活性铁和过氧化氢酶、SPAD值和氮变化规律一致,土壤养分变化规律性较强,有机质、水解性氮、速效钾与有效铁,pH值和HCO3-变化规律均一致;叶片磷与活性铁之间表现为拮抗作用,其余营养元素与活性铁之间表现为增效作用,土壤pH、HCO3-、有效磷与有效铁之间表现为拮抗作用,其余养分与有效铁之间表现为增效作用。
     5.通过对杭州市钱塘江北岸滨海地区黄化樟树喷施不同铁肥,研究樟树叶片主要因子变化规律。结果表明,叶片的磷浓度为对照>FeCl3>FeSO4·7H2O>FeC6H5O7> FeEDTA>Fe2 (NH4) 2(SO4)3,活性铁、过氧化物酶、全铁、钾、氮、过氧化氢酶和SPAD值正好相反。各铁肥均减少了叶片的磷浓度,增加叶片其余养分和生理指标活性,增加高低顺序为活性铁>过氧化物酶>全铁>钾>氮=过氧化氢酶>SPAD值。不同取样时间养分变化规律性较强,SPAD值、过氧化氢酶、过氧化物酶、氮和钾变化规律一致,均随取样时间呈逐渐增加的趋势;不同处理养分变化规律性也较强,活性铁、全铁、SPAD值、过氧化氢酶、过氧化物酶、氮和钾变化规律一致;磷与活性铁之间表现为拮抗作用,其余养分和生理指标活性与活性铁之间表现为增效作用。
     6.对不同碳酸钙浓度施入铁肥后红壤的养分变化作了研究。结果表明,不同碳酸钙浓度各土壤pH值、水解氮、有效磷、速效钾、有效钙和有效镁均有所增加,增加次序为有效镁>有效磷>速效钾>有效钙>pH值>水解氮;减少了有机质、有效铁、有效锰、有效铜和有效锌浓度,减少次序为有效铁>有效铜>有效锌>有效锰>有机质;不同碳酸钙浓度各土壤因子规律性较强,有效铁、有效锰、有效铜与有效锌,有效磷、有效钙与有效镁,水解性氮与速效钾变化规律均一致;pH值、有效磷、速效钾、有效钙和有效镁与有效铁之间表现为拮抗作用,有机质、水解性氮、有效锰、有效铜和有效锌与有效铁之间表现为增效作用。结果还表明,结果还表明,随碳酸钙浓度增加樟树幼苗地上部和地下部铁锰锌浓度呈下降趋势;地上部、地下部和植株的鲜重干重,鲜基干基的根冠比均呈先增加后减少的趋势;地上部、地下部和植株的含水量呈先降低后增加的趋势。
Camphor-tree is a large, tall, evergreen broad-leaved tree which is a representative species in subtropical forests. It is widely distributed in southern China. It has high timber value and considered as special economic species. These trees are not only an important component of urban and rural landscape, but also a source of medicine and biochemical raw materials. Camphor-trees are adapted well to slightly acidic, moist fertile soil and intolerant of drought and infertile soil condition. But urban soil is barren and seriously polluted. So, camphor-trees in the urban areas especially coastal urban areas do not get appropriate living conditions, which results widespread severe chlorosis, leading to an enormous economic and ecological losses. Therefore, studying on reasons for chlorosis of camphor-trees may contribute to figure out remedial measueres. In this study, through laboratory research and field surveys, the reasons for chlorosis were ascertained, and effective control measures were figured out. The results were as follows:
     1) Year-cycle changes in soil and leaf nutrient factors of normal and chlorotic camphor-trees grown in calcareous soil were surveyed on both sides of the 6th road of Hangzhou economic and technological development zone located in the north shore of the Qiantang River. The results indicated that soil pH value、HCO3- and available P contents of chlorotic trees were higher than normal trees, while its available Fe and organic matter contents were lower; leaf P content of chlorotic trees were higher than normal trees, while active Fe, total Fe, N and K contents, SPAD value, peroxidase and catalase activity were lower. The results also showed that soil pH value, HCO3- and available P contents were antagonistic to effective Fe content, while organic matter content were synergy; leaf P content was antagonistic to active Fe content, while the remaining element contents and physiological index activity were synergistic. Among four sampling times, the degree of chlorosis from low to high was August in 2007> June in 2007> March in 2007> October in 2006. The results also showed that the chlorosis from south side of the road was lesser than north side, topsoil quality was worse. Under this circumstances, a new fertilizing method of camphor-trees was recommended as treatment and prevention for camphor-trees chlorosis.
     2) Effect of different phosphate and bicarbonate concentrations on growth and Fe, Mn and Zn contents of camphor-tree seedlings was studied in sand culture experiment. Through the analysis of growth and Fe, Mn and Zn contents of camphor-tree seedlings, we found that optimal phosphate concentration for the growth of the camphor-tree seedlings was 0.1 mmol L-1, while suitable phosphate concentration for growth ranged from 0.1 mmol L-1 to 1 mmol L-1, the growth that had a certain degree of inhibition was observed when phosphate concentrations exceeded 1 mmol L"1, and this inhibition was very obvious at a concentration of 10 mmol L-1. In case of bicarbonate concentration, the growth was basically unaffected at 10 mmol L-1, while it showed a certain degree of inhibition at 20 mmol L-1 and at a concentration of 30 mmol L-1 this inhibition became quite obvious.
     3) Correction technology on iron deficiency of camphor-tree seedlings was studied in sand culture experiment in order to screen for the Fe fertilizer, optimal concentration of the Fe fertilizer, material combined with the Fe fertilizer and material optimal concentration of camphor-tree seedlings. Analysis of growth and Fe, Mn and Zn contents of camphor-tree seedlings suggested that the best Fe fertilizer was ammonium ferrous sulfate and the most effective concentration of ammonium ferrous sulfate was 0.2 g in each pot. It also revealed that boric acid was the best material which was applied with ferrous ammonium sulfate and the best concentration of boric acid was 0.5 g in each pot。
     4) The main leaf and soil factors change and reasons of chlorosis of camphor-trees were studied after applying a slow-releasing compound Fe fertilizer in the coastal region located in the north shore of the Qiantang River. Results indicated that compared to the experimental control, the application of the slow-releasing compound Fe fertilizer could reduce soil pH value, HCO3- and available P contents. Reduction of HCO3- content was the highest followed by available P content and pH value was the lowest; while it increased the remaining element contents, the increment order were organic matter> effective Fe> available K>hydrolysable N>effective Cu>effective Zn>effective Mn. At the same time, leaf P content was reduced and the remaining element contents were increased, the increased order was active Fe> catalase> peroxidase> K> SPAD value> total Fe> N. Again,5 kg and 7.5 kg fertilizer treatment were exerted rapidly, followed by 5 kg fertilizer mixing 25 kg red soil treatment and 7.5 kg fertilizer mixing 25 kg treatment red soil, while 5 kg fertilizer mixing 50 kg red soil treatment and 7.5 kg fertilizer mixing 50kg red soil treatment were highly persistent. In permitting conditions, the more red soil, the better effect. The order of soil pH value, HCO3-, available P and leaf P contents were 5 kg fertilizer>7.5 kg fertilizer,5 kg fertilizer mixing 25 kg red soil>7.5 kg fertilizer mixing 25 kg red soil,5 kg fertilizer mixing 50 kg red soil>7.5 kg fertilizer mixing 50kg red soil, while the remaining element contents were on the contrary. Suitable fertilizer amount was 5-7.5 kg, at appropriate scope, and the more fertilizer, the better effect. Rule of different sampling times were not evident, only soil organic matter and hydrolysable N contents, soil effective Cu and effective Zn contents, leaf active Fe content and SPAD value were unanimous, most of the element contents were high in August. Soil rule of different treatments were stronger, organic matter, hydrolysable N, available K and effective Fe contents, pH value and HCO3- content were consistent; while leaf rule of different treatments were not evident, only active Fe content and catalase activity, SPAD value and N content were the same. The results also showed that soil pH value, HCO3- and available P contents had antagonism with active Fe content, while the remaining element contents showed synergy; and leaf P content was antagonistic to active Fe content, while the remaining element contents were synergistic.
     5) The changes of nutrient contents in the main leaf of chlorotic camphor-tree were studied after spraying Fe fertilizer in the coastal region located in the north shore of the Qiantang River. Results indicated that leaf P content was CK> FeCl3> FeSO4·7H2O> Iron citrate> FeEDTA> Ammonium ferrous sulfate, but SPAD value, peroxidase and catalase activity, active Fe, total Fe, K, N contents were on the contrary. Compared with the experimental control, all Fe fertilizers reduced leaf P content, but they increased the contents of remaining elements and activity of physiological indexes, the increased order were active Fe> peroxidase> total Fe> K >catalase= N> SPAD value. Rule of different sampling times were evident, SPAD value, catalase and peroxidase activity, N and K contents were unanimous, and it had a growing trend with the sampling time; Rule of different treatments were evident too, SPAD value, catalase and peroxidase activity, active Fe, total Fe, N and K contents were the same. The results also showed that P content was antagonistic to active Fe content, while the remaining element contents and physiological index activity were synergistic.
     6) The main soil factors were investigated after applying different calcium carbonate concentrations into the Fe fertilizer in red soil. Results indicated that the application of different calcium carbonate concentrations into the Fe fertilizer increased soil pH value, hydrolysable N, available P, readily available K, available Ca and available Mg contents, with the increased order of available Mg>available P>readily available K>available Ca>pH value> hydrolysable N; but other soil factor contents redused in the order of available Fe>available Cu>available Zn>available Mn>organic matter. Rule of soil factor contents were evident in different calcium carbonate concentrations, available Fe, available Mn, available Cu and available Zn contents, available P, available Ca and available Mg contents, readily available K and hydrolysable N contents were the same; the results also showed that pH value, available P, readily available K, available Ca and available Mg contents were antagonistic to available Fe content, while organic matter, hydrolysable N, available Mn, available Cu and available Zn contents were synergistic to available Fe content. Meanwhile, with the increase of calcium carbonate concentration, Fe, Mn and Zn contents of shoot and root of camphor-tree seedlings were reduced; fresh and dry weight of shoot, root and plant, and root shoot ratio of fresh and dry condition were enhanced first and then declined; water contents of shoot, root and plant were reduced first and then raised.
引文
1. Abadia J, Alvarez-Fernandez A, Morales F, et al. Correction of iron chlorosis by foliar sprays. Acta Horticulturae,2002,594:115-121.
    2. Alvarez-Fernandez A, Garcia-Lavina P, Fidalgo J, et al. Foliar application to control iron chlorosis in pear (Pyrus communis L.) trees. Plant and soil,2004,263:5-15.
    3. Alvarez-fernandez A, Sierra M A, Lucena J J. Reactivity of synthetic Fe chelates with soils and soil components [J]. Plant and Soil,2002a,241: 129-137.
    4. Alvarez-fernandez A. Cremonini M A, Sierra M A, et al. Nature of impurities in fertilizers containing EDDHMA/Fe3+, EDDHSA/Fe3+and EDDCHA/Fe3+chelates[J]. Journal of Agriculture Food and Chemistry, 2002b,50:284-390.
    5. Alvarez-fernandez A, Garcia-marco S, Lucena J J. Evaluation of synthetic iron(III)-chelates (EDDHA/Fe3+, EDDHMA/Fe3+and the novel EDDHSA/Fe3+) to correct iron chlorosis[J]. Journal of Europ Agronomy, 2005,22:119-130.
    6. Benitez M L, Pedrajas V M, Campillo M C, Torrent J. Iron chlorosis in olive in relation to soil properties [J]. Nutrient Cycling in Agroecosystems,2002,62:47-52.
    7. Booss A, Kolesch H, Hofner W. Chlorose-Ursachen bei Reben(vitis biniferu L.) am naturlichen standort[J]. Z. Pflanzenernahr Bodenk,1982, 145:246-260.
    8. Brennan R F. Effect of levels of take-all and phosphorus fertilizer on the dry matter and grain yield of wheat[J]. Journal of Plant Nutrition,1995, 18(5):1159-1176.
    9. Brown J C, Olsen R L. Factors related to iron uptake by dicotyledonous
    and monocotyledonous plants III Competition between root and external factors for iron[J]. Journal of Plant Nutrition,1980,2 (6):661-682.
    10. Cantera R G, Zamarreno A M, Garcia-mina J M. Characterization of commercial iron chelates and their behavior in alkaline and calcareous soil[J]. Journal of Agriculture Food and Chemistry,2002,50(26): 7609-7615.
    11. Fang Yong, Wang Lin, Xin Zhihong, et al. Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China[J]. Journal of Agriculture Food and Chemistry, 2008,56:2079-2084.
    12. Fernandez V, Rohrbach A, Ebert G. Re-greening of citrus leaves after FeCl2 4H2O leaf application. European Journal of Horticultural Science, 2003,68:93-97.
    13. Fernandez V, Winkelmann G, Ebert G. Iron supply to tobacco plants through foliar application of iron citrate and ferric dimerum acid. Physiologia Plantarum,2004,122:380-385.
    14. Goss H C. A comparison effects of the bicarbonate ion with other anions on the uptake of some radioisotopes by phaeseolus vulgaris and Horedeum vulgare plants[D]. Ph D thesis.University of California, Los Angeles,1957.
    15. Kari Y, Antti J, Reijo A. Impact of liming on utilization of 59Fe-chelates by lettuce (Lactuca sativa L.) [J]. Journal of Plant Nutrition,2006,169: 523-528.
    16. Koseoglu A T, Acikgoz V. Determination of iron chlorosis with extractable iron analysis in peach leaves[J]. Journal of Plant Nutrition, 1995,18(1):153-161.
    17. Marschner H, Romheld V, Kissel M. Localiztion of phytosierophores released and iron uptake along intact barley roots[J]. Physiologia Plantarum,1986,71:157-162.
    18. Marschner H, Treeby M, Romheld V. Role of root-induced changes in the rhizosphere for iron acquisition in higher plants[J]. Z. Pflanzenernaehr Bodenkd,1989,152:197-204.
    19. Mengel K. Iron availability in plant tissues-iron chlorosis on calcareous soils[J]. Plant Soil,1994,165:275-283.
    20. Mengel K, Breininger M T, Buhl W. Bicarbonate, the most important factor inducing iron chlorosis in vine grapes on calcareouse soil. Plant Physiol,1984,81:333-344.
    21. Peryea F J, Kammereck R. Use of minoha SPAD-502 chlorophyll meter to quantify the effectiveness of mid-summer trunk injection of iron on chlorotic peartrees [J]. Journal of Plant Nutrition,1997,20(11): 1457-1463.
    22. Rombola A D, Bruggemann W, Tagliavini M, et al. Iron source affects iron reduction and re-greening of kiwifruit (Actinidia deliciosa) leaves. Journal of Plant Nutrition,2000,23:1751-1765.
    23. Romheld V, Keamer D. Relationship between proton efflux and rhizodermal transfer cells induced by iron deficiency [J]. Z. Plazephysiol, 1983,113:78-83.
    24. Romheld V, Rschner H. Evidences for a specific uptake system for iron phytosiderophore in roots of grasses[J]. Plant Physiol,1986,80: 175-180.
    25. Tang C X, Kuo J, Longnecker N E, et al. High pH cause disintegration of the root surface in Lupinus angustifolius L[J]. Ann. Bot.,1993,71: 201-207.
    26. Tripathi B D, Tripathi A. Foliar injury and leaf difusive resistance of rice and white bean in response to SO2 and O3 singly and incombination[J]. Envionmental Pollution,1992,75:265-268.
    27. Victoria F, Victor D R, Lorena P, et al. Foliar fertilization of peach (Prunus persica (L.) Batsch) with different iron formulations:Effects on
    re-greening, iron concentration and mineral composition in treated and untreated leaf surfaces[J]. Scientia Horticulturae,2008,117:241-248.
    28. Wallace A. Effect of nitrogen fertilizer and nodulation of lime-induced chlorosis in soybeans[J]. Journal of Plant Nutrition,1982,5:363-368.
    29. Warnock W E. The iron content of some plants as influenced by conditions asssociated with lime-induced chlorosis[D]. MS thesis. Utah State University, Logan, Utah,1952.
    30.曾清华.樟树籽提油研究初报[J].武汉轻工科技,1990(1):26-28.
    31.陈超燕,刘洪剑,束庆龙,等.影响市区樟树黄化病的主要因素研究[J].林业科学研究,2008,21(5):625-629.
    32.陈翠玲,张麦生,杨雪芹,等.潮土和石灰性褐土缓冲性能研究[J].河南农业科学,2004,6:56-57.
    33.陈钢,易妍睿,周谟兵,等.植物硼营养研究进展[J].安徽农业科学,2006,34(16):4060-4066.
    34.陈华林.柑橘植物对石灰诱导缺铁黄化的抗性一改良与利用潜力[J].四川果树,1993,1:16-18.
    35.陈建南,曾惠芳,李耿,等.龙脑樟挥发油及天然冰片成分分析[J].中药材,2005,28(9):782-783.
    36.陈润政,黄上志.植物生理学[M].中山人学出版社,1998.
    37.程平,蓝裕民,黄宝祥,等.樟树籽核油的开发利用[J].江西林业科技,1998(1):26-27.
    38.程素贞,王秀功.磷水平对土壤锌铁铜有效性的影响[J].安徽农业科学,1991,50(4):346-354.
    39.崔美香,薛进军,王秀茹,等.树干高压注射铁肥矫正苹果失绿症及其机理[J].植物营养与肥料学报,2005,11(1):133-136.
    40.崔骁勇,曹一平,张福锁.氮素形态及HCO3-对豌豆铁素营养的影响[J].植物营养与肥料学报,2000,6(1):84-90.
    41.戴宝合.野生植物资源学[R].北京:农业出版社,1993.
    42.邓丹雯.樟树籽油的提取[J].2003,食品科技,14-15.
    43.邓建玲,陆昭君.上海地区樟树黄化病的发生与防治[J].江西科学,2008,(26)5:732-734.
    44.地里拜尔·苏里坦,艾尼瓦尔·买买提,蔺娟.土壤中铁锰的形态分布及其有效性研究[J].生态学杂志,2006,25(2):155-160.
    45.董必慧,蔡学礼.樟树播种育苗技术研究[J].安徽农业科学,2008,36(6):2313-2314.
    46.俄胜哲,袁继超,丁志勇,等.氮磷钾肥对稻米铁、锌、铜、锰、镁、钙含量和产量的影响[J].中国水稻科学,2005,19(5):434-440.
    47.顾军,张丽君,周小康.土施锌铁肥、硼砂对葡萄生长结果及果实品质的影响[J].河北林业科技,2004,5:124.
    48.光远,彭招兰,郭德选,等.龙脑樟矮林作业技术和效益分析[J].林业科技开发,2000,14(6):30-31.
    49.郭兆元主编.陕西土壤[M].西安:科学出版社,1992.
    50.韩振海,沈隽.果树的缺铁失绿症-文献述评[J].园艺学报,1991,18(4):323-328.
    51.何念祖译.植物的铁营养[J].土壤学进展,1986,14(1):19-23.
    52.胡定宇.石灰性土壤果树失绿病及其发生原因[J].土壤,1985,17(1):20-24.
    53.户刈义次主编.作物生理讲座[M].上海:上海科技出版社,1965,56-59.
    54.华芳,李利敏,吴良欢,等.磷酸根和碳酸氢根浓度对樟树幼苗铁吸收的影响[J].浙江农业学报,2009,21(2):173-177.
    55.黄台明,薛进军,方中斌.铁肥及其不同施用方法对缺铁失绿芒果叶片铁素含量的影响[J].热带农业科技,2007,30(2):17-18;23.
    56.黄增奎.浙江柑桔园土壤微量元素及硼铁肥的应用[J].土壤肥料,1992,1:43-45.
    57.江明艳,陈其兵,潘远志.我国樟科植物的园林应用前景西南园艺[J].西南园艺,2004,32(3):16-18;23.
    58.蒋万峰,崔永峰,张卫东,等.无核白葡萄叶内矿质元素含量年生长
    季内的变化[J].西北农林科技大学学报(自然科学版),2005,33(8):91-94.
    59.康志雄,金民赞,朱志明,等.叶用银杏营养元素和叶绿素含量年周期变化研究[J].林业科技通讯,1999,1:18-19.
    60.李保国,徐爱春,齐国辉,等.红富士苹果叶片主要矿质元素含量变化规律研究[J].河北林果研究,2006,21(3):296-299.
    61.李传道,周仲铭,鞠国柱.森林病理学通论[M].中国林业出版社,1985.
    62.李金柱,吴礼树,杨玉华.硼在植物细胞壁上营养机理的研究进展[J].中国油料作物学报,2004,26(4):96-100.
    63.李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,164-165.
    64.李利敏,吴良欢,马国瑞.樟树失绿黄化症的研究[J].土壤通报,2009,40(1):158-161.
    65.李利敏,吴良欢,马国瑞.樟树黄化土壤因子年周期变化规律的研究[J].华北农学报,2009,24(增刊):221-225.
    66.李利敏,吴良欢,马国瑞.樟树正常叶片与黄化叶片营养状况周年变化[J].园艺学报,2010,37(2):277-282.
    67.李利敏,吴良欢,马国瑞.喷施铁肥对黄化樟树叶片营养状况的影响[J].福建林学院学报,2009,29(4):368-373.
    68.李利敏,吴良欢,马国瑞.一种长效复合铁肥矫治樟树缺铁黄化的评价[J].天津大学学报,(已接受)
    69.李利敏,吴良欢,马国瑞.一种长效复合铁肥对黄化樟树立地土壤障碍因子的矫治效果[J].天津大学学报,(已接受).
    70.李元,王焕校,吴玉树.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-154.
    71.李泽相.樟树的采种、育苗及造林[J].云南林业,2006,5:16.
    72.林敏娟,徐继忠,陈海江,等.黄金梨叶片、果实中矿质元素含量的周年变化动态[J].河北农业大学学报,2005,28(6):23-27.
    73.刘宝华,张爱军,田顺华,等.樟树的临床应用[J].中医外治杂志,2005,14(1):39.
    74.刘广平.板栗叶片中氮、磷、钾年周期变化规律研究[J].辽宁林业科技,2004,5:20-21.
    75.刘广平,盖素芬.银杏叶片中氮、磷、钾的年动态变化规律初探[J].2001,林业科技通讯,3:27-28.
    76.刘鹏.钼、硼对大豆品质和产量影响的营养和生理机制研究[D].杭州:浙江大学博士生学位论文,2000.
    77.刘庆华,刘庆超,王奎玲,等.几种无土栽培代用基质缓冲性研究初报[J].中国农学通报,2008.24(2):272-275.
    78.刘文菊,张西科,尹君,等.磷胁迫对水稻基因型根系形态及吸收铁锰铜锌的影响[J].生态环境,2003,12(1):49-51.
    79.刘芸,钟章成,龙云,等.a-NAA及U-VB辐射对栝楼幼苗生长及蒸腾作用的影响[J].植物生态学报,2003,27(4):454-458.
    80.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社.1999,12-13;109-110;180-181;207-208;313-314.
    81.罗登林.中碳链甘油三脂及其应用[J].武汉工业学院学报,2002,2:4-7.
    82.马国瑞,石伟勇,李春九,等.土壤条件引起柑桔和樟树缺铁黄化症的研究[J].浙江农业学报,1991,3(2):79-85.
    83.马玉芳,王洪起,宋红梅,等.红富士苹果幼树根系分布及年生长特性研究[J].中国果树,1993,3:1-4.
    84.毛富春,赵伯善.长效铁肥在果树上的应用效果[J].土壤通报,1996,27(6):280-282.
    85.牛义,张盛林.植物硼素营养研究的现状及展望[J].中国农学通报,2003,19(2):101-104.
    86.牛西午,丁玉川,徐强,等.营养液不同磷浓度对柠条苗期植株生长发育的影响[J].西北植物学报,2003,23(1):622-627.
    87.彭镇华.樟树[J].中国城市林业,2003,1(2):41-42.
    88.秦荣大,郑永章(日).土壤标准分析测定法委员会编.土壤分析标准法[M].北京:北京大学出版社,1988,89-90.
    89.任丽轩.石灰性土壤水分状况对花生铁营养的影响及其机理[D].中国农业大学硕士论文,2001,54-63.
    90.山东农学院编.植物生理学实验指导[M].济南:山东科技出版社,1980,109.
    91.施益华,刘鹏.硼在植物体内生理功能研究进展[J].亚热带植物科学,2002,31(2):64-69.
    92.宋艳波,杨佩芳,李六林,等.枣树年周期中叶片矿质元素含量动态变化及其相关性研究[J].山西农业大学学报,2006,26(4):340-341;390.
    93.孙凌峰,周传军,彭春耘.樟树枝叶精油的提取和分析研究[J].江西化工,1995,4:11-16.
    94.仝月澳,杨儒林,杨树忱,等.琢鹿果树场苹果、梨失绿诱因的初步探讨[J].中国果树.1987,4:1-6.
    95.王翠玲,周卫东,杨晓明,等.石灰质土壤上不同葡萄品种叶片的铁含量与其黄化的关系[J].园艺学报,2007,34(4):829-834.
    96.王冬良,王炳举,侯建平,等.生长调节剂对大叶白蜡幼苗生长的影响[J].石河子大学学报(自然科学版),2002,6(2):115-117.
    97.王坚.樟科樟属植物樟的化学成分与组织培养研究[J].江西中医学院学报,2004,16(2):69-70.
    98.王丽伟,周广柱.油松氮磷钾营养年变化规律的研究[J].安徽农业科学,2007,35(9):2597,2648.
    99.汪景彦主编.苹果优质生产入门到精通[M].北京:中国农业出版社,2001,127-132;250-251.
    100.王晶英,敖红,张杰,等.植物生理生化实验技术与原理[M].哈尔滨:东北林业大学出版社,2003,52-53.
    101.王娟,韩登武,任岗,等.SPAD值与棉花叶绿素和含氮量关系的研究[J].新疆农业科学,2006,43(3):167-170.
    102.王青天,林敏慧,陈小宝.樟树种子育苗技术[J].林业实用技术,2006,8:26-27.
    103.王序桂,李淑仪,刘士哲,等.无核黄皮叶片中铁锌营养的年周期变化及诊断[J].北方园艺,2008,9:19-21.
    104.魏雪芳,陈杰.冰片提高生物利用度的研究进展[J].中草药,2005,36(7):1106-1108.
    105.吴桂生.冰片中毒的救治[J].中华腹部疾病杂志,2006,6(7):517-518.
    106.吴会乐.香樟育苗造林技术[J].中国林副特产,2004,73(6):27-28.
    107.吴良欢,李利敏,马国瑞.一种提高微量元素肥效的施肥方法及应用.中国,200810163514.3[P].,2009(进入实质审查).
    108.吴良欢,李利敏,马国瑞.一种用于治理樟树黄化病的长效复合铁肥及其使用方法.中国,200910095591.4,[P].2010.1
    109.武小钢,杨秀云,赵姣.叶面喷施铁制剂对高羊茅养分因子的影响(简报)[J].草地学报,2007,15(1):97-99.
    110.项殿芳,宋金耀,吴学仁,等.萘乙酸处理葡萄苗木根系的效应[J].河北职业技术师范学院学报,2003,17(2):1-3.
    111.肖艳,陈清,王敬国,等.滴灌施肥对土壤铁、磷有效性及番茄生长的影响[J].中国农业科学,2004,37(9):1322-1327.
    112.徐 斌,陈超燕,束庆龙.樟树黄化病与木材构造特征关系的研究[J].安徽农业大学学报,2008,35(3):359-361.
    113.徐德福,黎成厚.氧化铁和有机质对土壤有机无机复合状况的影响[J].贵州大学学报(农业与生物科学版),2002,21(6):397-403.
    114.徐会善,陈乾坤.自制铁肥解决石灰性土壤苹果园缺铁问题[J].西北园艺,2006,2:55.
    115.许志刚.普通植物病理学[M].中国农业出版社,1997.
    116.杨亦扬,马立锋,石元值,等.叶绿素仪(SPAD)在茶树氮素营养诊断中的适用性研究[J].茶叶科学,2008,28(4):301-308.
    117.杨旺.森林病理学[M].中国林业出版社,1996.
    118.姚小华,任华东,王开良,等.樟树苗期萌芽特性遗传变异初步研究[J].江西农业大学学报,2001,23(4):537-543.
    119.叶优良,劳秀荣,李燕婷,等.果树缺铁黄化叶片矿质元素含量变化的研究[J].落叶果树,1997,(4):1-4.
    120.余存祖.黄土区土壤铁的含量及其有效性[J].陕西农业科学,1982,6:26-28.
    121.张福锁,郑毅.石灰性土壤上花生缺铁黄化与土壤水分和重碳酸盐的关系[J].中国农业科技导报,2002,2(3):73-76.
    122.张国防,陈存及.福建樟树叶油的化学成分及其含量分析植物资源与环境学报[J].2006,15(4):69-70.
    123.张进.叶面喷施高效铁肥及田间养分综合管理对水稻籽粒铁富集的调控研究[D].杭州:浙江大学博士生学位论文,2007.
    124.张璐萍,张素芳.萘乙酸(NAA)在彩色马蹄莲种球培育中的作用[J].中国种业,2007,3:31-32.
    125.张森,潘立忠,王小兵,等.库尔勒香梨叶内主要矿质元素年生长动态变化的研究[J].安徽农学通报,2007,13(8):41-43.
    126.张淑英,鲍明运,张凌.施用控释肥对棉田氮素移动规律影响的初步研究[J].安徽农业科学,2008,36(3):1137-1139,1188.
    127.张朝红,王跃进,李琰.缺铁黄化对酥梨叶片营养元素含量和光合特性的影响[J].西北林学院学报,2002,17(4):9-11.
    128.赵春香,张桂珍,黄赵卢.吲哚丁酸对不同枝龄火龙果插条扦插繁殖的影响[J].中国南方果树,2006,35(2):35-37.
    129.赵守训.冰片(龙脑)-世界最早应用的天然有机成分药物[J].亚太传统医药,2006,2:24-25.
    130.郑毅,张福锁.石灰性土壤上花生缺铁黄化与土壤水分和重碳酸盐的关系[J].中国农业科技导报,2000,2(3):73-76.
    131.邹春琴.提高玉米和菜豆铁营养效率的途径及其机理[D].博士论文,北京农业大学,1995.
    132.周凤珏,许鸿源,施力军,等.吲哚丁酸对木薯生长及一些生理特性 的影响[J].中国农学通报,2004,20(4):153-155.
    133.周厚基,仝月澳.苹果树缺铁失绿研究的进展Ⅰ生态因子对缺铁失绿的影响[J].中国农业科学.1987,20(3):23-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700