用户名: 密码: 验证码:
有机热载体炉积碳检测技术及安全评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:从国家质量监督检验检疫总局近五年的特种设备事故情况通报可知,尽管每年的万台设备事故率有所下降,但是在锅炉台数有所减少的情况下锅炉事故例数仍高居不下。对事故通报原因进一步分析得知:中小工业锅炉中有机热载体炉的火灾事故一直高发。
     为解决有机热载体炉积碳和火灾事故,本论文依托质检公益性行业科研专项(201210080)“有机热载体炉安全评定及积碳在线检测关键技术研究”和质检总局科技计划类项目(2013QK212)“导热油炉基于FLUENT的流场数学建模和仿真研究”这两个国家质检总局项目,在系统而全面地检索及深入分析以前的学者已经取得系列研究成果的基础上,采取理论分析、试验模拟仿真与实际检测应用三者相结合的研究方法,针对有机热载体炉积碳检测、介质FLUENT流场分布和安全评价三方面进行了深入研究,取得的主要创新性成果如下:
     1.统计分析了国内近十年有机热载体炉火灾事故以及有机热载体炉积碳检测控制技术的相关论文,阐述了有机热载体炉火灾事故的主要形成原因,并指出有机热载体炉积碳层是导致有机热载体炉火灾的关键因素。
     2.根据有机热载体介质的物理化学性质和有机热载体炉系统的特殊性,分析了有机热载体积碳形成机理和有机热载体炉运行机理,并提出一种基于超声导波的积碳层厚度检测方法。
     3.设计组装了一套有机热载体炉积碳检测系统,试验研究了超声导波的截止频率、跃迁频率和群速度这3个表征参数与积碳层厚度变化的关系。结果表明:可用超声导波的群速度与积碳层厚度变化的单调性规律来检测积碳层的厚度,并通过空管中的群速度频散曲线的拟合试验进一步论证该检测方法的可行性。
     4.为识别积碳检测中超声导波的模态类别,故利用时频分析对炉管中多个模态进行比较分析,并结合时频分析的主要能量分布图与数值模拟的频散曲线中L(0,2)模态走势的拟合,推断出的主要波形模态为L(0,2)模态,通过时差法计算群速度和实验群速度的的相对误差仅为1.88%-3.48%。
     5.通过模拟附着物超声导波积碳检测试验得到:信号为5周期,频率为500kHz,峰峰值为200mV,激励出的L(0,2)模态波的群速度检测盲区为探头布置间距小于350mm,有机热载体炉管中积碳层超声导波检测探头布置最佳检测距离为40cm。从信号的信噪比、时域和频域特征验证了检测的最佳周期为5周期;可用环氧树脂添加碳氢化合物和模拟积碳层,并成功激励出了L(0,2)模态。当探头间距40cm,检测周期取5周期时,用试验论证了L(0,2)模态在积碳管中的群速度较空管中的群速度减小7.65%,进一步论证了可用空管和积碳管群速度的变化关系来检测有机热载体炉管道中的积碳层。
     6.将人机工程学原理运用到有机热载体炉运行风险评价中,得出运行中人机环境指标的权重分别为:1.830、1.293、1.749,比较得出入和环境这两个指标比有机热载体炉设备本体的权重大0.5左右。这表明有机热载体炉运行风险需要更多关注人员素质和环境管理。然后通过国内外有机热载体炉火灾事故统计调查,运用鱼刺因果分析法定性地分析了事故原因,再结合事故树分析和事件树分析方法,找到引发火灾事故的基本因素、关键因素(如:有机热载体泄漏)及其重要度和关键概率度。
     7.运用FLUENT对盘管式有机热载体炉的盘管不同流速和不同积碳层厚度情况下进行模拟研究并发现:当无积碳层时,盘管内有机热载体流速分布靠管壁两侧的有机热载体流速较慢,尤其是辐射管壁侧更为明显;有机热载体管内流速从管壁往管子中心逐渐增大,辐射段因为有辐射热侧的紊流层比保温侧的紊流层区域更大;靠近辐射管壁,层流与紊流交界处,有机热载体介质流速接近最大。当入口流速为1.0m/s时,随着导热油流速的降低,有机热载体处于劣化变质状态局部流动随着管径和流速的变化而呈现一定规律的变化,碳层越薄越有利于流场的均匀和液膜温度不超温。
     最后,在基于有机热载体炉积碳检测、安全评价和FLUENT流场模拟这三者综合构建的基础上,提出了有机热载体炉风险控制的管理模式和有机热载体炉安全立法的建议。
Abstract:According to special equipment accident circumstance bulletin made by AQSIQ (Administration of Quality Supervision, Inspection and Quarantine) in recent five years, the number of boiler accidents still stay high in the case of less boilers than before even though the rate of annual accident in per million devices was declined. From the further analysis of reason of accidents, we can learn that:In small and medium industrial boilers, fire accidents of organic heat transfer heater occurred frequently. To solve the problem of carbon deposition in organic heat transfer heater and fire accidents, this paper relies on two projects:special fund for quality supervision research in the public interest(201210080)-Organic heat transfer heater safety assessment and research on the key technology of carbon content on-line detection, and Quality inspection administration of science and technology plan project (2013QK212)-Organic heat transfer heater based on Modeling and Simulation of flow field of FLUENT, on basis of Systematic retrieval and in-depth analysis of previous research achievements, writer adopts research measure that combines theoretical analyses with practical application, and has a deep discussion which aims at carbon deposition in organic heat transfer heater, flow field distribution of medium FLUENT and safety assessment. The study includes following mainly innovative achievements:
     1. Based on the statistics and analysis of fire accidents of organic heat transfer heater in the past ten years in China and the relevant papers about detecting and controlling technology of carbon deposition in organic heat transfer heater, paper expounds main cause of fire accidents of organic heat transfer heater and points out that the key factor is carbon deposition in organic heat transfer heater.
     2. According to physicochemical property of the medium of organic heat transfer and the particularity of organic heat transfer heater, paper analyses formation mechanism of carbon deposition in organic heat transfer heater as well as operation mechanism of organic heat transfer heater, and proposes a detection method to measure the thickness of carbon deposition layer which based on ultrasonic guided waves.
     3. The writer designed and assembled a detecting system of carbon deposition in organic heat transfer heater. It tested cutoff frequency, transition frequency and group velocity of ultrasonic guided waves and the relationship between these three characterization parameters and variation of thickness of carbon deposition layer. Result indicates that:It is feasible to use group velocity of ultrasonic guided waves and monotonicity law of the variation in thickness of carbon deposition layer to detect thickness of carbon deposition layer, and feasibility of this detecting way can be further demonstrated by fitting test of frequency dispersion curve of group velocity through blank pipe.
     4. In order to identify the modal type of ultrasonic guided waves in detecting system of carbon deposition, paper used time-frequency analysis method to do the comparative analysis of multiple modals in tube, and combined with fitting of the main energy scatter gram by the time-frequency analysis and the trend of Modal L (0,2) in frequency dispersion curve of numerical simulation to deduce modal of main wave mode is Modal L (0,2). The relative error between group velocity and testing group velocity by time-difference method is only from1.88%to3.48%.
     5.According to the detecting test of the simulate attachment of the carbon deposition of ultrasonic guided wave, paper finds out that:the detecting blindness of group velocity of Modal L (0,2), which is drove by the situation that the signal is5period, the frequency rate is500kHz and the peak is200mV, is that the arrangement distance of probe should be less than350mm, and the best detecting arrangement distance of the detecting probe of the ultrasonic guided waves of carbon deposition layer in organic heat transfer heater's furnace tube is40cm. The SNR (Signal to Noise Ratio), time domain and the characteristics in frequency domain of the signal prove that the best period of detection is5periods; it can use epoxy resin to add hydrocarbon and to simulate carbon deposition layer, and it successfully drive the Modal L (0,2). When the distance of probe is 40cm and the detecting period takes5periods, paper use test to prove that group velocity of the Modal L (0,2) in carbon deposition pipe is less about7.65%than group velocity in the blank pipe, and this conclusion proves further that we could use changing relationship of group velocity in blank pipe and in carbon deposition pipe to detect carbon deposition layer in tube.
     6. The paper utilized the theory of ergonomics to the risk assessment of operation of organic heat transfer heater, and the paper got the conclusion that the weight of index of man-machine environment during the operation are:1.830,1.293and1.749, and by the comparison, paper finds out that the index of man and environment is0.5bigger than the weight of organic heat transfer heater itself. This result shows that the risk operation of organic heat transfer heater should put more attention to the people ware and environment management. Besides, from the statistics and the survey of fire accidents of organic heat transfer heater at home and abroad, the writer uses fishbone causal method analysis reason of accidents qualitatively, and finds out essential factor, the key factor (for example:the leak of organic heat transfer) with its importance and the key probabilistic by using the method of accident tree analysis and event tree analysis.
     7.The writer used FLUENT to do the simulate study of the coiled tube type of organic heat transfer heater with different flow velocities and different thickness of carbon deposition layer and finds out that:when there is no carbon deposition layer, the distribution of the flow velocity of organic heat transfer heater in the two side of tube wall is slower, particularly, the tube wall of radiant tube is more obvious; the flow velocity of organic heat transfer heater gradually increase from the tube wall to the center of the tube; in the radiant part, because the area of the turbulence level which has radiant heat is bigger than the level which has heat preservation, the flow velocity of the medium of organic heat transfer heater becomes the biggest when it comes close to the radiant tube wall and the junction of the laminar flow and the turbulence flow. When the inlet flow velocity comes to1.0m/s, with the lower flow velocity of conduction oil, organic heat transfer is in a degraded and deteriorated condition, and the local flow will have a disciplinary change with the change of pipe diameter and the flow velocity, the thinner of the carbon deposition layer, the better for the uniformity of flow field and the temperature of liquid membrane.
     The last but not the least, based on basement which built by the detection of carbon deposition in organic heat transfer heater, safety evaluation and the simulation of FLUENT flow velocity, the paper points out the management mode of the risk controlment of organic heat transfer heater and the advice of safety lawmaking.
引文
[1]刘丽红,傅劲清,殷先华,等.长沙望城菱格木业有机热载体炉管子积碳泄漏事故报告.湘特鉴[2009]第5号事故鉴定报告,2009.
    [2]吴旭正,王桂晶.特种设备典型事故案例集[M].北京:航空工业出版社,2005.11.
    [3]国家质量监督检验检疫总局质检总局.召开新闻发布会通报2012年特种设备事故总体情况EB/OL.2013-1-30http://www.sh-ea.net.cn/cn/Education/ New.aspxid=14176
    [4]国家质量监督检验检疫总局质检总局.质检总局通报2011年特种设备事故情况等6方面情况EB/OL. 2012-01-16http://www.gov.cn/xwfb/2012-01/16/ content 2045834.htm.
    [5]朱宇龙,赵辉,青俊.基于结焦机理的有机热载体炉炉管在线寿命评估系统研究[J].工业锅炉,2010(5):17-20.
    [6]覃金珠.有机热载体加热系统优化设计研究[D].长沙:湖南工业大学[硕士论文],2010.
    [7]山东导热油工程技术研究中心.导热油应用技术基础知识[M].天津:天津科学技术出版社,2012.7.
    [8]江南.导热油锅炉火灾及预防[J].火灾,2001(7):16.
    [9]吴涓.有机热载体锅炉系统故障分析及改进措施[J].工业锅炉,2002,74(4):45-46.
    [10]胡洪,余笑枫.有机热载体炉辐射管泄漏原因分析及预防措施[J].工业锅炉,2005(4):54-57.
    [11]史文彬.有机热载体炉安装使用应注意的问题[J].工业锅炉,2005(6):53-56.
    [12]张煜民.有机热载体炉膨胀槽超温现象的分析[J].工业锅炉,2005(3):46-47.
    [13]李君平,刘振南,马言等.有机热载体炉常见事故产生的原因及对策[J].装备制造技术,2006(3):90-91.
    [14]张海田.一起有机热载体炉爆管事故的原因分析[J].工业锅炉,2007(3):56-58.
    [15]常静,李建业,张葵东.一起有机热载体炉爆管事故浅析[J].工业锅炉,2007(1)60-61.
    [16]张丽芬.有机热载体炉存在的问题及安全控制措施[J].中小企业管理与科技.2008(11):216-217.
    [17]闫怀林,郭兴平.一起有机热载体炉着火事故分析与对策[J].工业锅炉,2008(1):51-54.
    [18]刘景新,赵斌,赵静.影响有机热载体炉安全性的因素分析[J].工业炉,2009(3):25-27.
    [19]俞杨.两起有机热载体炉喷油火灾事故的分析[J].江苏安全生产,2009(12):37-38.
    [20]邓广新.有机热载体锅炉受热面管过热变形分析[J].沿海企业与科技,2009(10): 31-32.
    [21]丁宏辉,聂敬鹏,宝山.有机热载体炉的危险因素分析及对策[J].内蒙古民族大学学报,2010(9):61-62.
    [22]宋杰书.一起有机热载体炉导热油喷出事故分析[J].皮革科学与工程,2010(2):73-74.
    [23]张友健.液相有机热载体锅炉运行中的常见问题[J].中国高新技术企业,2010(21):71-72.
    [24]王春敏.有机热载体炉检验中容易忽视的问题分析[J].科技信息,2012(12):364.
    [25]李峰,杨道明.有机热载体加热炉结焦问题的原因分析与控制[J].广东化纤.2001(2):52-56.
    [26]赵钦新.有机热载体炉技术及其进展[J].工业锅炉,2004(1):24-30.
    [27]牛卫飞,王泽军,黄长河.有机热载体炉盘管声发射检测技术[J].无损检测,2007,31(1):17-20.
    [28]顾炜莉,王汉青,寇广孝.雷诺数法防止盘管式有机热载体炉有机热载体过热的理论分析[J].节能,2007,302(9):10-12.
    [29]Gao Hui-dong, Joseph L, Rose J L.Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves [J].Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2009,56(2):334-344.
    [30]何存富,郑阳,吴斌.基于SH波的工业锅炉水垢厚度检测系统及方法:中国,201010159752[P].2010-10-15.
    [31]李杨,吴斌.储罐底板超声导波检测传感器研制及应用研究[D].北京:北京工业大学,2012.
    [32]刘增华,何存富,吴斌,王秀彦.利用兰姆波对板状结构中隐蔽腐蚀缺陷的检测[J].实验力学,2005,2:166-170.
    [33]何存富,孙雅欣,王秀彦,张青,刘增华,吴斌.高频纵向超声导波在埋于 无限大介质中钢杆的传播特性[J].机械工程学报,2007(3):82-88.
    [34]罗春苟,他得安,李维等.时频方法分析长骨中的超声导波及皮质骨厚度[J].声学学报,2009,34(5):416-422.
    [35]宋振华,王志华,马宏伟.基于小波分析的超声导波管道裂纹检测方法研究[J].固体力学学报,2009,30(4):368-375.
    [36]关建飞,沈中华,许伯强,等.板状材料中脉冲激光激发超声导波的数值分析[J].光电子·激光,2005(2):231-235.
    [37]刘磊.复杂薄壁结构钎焊接头超声信号特征与检测方法[D].哈尔滨工业大学,2009.
    [38]Ma J.Scattering of the fundamental torsional mode by an axisymmetric layer inside a pipe. Journal of the Acoustical Society of America,2006,120(4): 1871-1880.
    [39]Ma J, Simon F, Lowe M. Practical considerations of sludge and blockage detection inside pipes using guided ultrasonic waves [J]. Review of Progress in Quantitative Nondestructive Evaluate.2011,26:136-143.
    [40]Barshinger J, Rose J L.Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material[J].Transactions on Ultrasonic, Ferroelectrics, and Frequency Control,2004,51(11):1547-1556.
    [41]帅健.原油油库的安全评价[J].中国安全科学学报,2006,16(10):120-126.
    [42]张贝克,李欣龙.一种石化过程半自动化HAZOP安全评价方法的研究[J].石油与天然气化工,2009,38(3):262-267.
    [43]周家红,许开立.爆炸事故后果评价方法[J].工业安全与环保,2006.3,32(3):52-53.
    [44]姜巍巍,李奇,李俊杰,等.喷射火及其热辐射影响评价模型介绍[J].石油化工安全环保技术,2007,23(1):33-36.
    [45]李大全.成品油管道泄露扩散分析及危害后果评价[D].成都:西南石油学院,2005.
    [46]齐福强,赵云胜,何华刚.LPG罐区火灾爆炸事故危险性分析[J].工业安全与环保,2008,34(1):27-29.
    [47]王保国,王新泉,刘淑艳.安全人机工程学[M].北京:机械工业出版社,2007:50-79.
    [48]龙升照,黄端生.人-机-环境系统工程理论及应用基础[M].北京:科学出版社,2004.
    [49]鲍海忠,施春晖,蔡晓波.基于鱼刺图法的建筑施工环境监测稳定性模拟分析[J].中华建设,2013,(6):146-147.
    [50]边亦海,黄宏伟.SMW工法支护结构失效概率的模糊事故树分析[J].岩土工程学报,-2006,28(5):664-668.
    [51]张知翔,王云刚,赵钦新.H型鳍片管传热特性的数值模拟及验证[J].动力工程,2010,30(5):368-377.
    [52]王娟,毛羽,江华,等.延迟焦化加热炉内湍流流动和燃烧的数值模拟研究[J],石油学报(石油加工),2004,20(6):58-62.
    [53]郑志伟.基于FLUENT的加热炉模拟与优化[D].中国石油大学,2010,5.
    [54]付磊,付丽娅,唐克伦,等.基于FLUENT的管壳式换热器壳程流场数值模拟研究[J].四川理工学院学报,2012,25(3):17-21.
    [55]孙春生,陈志刚,萧艳彤,等.有机热载体锅炉盘管内流场的分析[J].工业锅炉,2010(3):17-21.
    [56]夏国泉.基于三维模型的电加热有机热载体锅炉流场的数值研究[J].工业锅炉,2009(6):23-25.
    [57]中华人民共和国国家标准.有机热载体[S].GB/T 23971-2009,2009-6-12.
    [58]TSG特种设备安全技术规范.锅炉安全技术监察规程[S].TSG G0001-2012,2013.
    [59]中华人民共和国国家标准.有机热载体安全技术条件[S].GB/T 24747-2009,2009-10-30.
    [60]卜一平.使用过程中合成导热油的品质变化状况测定和评价研究[D].苏州:苏州大学,2005.
    [61]中华人民共和国国家标准.有机热载体炉[S].GB/T 17410-2008,2008-6-4.
    [62]赵欣刚,齐鹿扬.有机热载体炉[M].北京:中国计量出版社,2008.5.
    [63]车德福,庄正宁,李军,等.锅炉[M].西安:西安交通大学出版社,2008.
    [64]鲍求培.导热油应用手册[M].上海:华东理工大学出版社,2008.5.
    [65]林欧.基质沥青快速升温设备的研究[D].长安:长安大学,2011.
    [66]沈燕.浅析控制导热油品质对导热油锅炉安全运行的重要性[J].化学工程与装备,2009(9):114-117.
    [67]王骄凌,司荣.有机热载体技术进展综述[J].第三次全国锅炉水(介)质处理学术交流会论文汇编,2013:1-26.
    [68]薛寒.简析工业有机热载体炉常见故障与防范措施[J].中国科技信息,2011(11):140-141.
    [69]马霞.控制有机热载体品质对有机热载体锅炉安全运行的重要性探讨[J].科技致富向导,2013(3):160-161.
    [70]彭小兰,吴超,殷先华.有机热载体炉事故与积碳检测技术发展[J].工业锅炉.2013(4):6-10.
    [71]彭小兰,吴超.基于超声导波的有机热载体炉积碳检测技术[J].中国安全科学学报.2013(6):74-79.
    [72]吴斌,李杨.水平剪切波在板表面附着物厚度检测中的应用[J].机械工程学报.2012,48(18):78-85.
    [73]何存富,李颖,王秀彦,等.基于小波变换及Wigner-Ville变换方法的超声导波信号分析[J].实验力学,2005,4:584-588.
    [74]刘增华,何存富,吴斌,等.带粘弹性包覆层管道中的纵向模态[J].机械工程学报.2007,43(4):188-192.
    [75]刘增华,何存富,杨士明,等.充水管道中纵向超声导波传播特性的理论分析与试验研究[J].机械工程学报.2006,42(3):171-178.
    [76]中华人民共和国标准.低中压锅炉用无缝钢管[S].GB3087-2008,2008.
    [77]曹正敏.兰姆波检测技术及HHT时频分析方法研究[D].大连理工大学,2008.
    [78]宋振华.基于小波分析的超声导波法管道损伤检测研究[D].暨南大学,2009.
    [79]刘胜兴,汤立国,许肖梅.无限液体介质内管道轴对称纵向导波激发与传播特性研究[J].声学学报,2009,34(04):334-341.
    [80]刘增华,何存富,吴斌,等.利用斜探头在管道中选取纵向模态的实验研究[J].工程力学.2009,26(3):246-250.
    [81]吴斌,邓菲,何存富,等.时频重排方法在管道导波信号处理中的应用[J].无损检测,2006(7):337-340.
    [82]孙雅欣,吴斌,何存富,等.时频分析在杆中导波传播特性研究中的应用[J].仪器仪表学报,2006(2):1316-1317.
    [83]周正干,冯占英,高翌飞,等.时频分析在超声导波信号分析中的应用[J].北京航空航天大学学报,2008,185(07):833-837.
    [84]刘增华,余锋祥,宋国荣,等.基于非参数Snakes的时频重排方法在钢绞线导波模态识别中的应用[J].机械工程学报,2011,47(08):47-53.
    [85]徐开启,崔鲲,吴东广.基于人—机—环境系统工程的军用危险品铁路运输风险评价[J].军事交通学院学报,2009,11(3):18-21.
    [86]Holicky M.Probabilistic risk optimiztion of road tunnels[J].Structural Safety,2009,31(3):260-266.
    [87]安永林,黄戡,彭立敏,等.隧道施工风险人-机-环境系统综合评估[J].中南大学学报,2012,43(1):301-307
    [88]安永林.结合邻近结构物变形控制的隧道施工风险评估研究[D].长沙:中南大学,2009.
    [89]时峰.基于设备故障分析的导热油泵房火灾事故树研究[D].上海:上海交通大学,2008.
    [90]王世鹏.煤矿瓦斯爆炸事故鱼刺图分析[J].煤矿安全,2011,42(2):113-116.
    [91]邓强.液化天然气供气站风险评价研究[D].重庆大学,2008.
    [92]谢正文,郑如,袁巧.油烟道火灾事故模糊事故树分析[J].安全,2009(1):5-8.
    [93]施式亮,卢本陶.事故树分析可视化理论模型及系统开发[J].湖南科技大学学报,2004,19(2):1-5.
    [94]李悦.基于模糊信息综合评价的公务员绩效考核体系研究[D].上海交通大学,2011-01-14
    [95]艾升东.基于模糊综合评判法的物流企业绩效评价研究[D].武汉科技大学,2008-05-08
    [96]Pula.R, Khan.F.I,Veitch.B,and etal.A grid based approach for fire and explosion consequence analysis[J].Trans IChemE,2006.3,84 (B2):79-91.
    [97]Ravichandra Pula, Faisal I.Khan, Brian Veitch, and etal.Revised fire consequence models for offshore quantitative risk assessment [J].Journal of Loss Prevention in the Process Industries,2005,18:443-454.
    [98]国际标准协会.润滑油、工业油和相关产品(L类):分类,系列Q,传热导液.国际标准,IS06743-12.
    [99]国际标准协会.石油和相关产品一抗氧化油和流体老化性能的测定,第一部分,矿物油测定步骤,国际标准IS04263-1.
    [100]德国标准化学会.热传导液热稳定性试验方法.德国国家标准,DIN51528-1989.
    [101]德国标准化学会.热传导液产品.德国国家标准,DINS1522-1989.
    [102]TSG特种设备安全技术规范.锅炉水(介)质处理监督管理规则[S].TSGG5001-2010,2010.
    [103]TSG特种设备安全技术规范.锅炉水(介)质处理检验规则[S].TSGG5002-2009,2009.
    [104]中华人民共和国国家标准.有机热载体热稳定性测定法[S].GB/T23800-2009.
    [105]油气田及管道建设设计专业标准化委员会.石油工业用加热炉安全规程[S].SY0031-2004.
    [106]油气田及管道建设设计专业标准化委员会.管式加热炉规范[S].SY/T0538-2004.
    [107]油气田及管道建设设计专业标准化委员会.火筒式加热炉规范[S].SY/T5262-2000.
    [108]中华人民共和国国家标准.润滑剂和有关产品(L类)的分类第12部分:Q组(热传导液)[S].GB/T7631.12.94
    [109]国家石油和化学工业局.热传导液[S].SH/T0677-1999.
    [110]国家石油和化学工业局.热传导液稳定性测定法[S].SH/T0680-1999.
    [111]国家发展和改革委员会.石油工业用加热炉型式与基本参数[S].SYT0540-2006.
    [112]国家质量监督检验检疫总局总局令140号文.特种设备作业人员监督管理办法[S].
    [113]国家质量监督检验检疫总局特种设备作业人员管理办法.锅炉司炉人员考核管理规定[S].国家质量监督检验检疫总局文件(国质检[2001]38号)
    [114]宋继红.我国特种设备安全规范标准体系现状与发展[J].劳动保护,2005,10:71-19.
    [115]宋继红,谢铁军,石家骏.特种设备法规标准体系战略研究[J].压力容器先进技术—第七届全国压力容器学术会议论文集,2009,10:35-45.
    [116]宋小军,他得安,王威琪.基于时频分布的盲信号分离方法研究长骨中的多模式导波信号[J].声学学报,2011,36(03):318-324.
    [117]许凯亮,他得安,王威琪.长骨中超声导波信号的时频特征分析[J].中国生物医学工程学报,2010,29(1):66-70.
    [118]Ma J,Lowe M J S,Simon F,and etal.Feasibility study of sludge and blockage detection inside pipes using guided torsional waves[J].Measurement Science and Technology,2007,18:2629-2641.
    [119]吴斌,邓菲,何存富.超声导波无损检测中的信号处理研究进展[J].北京工业大学学报,2007,4:342-348.
    [120]Fredrik Dahlstrand. Consequence analysis theory for alarm analysis [J].Knowledge-BasedSystems,2002,15:27-36.
    [121]Sabatino Ditali, Massimiliano Colombi, Gianluca Moreschini, and etal.Conse quence analysis in LPG installation using an integrated computer package [J]. Journal of Hazardous Materials,2000,71:159-177.
    [122]Spyros Sklavounos, Fotis Rigas. Estimation of safety distances in the vicinit y of fuel gas pipelines[J].Journal of Loss Prevention in the Process Industri es,2006,19:24-31.
    [123]Hyo Kim, Jae-Sun Koh, Youngsoo Kim,and etal.Risk Assessment of Membrane Type LNG Storage Tanks in Korea-based on Fault Tree Analysis[J]. Korean J. Chem.Eng.,2005,22 (1):1-8.
    [124]Daniel Straub, Michael Havbro Faber.Risk based inspection planning for structural systems [J].Structural Safety,2005,27:335-355.
    [125]Chi-Hui Chien,Chun-Hung Chen,Yuh J Chao.A strategy for the risk-based inspection of pressure safety valves [J].Reliability Engineering and System Safety,2009,94:810-818.
    [126]Ming-Kuen Chang, Ren-Rong Chang, Chi-Min Shu,and etal.Application of risk based inspection in refinery and processing piping[J].Journal of Loss Prevention in the Process Industries,2005,18:397-402.
    [127]Santosh, Gopika Vinod, O P Shrivastava,and etal.Reliability analysis of pipe lines carryingcharacteristic curves [J].Journal of Hazardous Materials,2008,159: 264-270.
    [128]Kefalas D A, Christolis M N, Nivolianitou Z, and etal.Consequence analysis of an open fire incident in a pesticide storage plant [J].Journal of Loss Prevention in the Process Industries,2006,19:78-88.
    [129]Shigeki Kikukawa.Consequence analysis and safety verification of hydrogen fueling stations using CFD simulation[J].International Journal of Hydrogen Energy,2008,33:1425-1434
    [130]Pintaric Z.N.Assessment of the conquences of accident scenarios involving dangerous substances[J].Trans IChemE,2007,85 (B1):23-38.
    [131]Jirsa P.An analysis of the cumulative uncertainty associated with a quantitative consequence assessment of a major accident[J].Trans IChemE,2007,85 (B3):256-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700