用户名: 密码: 验证码:
星地激光通信中非柯尔莫哥洛夫湍流影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星激光通信技术是卫星通信领域的高新技术,与传统的卫星微波通信相比,具有传输数据率高、通信容量大、抗干扰性能强、信息安全性高、设备体积小、重量轻、功耗低、不需要无线电频率使用许可等诸多优点。自二十世纪六十年代以来,美国、欧洲各国以及日本等发达国家甚至包括一些发展中国家都先后投入了大量的人力和物力进行卫星激光通信技术的研究和开发。经过半个多世纪的努力,卫星激光通信技术的研究已经进入到了空间实验阶段,并已成功地进行了多次星地和星间激光通信实验,正在向商业化和应用化方向发展。
     在卫星激光通信的诸多链路中,星地链路作为其主干链路尤其受到关注并得到广泛研究。对于星地激光通信而言,由于地球大气层是其通信信道的一部分,因此大气湍流会对激光通信链路的建立和保持及其性能产生影响。进行大气湍流对星地激光通信影响的研究,对卫星激光通信的系统设计、在轨试验以及实际应用都具有重要的指导意义。
     迄今为止,大气湍流对星地激光通信影响的研究主要考虑的是柯尔莫哥洛夫(Kolmogorov)湍流,因为这一模型不仅简单,而且在边界层有大量的实验支持。然而,大气湍流的实测却表明对流层的大气湍流是Kolmogorov湍流,平流层(包括对流顶层)的大气湍流却是另外一种湍流存在,即非柯尔莫哥洛夫(Non-Kolmogorov)湍流;同时理论研究的结果也表明Kolmogorov湍流不是大气中唯一可能的湍流模型,Non-Kolmogorov湍流在大气中是存在的。因此,对于星地链路而言,将整个链路的大气湍流都作Kolmogorov湍流处理显然已经不符合星地链路大气湍流的实际情况。那么,根据星地链路大气湍流的实际情况研究大气湍流效应,进而研究大气湍流对星地激光通信的影响就成为了一个需要解决的科学问题。
     本论文基于大气湍流效应和大气湍流对星地激光通信影响的研究现状,主要进行了以下两个方面的研究工作:
     1. Non-Kolmogorov大气湍流效应研究基于Non-Kolmogorov湍流折射率起伏功率谱密度,对Non-Kolmogorov大气湍流效应进行了理论研究,主要包括以下几方面的内容:
     1)建立了Non-Kolmogorov大气湍流光束漂移方差的理论模型,利用几何光学近似方法,给出了弱起伏条件下准直光束和聚焦光束光束漂移方差的解析表达式。
     2)建立了弱起伏条件下Non-Kolmogorov大气湍流到达角起伏的理论模型,包括三方面的内容:
     (1)研究了Non-Kolmogorov大气湍流的到达角起伏,利用谱分析法,给出了弱起伏条件下平面波和球面波到达角起伏方差的解析表达式;
     (2)研究了Non-Kolmogorov大气湍流到达角起伏的外尺度效应,利用谱分析法,给出了弱起伏条件下平面波和球面波包含内外尺度的到达角起伏方差的解析表达式,这些表达式具有更大的适用范围;
     (3)研究了Non-Kolmogorov大气湍流到达角起伏的时间变化特征,给出了弱起伏条件下平面波和球面波到达角起伏时间频率谱的解析表达式。
     3)建立了弱起伏条件下Non-Kolmogorov大气湍流振幅(光强)起伏的理论模型,包括两个方面的内容:
     (1)研究了Non-Kolmogorov大气湍流高斯光束的振幅起伏,给出了弱起伏条件下高斯光束对数振幅方差的解析表达式;并在此解析表达式基础上,针对不同的光束类型,给出了准直光束、聚焦光束和会聚光束对数振幅方差的解析表达式。
     (2)研究了Non-Kolmogorov大气湍流光强起伏的时间变化特征,给出了弱起伏条件下平面波和球面波光强起伏时间频率谱的解析表达式。
     2. Non-Kolmogorov大气湍流对星地激光通信影响研究建立了星地激光通信的联合大气湍流光波传输理论模型,利用一个星地链路联合大气湍流模型,研究了对流层Kolmogorov湍流和平流层Non-Kolmogorov湍流对卫星激光通信的联合影响,对上行链路和下行链路的长期光束扩展、闪烁指数以及误码率等进行了分析。
     本论文的研究工作是关于大气湍流效应及其对星地激光通信影响的应用基础研究。基于星地链路大气湍流的实际情况,通过理论分析和数值仿真方法研究了大气湍流对星地激光通信的影响,为星地激光通信系统的设计提供依据。本论文的研究成果不仅进一步充实了大气湍流光波传输理论,而且对卫星激光通信技术的发展具有重要的指导意义,必将推动星地激光通信技术的发展。
Satellite laser communication is a new and advanced technology of satellite communication, which has some potential advantages, including higher data rates, larger communication capability, better anti-disturbance, low probability of intercept, less volume, less mass, lower power consumption, no restrictions for frequency use, and so on. Owing to these advantages, since 1960s, some developed countries, such as America, many member countries in Europe, Japan, etc., and some developing countries have begun to investigate and develop the technology of satellite laser communication. By persisting work for half of a century, spatial experiments of inter-satellite and ground-satellite laser communications have successfully performed. And now, based on the achievements of the space experiments, these countries are preparing to promote this technology to practical and commercial applications.
     Satellite-to-ground link is a primary one for satellite communication network. Therefore satellite-ground laser communication has been widely and deeply researched. Since the atmosphere is one part of its commnication channel for satellite-to-ground laser communication, atmospheric turbulence must give an effect on the performance of its systems and the establishment and stability of the links. It is significant to investigate the atmospheric turbulent effects and their influence on satellite laser communication for the design of satellite laser communication systems, experiments on the track, and practical applications.
     To date, most studies on the atmospheric turbulent effects and their influence on satellite laser communciation systems are concerned with the Kolmogorov turbulence, because this model is very simple and has been confirmed in the boundary layer by a bulk of experiments. However, the measurements for atmospheric turbulce have shown that the atmospheric turbulence in the troposphere is the Kolmogorov turbulence, while the atmospheric turbulence in the stratosphere (including the tropopause) is another one, namely non-Kolmogorov turbulence. At the same time, the theoretical investigations have also shown that the Kolmogorov turbulence is not the only possible turbulent model in the atmosphere, where Non-Kolmogorov turbulence exists. Therefore, it does not accord with the practical situation of turbulence in the satellite-ground link to consider the turbulenc in the whole link as the Kolmogorov turbulence. Naturally, it becomes a scientific problem solved urgently to investigate the atmospheric turbulent effects and their influence on satellite laser communication based on the practical situation of the atmospheric turbulence in the satellite-ground link.
     In this dissertation, according to the research status of the atmospheric turbulent effects and their influence on satellite laser communication, non-Kolmogorov turbulent effects and the influence of practical turbulence in the satellite-ground link on satellite laser communication are systematically studied, which includes the following aspects:
     1. Theoretical research on Non-Kolmogorov atmospheric turbulent effect Based on a Non-Kolmogorov turbulent refractive-index fluctuations power spectrum density, the influence of non-Kolmogorov turbulence on optical wave is studied, which includes the following three aspects:
     1) Established the theoretical model for the variance of beam wander of laser beam propagating in non-Kolmogorov turbulence. Using geometric optics approximation, the variances of beam wander for collimated and convergent beams in the weak-fluctuation regime have been derived and the analytical expressions have been obtained.
     2) Established the theoretical model of angle-of-arrival fluctuations for optical wave propagating in the weak non-Kolmogorov turbulence, which includes the following three aspects:
     (1) Using the spectrum analytical mothed, the variances of angle-of-arrival fluctuations for plane and spherical waves propagating in non-Kolmogorov turbulence have been investigated and the analytical expressions have been obtained.
     (2) Using the spectrum analytical mothed, the influence of outer scale of non-Kolmogorov turbulence on angle-of-arrival fluctuations for plane and spherical waves propagating in non-Kolmogorov turbulence have been investigated and the analytical expressions containing the inner and outer scales of non-Kolmogorov turbulence have been obtained.
     (3) The temporal characteristics of angle-of-arrival fluctuation for plane and spherical waves propagating in non-Kolmogorov turbulence have been investigated. The temporal frequency spectra for plane and spherical waves have been derived and the analytical expressions have been obtained.
     3) Established the theoretical model for amplitude or irradiance fluctuations for optical wave propagating in the weak non-Kolmogorov turbulence, which includes the following two aspects:
     (1) The log-amplitude variance for a Gaussian-beam wave propagating in non-Kolmogorov turbulence are derived and the analytic expressions have been obtained. Then, for the special beam form, for instance, a collimated beam, a convergent beam, and a divergent beam, more tractable analytic expressions have been obtained respectively.
     (2) The temporal characteristics of irradiance fluctuations for plane and spherical wave propagating in non-Kolmogorov turbulence has been studied. The temporal frequency spectra have been derived and the analytic expressions have been obtained.
     2. Research on the influence of Non-Kolmogorov turbulence on satellite laser communications for satellite-ground links
     The theoretical model for optical wave propagation in combined atmospheric turbulence for ground-satellite laser communication is established.
     Using a combined atmospheric turbulent model for the refractive-index fluctuations, the combined influences of the Kolmogorov turbulence in the troposphere and non-Kolmogorov turbulence in the stratosphere on satellite laser communication are studied, and the long-term beam spread, scintillation index, and error bit rate for the uplink and downlink channels are analyzed respectively.
     In this dissertation, our works are a basic applicable investigation concerned with the influence of atmospheric turbulence on satellite laser communication. By theoretical analyses and numerical simulations, the influence of atmospheric turbulence on satellite based on the practical situations of atmospheric turbulence in the satellite-ground link is studied to provide the foundation of satellite laser communication system design. Therefore, the results of this dissertation will not only develop and enrich the theory of optical wave propagation in the atmospheric turbulence but also contribute the development of satellite-ground laser communication.
引文
1 R. G. Marshalek, G. S. Mecherle, P. R. Jordan. System-Level Comparison of Optical and RF Technologies for Space-to-Space and Space-to-Ground Communication Links. Proc. SPIE. 1996, 2699: 134~145
    2 M. Toyoshima, W. R. Leeb, H. Kunimori. Comparison of Microwave and Light Wave Communication Systems in Space Application. Proc. SPIE. 2005, 5296: 1~12
    3 K. E. Wilson, J. Kovalik, A. Biswas, W. Roberts. Development of Laser Beam Transmission Strategies for Future Ground-to-Space Optical Communications. Proc. of SPIE. 2007, 6551: 61892I-1~61892I-11
    4 G. Baister, T. Dreischer, E. Fischer. OPTEL Family of Optical Terminals for Space Based and Airborne Platform Communications Links. Proc. of SPIE. 2005, 5986: 59860Z-1~59860Z-12
    5 C. C. Chen, H. Hemmati1, A. Biswas, G. Ortiz, W. Farr, N. Pedreiro. Simplified Lasercom System Architecture Using a Disturbance-Free Tlatform. Proc. of SPIE. 2006, 6105: 610505-1~610505-10
    6马晶,潘锋,谭立英.星地上行激光链路中最佳光束参数的研究.强激光与粒子束. 2006, 18(8): 1233~1237
    7 M. Toyoshima, F. Fidler, M. Pfennigbauer. W. R Leeb. Two-dimensional Optical Beam Deflector Operated by Wavelength Tuning. Opt. Exp.. 2006, 14(9): 4092~4100
    8 D. Bushuev, S. ArNon. Analysis of the Performance of a Wireless Optical Multi-input to Multi-output Communication System. J. Opt. Sco. Am. A. 2006, 23(7): 1722~1730
    9 R. Lange, B. Smutny, B. Wandernoth. 142 km, 5.625 Gbps Free Space Optical Link Based on Homodyne BPSK Modulation. Proc. of SPIE. 2006, 6105: 61050A-1~61050A-8
    10 M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, K. Shiratama. Ground-to-OICETS Laser Communication Experiment. Proc. of SPIE. 2006, 6304: 63040B-1~63040B-8
    11 M. Gabay, S. ArNon. Quantum Key Distribution by a Free-Space MIMO System. Journal of Lightwave Technology. 2006, 24(8): 3114~3117
    12 D. Kedar, S. ArNon. Non-line-of-sight Optical Wireless Sensor Network Operating in Multiscattering Channel. Appl. Opt.. 2006, 45 (33): 8454~8461
    13 R. Lange, B. Smutny. Homodyne BPSK-Based Optical Inter-Satellite Communication Links. Proc. of SPIE. 2007, 6457:645703-1~645703-9
    14 Y. Chen, J. Charles, H. Hemmati, A. Biswas. Infrared Earth Tracking for Deep-Space Optical Communications: Feasibility Study Based on Laboratory Emulator. Proc. of SPIE. 2007, 6457: 64570A-1~64570A-9
    15 T. Jono, Y. Takayama, N. Kura, K. Ohinata, Y. Koyama, K. Shiratama, Z. Sodnik, B. Demelenne, A. Bird, K. Aria. OICETS On-Orbit Laser Communication Experiments. Proc. of SPIE. 2006, 6105: 610503-1~610503-11
    16 L. C. Andrews, R. L. Philips. Laser Beam Propagation through Random Media. SPIE-The International Society for Optical Engineering, 1998: 223~263 35~35216~218 156~169 125~130 36~36 25~28 78~92 198~201
    17 M. S. Belen’kii, S. J. Karis, J. M. Brown, R. Q. Fugate. Experimental Study of the Effect of Non-Kolmogorov Stratospheric Turbulence on Star Image Motion. Proc. of SPIE. 1997, 3126: 113~123
    18 D. T. Kyrazis, J. Wissler, D. B. Keating, A. J. Preble, K. P. Bishop. Measurement of Optical Turbulence in the Upper Troposphere and Lower Stratosphere. Proc. Of SPIE. 1994, 2110: 43~55
    19 G. Wang. A New Random-phase-screen Time Series Simulation Algorithm for Dynamically Atmospheric Turbulence Wave-front Generator. Proc. Of SPIE. 2006, 6027: 602716-1~602716-12
    20 A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, Y. Shtemler. Lidar Study of Aerosol Turbulence Characteristicss in the Troposphere: Kolmogorov and Non-Kolmogorov Turbulence. Atmospheric Research. 2008, 88: 66~77
    21 M. S. Belen’kii, E. Cuellar, K. A. Hughes, V. A. Rye. Experimental Study of Spatial Structure of Turbulence at Maui Space Surceillance Site (MSSS). Proc. Of SPIE. 2006, 6304: 63040U-1~63040U-12
    22 G. K. Batchelor. Small-scale Variation of Convected Quantities Like Temperature in Turbulent Fluid. Part I. General Discussion and the Case of Small Conductivity. J. Fluid Mech.. 1959, 5: 113~133
    23 E. Golbraikh, N. S. Kopeika. Behavior fo Structure Function of Refraction Coefficient in Different Turbulent Fields. Appl. Opt.. 2004, 43: 6151~6156
    24 S. S. Moiseev, I. G. Chkhetiani. Helical Scaling in Turbulence. JETP. 1996, 83:
    192~198
    25 T. Elperin, N. Kleeorin, I. Rogachevskii. Isotropic and Anisotropic Spectra of Passive Scalar Fluctuations in Turbulent Fluid Flow. Phys. Rev. E. 1996, 53: 3431~3441
    26 R. R. Beland. Some Aspects of Propagation through Weak Isotropic Non-Kolmogorov Atmospheric Turbulence. Proc. of IEEE. 1995, 2375: 1111~1126
    27杨玉强.波前畸变对星间激光通信链路性能的影响研究.哈尔滨工业大学. 2009: 4~4
    28 L. M. Wasiczko, C. I. Moore, H. R. Burris, M. R. Suite, M. F. Stell, W. S. Rabinovich. Characterization of the Marine Atmosphere for Free Space Optical Communication. Opt. Eng.. 2006, 6215: 621502-1~621502-9
    29 M. R. Suite, H. R. Burris, C. I. Moore, M. F. Stell, L. Wasiczko, W. Freeman, W. S. Rabinovich, G. C. Gilbreath, W. J. Scharpf. Packet Testing in Free-Space Optical Communication Links over Water. Proc. of SPIE. 2006, 6215: 621505-1~589202-8
    30 M. R. García-Talavera,á. Alonso, S. Chueca, J. J. Fuensalida Z. Sodnik, V. Cessa, A. B. Comerón, A. Rodríguez, V. F. Dios, J. A. Rubio. Ground to Space Optical Communication Characterization. Proc. of SPIE. 2005, 5892: 589202-1~589202-9
    31 E. Sadika, M. Philippea. Present Status and Future Needs of Free-space Optical Interconnects. Materials Science in Semiconductor Processing. 2000, 3: 433~435
    32 N. Namazi, R. Burris, G. C. Gilbreath. Analytical Approach to the Calculation of Probability of Bit Error and Optimum Thresholds in Free-Space Optical Communication. Opt. Eng.. 2007, 46(2): 025007-1~025007-6
    33 M. W. Haney, M. P. Christensen, P. Milojkovic, M. J. McFadden. Optomechanical Design and Implementation of the FAST-Net Smart Pixel-based Free-space Optical Interconnection Prototype. Advances in Electronic Packaging. 2001, 3: 1651~1657
    34 H. Yuksel, C. C. Davis. Aperture Averaging for Studies of Atmospheric Turbulenceand Optimization of Free Space Optical Communication Links. Proc. of SPIE. 2005, 5892: 58920P-1~58920P-11
    35 A. K. Majumdar, J. C. Ricklin. Effects of the Atmospheric Channel on Free-Space Laser Communications. Proc. of SPIE. 2005, 5892: 58920K-1~58920K-7
    36 E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher, B. Riley. Description of STRV-2 Lasercom Flight Hardware. Proc. of SPIE. 1997, 2990: 38~49
    37 H. Hemmati, N. A. Page. Preliminary Opto-mechanical Design for the X-2000 Transceiver. Proc. of SPIE. 1999, 3615: 185~191
    38 J. R. Lesh, R. DePaula. Overview of NASA R&D in Optical Communications. Proc. of SPIE. 1995, 2381: 4~11
    39 K. E. Wilson, J. R. Lesh. An Overview of the Galileo Optical Experiment (COPEX). TDA Progress Report. 1993, 42(114): 192~204
    40 E. Wilson, J. R. Lesh. Overview of the Ground-to-Orbit Lasercom Demonstration (GOLD). Proc. of SPIE. 1997, 2990: 23~30
    41 H. Hemmati. Overview of Laser Communications Research at JPL. Proc. of SPIE. 2001, 4273: 190~193
    42 F. I. Khatri, D. M. Boroson, D. V. Mruphy, J. Sharma. Link Aalysis of Mars-Earth Optical Communications System. Proc. of SPIE. 2004, 5338: 143~150
    43 E. G. Butte, W. D. Nations, D. D. Grybos. Transition the Transformational Communication Architecture Using Commercial Satellite Systems. AIAA. 2004: 3127~3137
    44 E. Korevaar, R. J. Hofmeister, J. Schuster, C. Chow-Miller, P. Aahikari, H. Hakakha, D. Cuthbert, R. Ruigrok. Design of Satellite Terminal for Ballistic Missile Defense Organization (BMDO) Lasercom Technology Demonstration. Proc. of SPIE. 1995, 2381: 60~71
    45 I. I. Kim, B. Riley, N. M. Wong, M. Mitchell, W. Brown, H. Hakakha, P. Adhikari, E. J. Korcvaar. Lessons Darned from the STRV-2 Satellite-to-Ground Lasercom Experiment. Proc. of SPIE. 2001, 4272: 1~15
    46 E. Korevaar, J. Schuster, H. Hakakha, R. Stieger, P. Adhikari, B. Riley, C. Moursund, J. Koontz, A. Lath, M. Barclay. Design of Ground Terminal for STRV-2 Satellite-to-Ground Lasercom Experiment. Proc. of SPIE. 1998, 3266: 153~164
    47 C. C. Chen, J. R. Lesh. Overview of the Optical Communication Demonstator. Proc. of SPIE. 1994, 2123: 85~95
    48 J. Sandusky, M. Jeganathan, G. Ortiz, A. Biswas, S. Lee, G. Parker, B. Liu, D. Johnson, J. Lesh. Overview of the Preliminary Design of the Optical Communication Demonstration and High-rate Link Facility. Proc. of SPIE. 1999, 3615: 185~191
    49 M. Jeganathan, A. Portillo, C. Racho, S. Lee,D. Erickson, J. DePew, S. Monacos, A. Biswas. Lessons Learnt from the Optical Communications Demonstrator (OCD). Proc. of SPIE. 1999, 3615: 23~30
    50 A. Biaswa, N. Page, J. Neal, D. Zhu, M. Wright, G. G. Ortiz, W. H. Farr, H. Hemmati. Airborne Optical Communications Demonstrator Design and Pre-flight Test Results. Proc. of SPIE. 2005, 5712: 205~216
    51 A. Biswas, M. W. Wright, B. Sanii, N. A. Page. 45 Km Horizontal Path Optical Link Demonstrations. Proc. of SPIE. 2001, 4727: 60~71
    52 G. G. Ortiz, M. Jeganathan, J. V. Sandusky, H. Hemmati. Design of a 2.5 Gbps Optical Transmitter for the International Space Station. Proc. of SPIE. 1999, 3615: 179~184
    53 J. V. Sandusky, J. R. Lesh. Planning for a Long-term Optical Demonstration from the International Space Station. Proc. of SPIE. 1998, 3266: 128~134
    54于思源,马晶,谭立英.自由空间激光通信技术发展趋势分析.无线光通信. 2004, 12: 47~50
    55 D. M. Boroson, A. Biswas, B. L. Edwards. MLCD: Overview of NASA’s Mars Laser Communications Demonstration System. Proc. of SPIE. 2004, 5388: 16~28
    56 G. Oppenhuser, M. Witting, A. Popescu. The European SILEX Project and Other Advanced Concepts for Optical Space Communications. Proc. of SPIE. 1991, 1522: 2~13
    57 J. L. Vanhove, C. Nldeke. In-Orbit Demonstration of Optical IOL/ISL—the Silex Project. Intern. J. Satellite Communications. 1988, 6: 119~126
    58 G. Oppenhuser, M. Witting. The European SILEX Project: Concept, Performance Status and Planning. Proc. of SPIE. 1990, 1218: 27~37
    59 B. Laurent, G. Planche. Silex Overview after Flight Terminals Campaign. Proc. of SPIE. 1997, 2990: 10~22
    60 M. Arnaud, A. Barumchercyk, E. Sein. An Experimental Optical Link Between an Earth Remote Sensing Satellite Spot-4, and a European Data Relay Satellite. Intern. J. Satellite Communications. 1988, 6: 127~140
    61 B. Laurent, O. Duchmann. The SILEX Project: The First European Optical Intersatellite Link Experiment. Proc. of SPIE. 1991, 1417: 2~12
    62 T. T. Nielsen, J. C. Guillen. SILEX: The First European Optical Communication Terminal in Orbit. Bulletin. 1998, 9: 1~3
    63 Z. Sodnik, H. Lutz, B. Furch, R. Meyer. Optical Satellite Communications in Europe. Proc. of SPIE. 2010, 7587: 758705-1~758705-9
    64 T. T. Nielsen, G. Oppenhuser. In Orbit Test Result of an Operational Intersatellite Link Between ARTEMIS and SPOT–4, SILEX. Proc. of SPIE. 2002, 4635: 1~15
    65 A. Alonso, M. Reyes, Z. Sodnik. Performance of Satellite-to-Ground Communications Link between ARTEMIS and the Optical Ground Station. Proc. of SPIE. 2004, 5572: 372~383
    66 F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Mever, R. Czichy. 5.6 Gbps Optical Intersatellite Communication Link. Proc. of SPIE. 2009, 7199: 719906-1~719906-8
    67 R. Fields, C. Lunde, R. Wong, J. Wicker, D. Kozlowski, J. Jordan, B. Hansen, G. Muehlnikel, W. Scheel, U. Sterr, R. Kahle, R. Meyer. NFIRE-to-TerraSAR-X Laser Communication Results: Satellite Pointing, Disturbances, and Other Attributes Consistent With Successful Performance. Proc. of SPIE. 2009, 7330: 73300Q-1 ~73300Q-15
    68 A. T. Nakamori. Present and Future of Optical Intersatellite Communication Research at the National Space Development Agency of Japan (NASDA). Proc. of SPIE. 1994, 2123: 2~13
    69 T. Aruga, K. Araki, R. Hayashi, T. Iwabuchi, M. takahashi, S. Nakamura. Earth-to-Geosynchronous Satellite Laser Beam Transmission. Appl. Opt.. 1985, 24: 53~56
    70 Y. Furuhama. Present Status of Optical ISL Studies in Japan. Proc. of SPIE. 1987, 810: 141~149
    71 T. Aruga, K. Araki, T. Igarashi, F. Imai, Y. Yamamoto, H. Sakagami.Earth-to-Space Laser Beam Transmission for Spacecraft Altitude Measurement. Appl. Opt.. 1984, 23: 143~147
    72 M. Toyoshima, M. Toyoda, H. Takami, K. Araki, M. Isogai, Y. Suzuki. Ground System Development for the ETS-VI LCE Laser Communications Experiment. Proc. of SPIE. 1993, 1866: 21~29
    73 M. Shikatani, S. Yoshikado, Y. Arimoto, Y. Suzuki, Y. Takahashi, T. Aruga. Optical Intersatellite Link Experiment Between the Earth Station and ETS-VI. Proc. of SPIE. 1990, 1218: 2~12
    74 K. Nakagawa, A. Yamamoto, Y. Suzuki. OICETS Optical Link Communications Experiment in Space. Proc. of SPIE. 1996, 2886: 172~180
    75 A. Yamamoto, T. Hori. Japanese First Optical Inter-Orbit Communications Engineering Test Satellite (OICETS). Proc. of SPIE. 1994, 2210: 30~37
    76 K. E. Wilson. An Overview of the GOLD Experiment between the ETS-VI Satellite and the Table Mountain Facility. TDA Progress Report 42-124. 1996, 8~18 K.
    77 K. E. Wilson, J. R. Lesh, K. Araki. Preliminary Results of the Ground/Orbiter Lasercomm Demonstration Experiment between Table Mountain and the ETS-VI Satellite. Proc. Of SPIE, 1997, 2699:121~132
    78 Araki, Y. Arimoto, M. Shikatani. Performance Evaluation of Laser Communication Equipment onboard the ETS-VI Satellite. Proc. of SPIE. 1996, 2699: 52~59
    79 Toyoda, M. Toyoshima, T. Tarhashi. Ground to ETS-VI Narrow Laser Beam Transmission. Proc. of SPIE. 1996, 2699: 71~80
    80 K. Nakagawa, A. Yamamoto. Preliminary Design of Laser Utilizing Communication Experiment (LUCE) Installed on Optical Inter-Orbit Communications Engineering Test Satellite (OICETS). Proc. Of SPIE. 1995, 2381:14~25
    81 M. Toyoshima, S. Yamakawa, T. Yamawaki. Ground–to–Satellite Optical Link between Japanese Laser Communications Terminal and European Geostationary Satellite ARTEMIS. Proc. Of SPIE. 2004, 5338: 1~15
    82 T. Jono, Y. Takayama, K. Ohinata, N. Kura, Y. Koyama, K. Aria, K. Shiratama, Z. Sodnik, A. Bird, B. Demelenne. Demonstrations of ARTEMIS-OICETS Inter-Satellite Laser Communications. AIAA. 2006: 5461~5471
    83 N. Perlot, M. Knapek, D. Giggenbach, J. Horwath, M. Brechtelsbauer, Y. Takayama, T. Jono. Results of the Optical Downlink Experiment KIODO from OICETS Satellite to Optical Ground Station Oberpfaffenhofen (OGS-OP). Proc. of SPIE. 2007, 6457: 645704-1~645704-8
    84 M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. kunimori, T. Jono, Y. takayama, N. Kura. Ground-to-OICETS Laser Communication Experiments. Proc. of SPIE. 2006, 6304: 63040B-1~63040B-8
    85 M. Toyoshima, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, K. Arai. Laser Beam Propagation in Ground-to-OICETS Laser Communication Experiments. Proc. of SPIE. 2007, 6551: 65510A-1~65510A-12
    86 Y. Koyama, E. Morikawa, K. Shiratama. Optical Terminal for NeLS In-orbit Demonstration. Proc. of SPIE. 2004, 5338: 29~36
    87 Y. Koyama, E. Morikawa, H. Kunimori. Components Development for NeLS Optical Terminal. Proc. of SPIE. 2005, 5712: 217~224
    88 P. F. Szajowski, G. Nykolak, J. J. Auborn, H. M. Presbyh, G. E. Tourgee, D. Romain. Key Elements of High-Speed WDM Terrestrial Free-Space Optical Communications Systems. Proc. of SPIE. 1996, 3932: 2-14
    89 N. P. Garaymovich, V. N. Grigoriev, A. P. Huppenen, M. A. Sadovnikov, V. D. Shargorodsky, V. V. Sumerin. Free-Space Laser Communication Systems- Internationally and in Russia. Proc. of SPIE. 2001, 4354: 197-213
    90胡渝,刘华.空间激光通信技术及其发展.电子科技大学学报. 1998, 27(05): 453~461
    91李晓峰,胡渝.空-地激光通信链路总体设计思路及重要概念研究.应用光学. 2005, 25(6): 57~62
    92马晶,韩琦琦,谭立英,于思源.卫星平台振动对星间激光链路的影响和解决方案.激光技术. 2005, 29(3): 228~232
    93马晶,韩琦琦,谭立英.卫星光通信技术发展及其影响因素分析.光通信技术. 2004, 10: 45~47
    94周磊,刘鹏,于晓惠.基于DSP的空间光通信的精跟踪数字伺服系统的设计.长春理工大学学报. 2007, 30(4): 19~22
    95刘立人.卫星光通信I:链路与终端技术.中国激光. 2007, 34(1): 1~18
    96 A. S. Monin, A. M. Yaglom. Statistical Fliud Mechanics. MIT Press, 1975: 1~315
    97 U. Frisch. Turbulence. Cambridge Universtiy Press, 1995: 1~356
    98 V. I. Tatarskii. Wave Propagation in a Turbulent Medium. McGraw-Hill, 1961:
    1~358
    99饶瑞中.光在湍流大气中的传播.安徽科学技术出版社, 2005: 59~59 8~8 7~7
    121~121
    100 A. Zilberman, E. Golbraikh, N. S. Kopeika. Lidar Studies of Aerosols and Non-Kolmogorov Turbulence in the Mediterranean Troposphere. Proc. of IEEE. 2005, 5987: 598702-1~598702-12
    101 B. E. Stribling, B. M. Welsh. M. C. Roggemann. Optical Propagation in Non-Kolmogorov Atmospheric Turbulence. Proc. of IEEE. 1995, 2471: 181~196
    102 G. D. Boreman. C. Dainty. Zernike Expansion for Non-Kolmogorov Turbulence. J Opt Soc Am. A. 1996, 13: 517~522
    103 C. Rao, W. Jiang, N. Ling. Spatial and Temporal Characterization of Phase Fluctuations in Non-Kolmogorov Atmospheric Turbulence. J. of Modern Optics. 2000, 47(6): 1111-1126
    104 L. Zunino, D. G. Perez, M. Garavaglia. A Fractional Brownian Motion Approach to Turbulent Wave-front Phase Modeling. Proc. of SPIE. 2004, 5743: 175~177
    105 I. Toselli, L. C. Andrews, R. L. Phillips, V. Ferreroa. Angle-of-Arrival Fluctuations for Free Space Laser Beam Propagation through Non-Kolmogorov Turbulence. Proc. of SPIE. 2007, 6551: 65510E-1~65510E-12
    106 K. Kiesaleh, T. Y. Yan. A Stastical Model for Evaluating GOPEX Uplink Performance. California: Jet Propulsion Laboratory. Progress Report 42-111. 1992: 325~332
    107 M. Jeganathan, K. E. Wilson, J. R. Lesh. Preliminary Analysis of Fluctuations in the Received Uplink-Beacon-Power Data Obtained From the GOLD Experiments. California: Jet Propulsion Laboratory. Progress Report 42-15. 2002: 1~16
    108 R. K. Tyson. Principles of Adaptive Optics. Academic Press, 1998: 125~128
    109 R. J. Sasiela. Electromagnetic Wave Propagation in Turbulence. Evaluation and Application of Mellin Transforms. Springer-Verlag, 1994: 68~73
    110 M. Reyesa, A. Comerónb, A. Alonso, A. Rodriguez, J. A. Rubiob, V. F. Dios, S. Chuecaa, Z. Sodnikc. Ground to Satellite Bidirectional Laser Links for Validation ofAtmospheric Turbulence Model. Proc. of SPIE. 2004, 5160: 44~55
    111 M. Reyes, S. Chueca, A. Alonso, T. Viera, Z. Sodnik. Analysis of the Preliminary Optical Links between ARTEMIS and the Optical Ground Station. Proc. of SPIE. 2002, 4821: 33~43
    112 K. Ozawa, N. Koga, N. Sugimoto. Laser Transmitter/Receiver System for Earth-Satellite-Earth Long-Path Absortion Measurements of Atmospheric Trace Species Using the Retroreflector in Space. Opt Eng.. 1997, 36(12): 3235~3241
    113陈根祥,秦玉文,赵玉成,等.光通信技术与应用.电子工业出版社, 1998: 36~39
    114 J. Wang, M. K. Joseph, Y. L. Kam. Minimization of Acquisition Time in Short-Range Free-Space Optical Communication. Appl Opt. 2007, 41(36): 7592~7602
    115 S. Lee. Pointing Accuracy Improvement Using Model-Based Noise Reduction Method. Proc. of SPIE. 2002, 4635: 65~71
    116 S. Lee, J. W. Alexander, M. Jeganathan. Pointing and Tracking Subsystem Design for Optical Communications Link between the Iinternational Space Station and Ground. Proc. of SPIE. 2000, 3932: 150~157
    117 S. Lee, G. G. Ortiz. Atmosphere Tolerant Acquisition, Tracking and Pointing Subsystem. Proc. of SPIE. 2003, 4975:36~44
    118 M. Jeganathan, K. E. Wilson, J. R. Lesh. Preliminary Analysis of Fluctuations in the Received Uplink-Beacon-Power Data Obtained From the GOLD Experiments. California: Jet Propulsion Laboratory. Progress Report 42-124.1996, 20~32
    119高宠,马晶,谭立英,于思源,潘锋.大气光通信中大气闪烁时间平滑效应研究.光学学报. 2006, 6: 481~487
    120马晶,高宠,谭立英,于思源.星地光通信中PAT链路的衰落冗余.光学精密工程. 2007, 15: 307~314
    121 J. D. Shelton. Turbulence-induced Scitillation on Gaussian-beam Waves: Theoretical Predictions and Observations from a Laser-Illuminated Satellite. J. Opt. Soc. Am. A. 1995, 12(10): 2172~2178
    122 W. B. Miller, J. C. Ricklin, L. C. Andrews. Effects of the Refractive Index Sepectral Model on the Irradiance Variance of a Gaussian Beam. J. Opt. Soc. Am. A. 1994, 11: 2719~2726
    123 J. C. Ricklin, F. M. Davidson. Atmospheric Optical Communication with a Gaussian Schell Beam. J. Opt. Am. A. 2003, 20(5): 856~866
    124 S. F. Clifford. Temperal-Frequecy Spectra for a Spherical Wave Propagating through Atmospheric Turbulence. J. Opt. Sco. Am. A. 1971, 61: 1285~1292
    125饶瑞中,王世鹏,刘春晓.激光在湍流大气中的光强起伏与光斑统计特征描述.量子电子学. 1998, 18: 155~163
    126 K. Kiasaleh. On the Probability Density Function of Signal Intensity in Free-space Optical Communications Systems Impaired by Pointing Jitter and Turbulence. Opt. Eng.. 1994, 33(11): 3748~3754
    127 V. V. Nikulin, R. Khandekar. Performance of Laser Communication Uplinks and Downlinks in the Presence of Pointing Errors and Atmospheric Distortions. Proc. of SPIE. 2005, 37~45
    128潘锋,马晶,谭立英,于思源.星地下行孔径接收闪烁频谱的理论研究.强激光与粒子束. 2006,18(8): 1253~1256
    129潘锋,马晶,谭立英.下行传输孔径接收光强起伏统计特性的实验研究.中国激光. 2006,33(10): 1371~1374
    130马晶,潘锋,谭立英.星地上行激光链路中最佳光束参数的研究.强激光与粒子束. 2006,18(8):1233~1237
    131张逸新,迟泽英.光波在大气中的传输与成像.国防工业出版社, 1997: 15~37 56~68 78~85 118~120 157~159
    132 B. V. Momlia, A. M. Yaglom. Statistical Fluid Mechanics. MIT Press, 1978: 18~20
    133 I. Toselli, L. C. Andrews, R. L. Phillips, V. Ferrero. Free Space Optical System Performance for Laser Beam Propagation through Non-Kolmogorov Turbulence. Proc. of SPIE. 2007, 6457: 64570T-1~64570T-11
    134 F. Raddier. The Effext of Atmospheric Turbulence in Optical Astronomy. In: E. Wolf(Ed). Progress in Optics. Elsevier, 1981: 119~125
    135 R. Conan, J. Borgnino, A. Ziad, F. Martin. Analytical Solution for the Decorrelation Time of the Angle of Arrival of a Wave Front Corrugated by Atmospheric Turbulence. J. Opt. Sco. Am. A. 2000, 17:1807~1818
    136 C. Ho, A. Wheelon. Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-band Downlink, (Jet Propulsion Laboratory, California, 2004: 112~118
    137 P. Hickson. Wave-Front Curvature Sensing from a Single Defocused Image. J. Opt. Soc. Am. 1994, 11: 1667~1673
    138 D. M. Winker. Effect of a Finite Outer Scale on the Zernike Decomposition of Atmospheric Optical Turbulence. J. Opt. Soc. Am. A. 1991, 11: 1568~1574
    139高宠,马晶,谭立英.光束在强湍流区中传播的到达角起伏.强激光与粒子束. 2006, 18(6): 891~894
    140 A. Ishimaru. Wave Propagation and Scattering in Random Media. Academic Press, 1978: 24~29
    141 W. L. Wolf, G. J. Zissis. The Infrared Handbook. Office of Naval Research, 1978:58~68
    142 L. C. Andrews, W. B. Miller, J. C. Ricklin. Geometrical Representation of Gaussian Beams Propagating through Complex Paraxial Optical Systems. Appl. Opt.. 1993, 32: 5918~5929
    143 F. G. Smith. The Infrared & Electro-Optical Systems Handbook. SPIE Optical Engineering Press, 1993: 8~8
    144 F. Dalaudier, M. Crochet, C. Sidi. Direct Comparision Between in situ and Radar Measurements of Temperature Fluctuations Spectra: A Puzzling Result. Radio. Sci.. 1989, 24: 311~324
    145 E. M. Dewan. Simulated Modelling of Internal Gravity Wave Spectra. Geophys. Res. Lett.. 1991, 18: 1473~1476
    146 A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, V. G. Titov, Spectra of Temperature Variations in the Stratosphere as Indicated by Satellite-borne Observation of the Twinkling of Stars. Izv. Atmos. Ocean Phys.. 1990, 26: 1~7
    147 A. S. Gurvich, A. I. Kon. Aspect Sensitivity of Radar Returns from Anisotropic Turbulent Irregularities. J. Electromag. Waves Appl.. 1993, 7: 1343~1353
    148 A. S. Gurvich, M. S. Belen’kii. Influence of Stratospheric Turbulence on Infrared Imaging. J. Opt. Soc. Am. A. 1995, 12: 2517-2522
    149 M. S. Belen’kii. Effect of the Stratosphere on Star Image Motion. Opt. Lett.. 1995,20(12): 1359~1361
    150 P. A. Lightsey, I. Anspach, P. Sydney. Observations of Uplink and Retroreflected Scintillation in the Relay Mirror Experiment. Proc. of SPIE. 1991, 1482: 209~222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700