用户名: 密码: 验证码:
马脑壳金矿床成矿规律及找矿方向
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马脑壳金矿床位于中国重要的“川、甘、陕”成矿远景区的川西北地区,是川西北地区与构造蚀变带有关的微细浸染型金矿的典型代表。
     近年来深部勘查、外围找矿和矿山开采发现了许多与原有认识不一致的地质现象,特别是越往深部,构造控矿和热液流体活动的迹象明显增强。本文根据对矿床地质特征的进一步研究,分析了矿床控矿因素,总结了成矿规律,探讨了矿床成因,指出了进一步找矿的方向。认为马脑壳金矿床以构造控矿为主,构造破碎岩带是主要矿体赋存部位,构造变形程度控制着矿体的空间分布、产出形态和矿化富集程度。多组构造复合部位是重要的赋矿部位,虽然矿(化)体总体呈北西向展布,但北北东向构造、北西向以及南北向构造复合部位是寻找富大矿体的主要方向。矿床表现出的层控性特点,主要是与不同物理化学性质岩层的岩石组合有关,成能干性(渗透障)与非能干性(不渗透障)岩层的交互叠置和有序排列,导致所有金矿体都产于能干性和非能干性的转换部位,即砂、板岩的接触部位。马脑壳矿床的成矿与传统的卡林型金矿有较大的差异,构造—岩浆活动对成矿起了重要的控制作用,有深部流体参与成矿的迹象,属多因复式成矿特征的大型中低温热液金矿床。
     马脑壳金矿床是川西北地区与构造蚀变带有关的微细浸染型金矿的典型代表。矿区在大地构造位置上处于华北板块、扬子板块和印度板块三大构造单元衔接部位,区域性玛曲—略阳深大断裂带控制了马脑壳韧—脆性剪切带的空间展布。金矿体受马脑壳韧—脆性剪切带内多期次不同方向断裂、裂隙、节理的控制,构造蚀变岩带是主要矿体赋存部位。由于长期以来受层控矿床观念的束缚,对深部流体与成矿的关系等未引起重视。近年来研究发现,这类金矿床的空间产出与构造—岩浆活动和深部流体的关系极为密切。本论文依托作者负责完成的全国危机矿山接替资源找矿项目“四川省九寨沟县马脑壳金矿接替资源勘查”和四川九寨沟马脑壳金矿开发有限责任公司委托的“马脑壳金矿床成矿规律及找矿方向综合研究”项目,引入深部流体成矿理论和研究方法,在矿床地质特征研究的基础上,采用微量元素地球化学、稀土元素地球化学和同位素地球化学等方法,探讨了矿床成矿流体的来源及成矿作用,总结了成矿规律,指出了进一步找矿的方向。取得以下主要成果和认识:
     (1)马脑壳金矿床具有一定层控性的特点,无论在区域上还是局部地段,矿体往往倾向于赋存在特定的岩层组合中,表明成矿与地层具有一定的成因关系。我们认为,这除与地层中成矿元素的丰度及元素赋存状态等(即矿源岩)有一定的关系外,更多的是与不同物理化学性质岩层的岩石组合相联系。区内岩石组合在剖面上呈板、砂岩类的互层与韵律排列,因而形成非能干性(不渗透障)与能干性(渗透障)的有序排列与交互叠置。区域内,几乎所有金矿床(体)都产于非能干性和能干性的转换过渡部位,即板岩、砂岩的接触过渡部位。
     (2)马脑壳金矿床以构造控矿为主。金矿体受马脑壳韧—脆性剪切带内多期次不同方向断裂、裂隙、节理的控制。构造破碎岩带是主要矿体赋存部位,构造变形程度控制着矿体的空间分布、产出形态和矿化富集程度。金矿体(矿化)在矿化构造破碎岩带内呈透镜状、脉状、复脉状产出,膨缩、分枝复合较频繁,金矿体不严格受地层的制约。首次提出多组构造复合部位是重要的赋矿部位,虽然矿(化)体总体呈北西向展布,但北北东向构造、北西向以及南北向构造复合部位是寻找富大矿体的主要方向。
     (3)马脑壳矿床的地质地球化学特征显示出,成矿与传统的卡林型金矿有较大的差异,构造—岩浆活动对成矿起了重要的控制作用,有深部流体参与成矿的迹象。热液矿物石英、方解石等的微量、稀土元素地球化学研究表明,马脑壳金矿床的成矿物质和成矿热液,既有通过改造沉积建造来自浅部的,也有通过区域深大断裂来自于深部的。马脑壳金矿床成因主要是由混合型变质成矿流体与岩浆热液成矿流体叠加形成,具有多因复式成矿特征的大型中低温热液金矿床。
     (4)马脑壳地区成矿地质背景有利,成矿条件良好,矿化信息显著,具备了形成超大型微细浸染型金矿矿集区的成矿条件,其外围及深部找矿潜力巨大。马脑壳韧—脆性剪切带的东端和西端具有较好的找矿远景,是该区外围找矿的主要靶区;矿区北部F1断裂紧邻北部的洋布梁子断裂,构造—流体活动强烈,具有较好的找矿前景;马脑壳成矿带以东地区的八顿、小神沟、绕腊沟一带邻近荷叶断裂,成矿地质条件与马脑壳成矿带相似,且该区岩浆活动明显强于马脑壳地区,并发现有金矿点和矿化点存在,化探异常也较好,是今后找矿工作的重点地区;加大马脑壳矿区深部找矿力度,探寻深部富大矿体,是该区今后找矿的主要方向。
As a typical representative of the fine-disseminated gold deposits related with the tectonic alteration zone, Manaoke Gold Deposit is located in the northwestern Sichuan province. Geotectonically, the Manaoke Gold Deposit lies in the junction of North China Plate, Yangtze Plate and Indian Plate, where the spatial distribution of the Manaoke brittle-ductile shear zone is controlled by the regional Maqu-Lueyang deep fractured zone.
     The location of ore bodies are controled by the multi-stage fracture, cracks and joints of different directions, and the tectonic alteration zone is the mainly favorable parts for bonanza ores.
     In the past, the research on the connection between the mineralization and the fluid derived from the depth of the Earth is ignored for a long time, as a result of manacle by the traditional idea of the stratabound deposit theory. Recently, research has found that the deposits of this type is close in space with the tectonic-magmatic activities and the deep fluid.
     Based on the Project of Superseding Resources Exploration for the State Crisis Mine-"Superseding Resources Exploration to the Manaoke Gold Deposit in Jiuzhaigou County, Sichuan Province" and the cooperative item of "Comprehensive research on the Metallogenic Regularities and Ore-prospecting Direction of Manaoke Gold Deposit in Sichuan Province" from Manaoke Gold Mine Development Co., LTD in Jiuzhaigou County, Sichuan Province, this doctoral dissertation intends to introduce the theory and research method of the deep fluid mineralization. With systematically study on the stable isotopes and the geochemistry of the trace and rare earth elements, the source of the ore-forming fluid and the mineralization are identified on basis of the study of the geological feature of deposit, the metallogenic regularities the deposit are summarized, and prospecting orientation is outlined.
     The doctoral dessertation achieves the following main results and understanding:
     (1) Manaoke Gold Deposit has certain layer-controlled characteristics. No matter in regional or in isolated areas, the gold-rich ore bodies tend to locate in a special combination of different stratums, which shows that the mineralization is related to the stratum. Outside the abundance and the occurrence state of the metallogenic elements, stratums combination of different physicochemical properties should assume more responsibility for this. In profile, the lithology association is rhythm of sandstone and slate, which help to form superimposed relationship and ordered arrangement of competent (permeable barrier) and incompetent (impermeable barrier). Almost all of the gold ore bodies occur in transfer sites between competent and incompetent, that is the contact belt of sandstone and slate.
     (2) Manaoke Gold Deposit is primarily controlled by the structure. The location of ore bodies are controled by the multi-stage fractures, cracks and joints of different directions in the Manaoke brittle-ductile shear zone, and the tectonic alteration zone is the mainly favorable part for bonanza ores. Without strict restriction by the stratum, the gold ore (mineralized) bodies, where the expansion and shrinkage with branching complex are a familiar phenomenon, occur mainly as nervation, net nervation, podiform in the tectonic alteration zone. For the first time, the compound positions of polytectonic faults, which is the mainly favorable parts for bonanza ores, is presented in this paper. Although the occurrence of the ore bodies are mainly NW, the compound positions of the NNE, NW and NS structures are the favorable position to find the rich and large ore bodies.
     (3) The geological and geochemical characteristics of Manaoke Gold Deposit show obvious difference with the traditional "Carlin-type Au deposit". The tectonic-magmatic activities play an important role in controlling ore bodies, as well as obvious signs of deep source fluid involved in metallogenesis. The geochemistry of trace and rare earth elements in hydrothermal minerals, such as quartz, calcite, etc. indicate that the ore forming materials and ore forming hydrothermal solution have multi source, part from the deep through the deep and large faults, part from the shallow through the transformation of sedimentary formations. The formation of ore bodies is closely related to the Mixed metamorphic ore-forming fluid and superposition by the magmatic hydrothermal fluid. Manaoke Gold Deposit belongs to a large scale medium-low temperature hydrothermal gold deposit of polygenetic compound characteristics.
     (4) With favorable geological mineralization setting, favourable metallogenetic conditions and significant mineralization information, the Manaoke Gold Deposit, whose depth and periphery are enormously potential for ore prospecting, possesses the prerequisite of super large ore concentration area of the microfine disseminated gold deposits. The west and east of the Manaoke brittle-ductile shear zone, as the prospecting direction and targets of the periphery, have a good exploration prospect. The North of the ore area, where the F1fracture is adjacent to the northern Yangbuliangzi fault, with the features of intense tectonic movements and fluids, are prospecting potential. Near the east Manaoke metallogenic belt and adjacent to Heye fault, with the similar metallogenic characteristics and favourable geochemical prospecting anomaly, the Badui, Xiaoshengou and Raolagou area, where magmatism are obviously more violent and gold occurrences (mineralized points) have been found, is the key place for prospecting henceforth. A great effort for ore prospecting for the deep large orebody in Manaoke gold ore field is the main prospecting object for the future.
引文
[1]郑明华,周渝峰,刘建明,等.喷流型和浊流型层控金矿床[M].成都:四川科学技术出版社,1994:1-273.
    [2]刘东升,耿文辉.我国卡林型金矿的地质特征、成因及找矿方向[J].地质与勘探.1987(12):1-12.
    [3]谭运金.卡林型金矿床的控矿构造之一密集裂隙带的研究[J].矿产与地质.1994(3):201-205.[4]谭运金.滇黔桂地区微细粒浸染型金矿床的矿床地球化学类型[J].矿床地质.1994(4):308-321.
    [5]郑明华,刘家军,张斌,等.阿坝地块东部寒武系太阳顶群中硅岩型金-铜-铀建造矿床的地质地球化学[J].矿物岩石地球化学通讯.1991(4):260-262.
    [6]郑明华,张斌,周渝峰,等.一个海底喷流——地下水热液改造成因的金-铜-铀-铂族金属矿床的新矿例[J].科学通报.1991(15):1198-1199.
    [7]郑明华,周渝峰,顾雪祥.四川东北寨微细浸染型金矿床的同位素组成特征及其成因意义[J].地质科学.1991(2):159-173.
    [8]Huston D L, Large R R.A chemical model for the concentration of gold in volcanogenic massive sulphide deposits[J]. Ore Geology Reviews.1989,4(3):171-200.
    [9]胡明安.金矿床中的有机物研究及其在找矿勘探中的应用[J].地质科技情报.1987(2):95-103.
    [10]胡明安.有机地球化学在外生成矿作用研究中的应用[J].地质科技情报.1984(2):118-124.
    [11]胡明安.地质热事件—有机质—金属成矿作用的联系[J].地质科技情报.1997(2):68-73.
    [12]叶连俊,陈其英.The Multiple Factors and Multiple Stages Involved in Sedimentary Ore Genesis[J]. Chinese Journal of Geochemistry(English Language Edition).1990(3):193-219.
    [13]叶连俊,李任伟,王东安.生物成矿作用研究展望——沉积矿床学的新阶段[J].地球科学进展.1990(3):1-4.
    [14]刘金钟,范德廉.桂西北金牙金矿床的物质来源探讨[J].矿床地质.1992(3):233-240.
    [15]刘金钟,傅家谟,卢家烂.含有机质热水溶液与金、铜、汞相互作用的实验研究[J].现代地质.1992(3):309-316.
    [16]王小春.论甘孜丘洛成矿带微细浸染型金矿的成矿条件[J].矿物岩石.1993(1):68-75.
    [17]王小春.川西北地区微细粒浸染型金矿的成矿过程[J].四川地质学报.1995(1):41-48.
    [18]王小春.中国微细浸染型金矿矿质迁移沉淀机制[J].地质找矿论丛.1998(2):49-57.
    [19]王小春.论生物在金矿源岩形成过程中的作用[J].黄金科技动态.1992:15-19.
    [20]张均.川西北地区金矿床的双源复合成矿新认识[J].地质科技情报.2000(1):51-56.
    [21]张均,张晓军.川西北地区金成矿的地质异常控制[J].地质找矿论丛.2000(1):30-38.
    [22]张均,张晓军,廖群安.川西北地区金成矿的构造—岩浆控制[J].黄金.2000(6):1-5.
    [23]张均,周乔伟.川西北地区控矿断裂的分形特征及其预测意义[J].长春科技大学学报.2000(4):342-346.
    [24]王全伟,梁斌.川西北微细浸染型金矿集中区构造对金成矿的控制[J].矿物岩石.2004(4):49-52.
    [25]王全伟,骆耀南.川西北微细浸染型金矿集中区地层在金成矿中的作用[J].四川地质学报.2002(4):205-209.
    [26]王全伟,骆耀南.剪切带型金矿床成矿机理研究综述[J].四川地质学报.2002(1):10-15.
    [27]王全伟,姚书振,梁斌.川西北地区金矿成矿构造动力学探讨[J].地质科技情报.2003(4):80-84.
    [28]王全伟,姚书振,骆耀南.川西北微细浸染型金矿床区域成矿动力学模式[J].四川地质学报.2004(1):4-8.
    [29]王可勇,姚书振,吕新彪.川西北马脑壳金矿床构造-流体-金成矿作用系统演化模式[J].地质科学.2001(2):164-175.
    [30]王可勇,姚书振,吕新彪.川西北马脑壳金矿床流体相分离作用及其成矿意义[J].地球学报.2001(1):35-38.
    [31]王可勇,姚书振,吕新彪.川西北马脑壳金矿床成矿流体地球化学特征与性质[J].地球化学.2001(3):273-282.
    [32]王可勇,姚书振,杨言辰,等.川西北马脑壳微细浸染型金矿床地质特征及矿床成因[J].矿床地质.2004(4):494-501.
    [33]王可勇,姚书振,张均,等.川西北马脑壳金矿床流体包裹体研究与热液成矿机理探讨[J].岩石学报.2000(4):564-568.
    [34]唐文春,朱汇派.新康猫金矿床热液矿物微量元素地球化学特征及成因探讨[J].矿物岩石.2008(4):64-70.
    [35]唐文春.四川红原县刷经寺新康猫金矿成矿规律及找矿方向研究[D].成都理工大学,2005.
    [36]唐文春.四川省新康猫金矿床地质地球化学特征及成矿规律研究[D].武汉:中国地质大学,2008.
    [37]付小方,侯立玮.四川南坪马脑壳金矿区的构造与成矿[J].四川地质学报.1997(2).
    [38]季宏兵,王世杰,文锦明,川西北地区马脑壳金矿床的成矿年代学[J].矿物岩石地球化学通报.1999(2):27-30.
    [39]叶幼兰,宁兴贤,杨光明,等.马脑壳金矿床中的雄黄及其地质意义[J].岩石矿物学杂志.1998(2).
    [40]郑明华,周渝峰,傅仁平,等.四川西北部马脑壳层控金矿床中白钨矿矿体的发现及其意义[J].科学通报.1993(7).
    [41]付绍洪,顾雪祥,王苹.川西北马脑壳金矿床载金矿物特征及其成因意义[J].成都理工学院学报.2002(4).
    [42]付绍洪,顾雪祥,王苹.川西北马脑壳金矿床流体包裹体Rb-Sr同位素组成:对矿床成因的制约[J].地球化学.2004(1):94-98.
    [43]付绍洪,王苹.川西北马脑壳金矿床流体包裹体研究及对成矿条件的制约[J].岩石学报.2000(4):569-574.
    [44]顾雪祥,何彬彬,Schulz O.,等.四川马脑壳层控金矿床中辉锑矿残余沉积组构的发现及其成因意义[J].成都理工学院学报.2000(4):331-334.
    [45]谭榜平,付仁平.马脑壳金矿床成矿物质来源研究[J].四川地质学报.2001(2).
    [46]代万贵.马脑壳金矿床地质特征与开发利用研究[D].成都理工大学,2009.
    [47]毕献武,胡瑞忠.哀牢山金矿带成矿流体稀土元素地球化学[J].地质论评.1998(3):264-269.
    [48]毕献武,胡瑞忠.REE Geochemistry of Primitive Ore Fluids in Ailaoshan Gold Belt, Southwest China[J]. Chinese Journal of Geochemistry.1998(1):91-96.
    [49]毕献武,胡瑞忠,彭建堂,等.黄铁矿微量元素地球化学特征及其对成矿流体性质的指示[J].矿物岩石地球化学通报.2004(1):1-4.
    [50]倪师军,滕彦国,张成江,等.成矿流体活动的地球化学示踪研究综述[J].地球科学进展.1999(4):33-39.
    [51]倪师军,张成江,滕彦国.成矿流体地球化学界面:Ⅰ概念的由来及发展[J].地质地球化学.2001(3):19-21.
    [52]黄智龙,刘丛强,胡耀国,et al. Rare-Earth Element Geochemistry of Eclogites from the Ultra-High Pressure Metamorphic Belt in Central China[J]. Chinese Journal of Geochemistry. 2000(1):35-44.
    [53]黄智龙,肖化云,许成,et al. Geochemistry of Rare Earth Elements in Lamprophyres in Laowangzhai Gold Orefield, Yunnan Province[J]. Journal of Rare Earths.2000(1):62-68.
    [54]黄智龙,朱成明,王联魁Rare-Earth Elements and Genesis of Lamprophyres in the Laowangzhai Gold Orefield, Yunnan Province[J]. Chinese Journal of Geochemistry.1996(2):138-146.
    [55]Bau M, Balan S, Schmidt K, et al. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems[J]. Earth and Planetary Science Letters.2010,299(3-4):310-316.
    [56]Gu X, Schulz O, Vavtar F, et al. Rare earth element geochemistry of the Woxi W-Sb-Au deposit, Hunan Province, South China[J]. Ore Geology Reviews.2007,31(1-4):319-336.
    [57]Gu Z, Wang X, Gu X, et al. Determination of stability constants for rare earth elements and fulvic acids extracted from different soils[J]. Talanta.2001,53(6):1163-1170.
    [58]Guo F A, Xiang C J, Yang C X, et al. Study of rare earth elements on the physical and mechanical properties of a Cu-Fe-P-Cr alloy[J]. Materials Science and Engineering:B.2008,147(1):1-6.
    [59]Jiang S, Yu J, Lu J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China:implication for migmatitic-hydrothermal fluid evolution and ore genesis[J]. Chemical Geology.2004,209(3-4):193-213.
    [60]Khadijeh R E S, Elias S B, Wood A K, et al. Rare earth elements distribution in marine sediments of Malaysia coasts[J]. Journal of Rare Earths.2009,27(6):1066-1071.
    [61]Klein M, Stosch H G, Seek H A. Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts:an experimental study[J]. Chemical Geology. 1997,138(3-4):257-271.
    [62]Kucera J, Cempirek J, Dolnidek Z, et al. Rare earth elements and yttrium geochemistry of dolomite from post-Variscan vein-type mineralization of the Nizky Jesenik and Upper Silesian Basins, Czech Republic[J]. Journal of Geochemical Exploration.2009,103(2-3):69-79.
    [63]Li L, Li H, Wang D, et al. Trace Elements and Rare Earth Elements Geochemistry and Its Metallogenic Significance for Cu-Zn Ore Deposits in Tongbai Area, Henan Province, China[J]. Earth Science Frontiers.2009,16(6):325-336.
    [64]Liang T, Ding S, Song W, et al. A review of fractionations of rare earth elements in plants[J]. Journal of Rare Earths.2008,26(1):7-15.
    [65]Oksuz N, Koc S. Examination of Sarikaya (Yozgat-Turkey) iron mineralization with rare earth element (REE) method[J]. Journal of Rare Earths.2010,28(1):143-149.
    [66]Tatar E, Mihucz V G, Virag I, et al. Effect of four bentonite samples on the rare earth element concentrations of selected Hungarian wine samples[J]. Microchemical Journal.2007,85(1):132-135.
    [67]Wu G, Fan Y, Gao H, et al. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D[J]. Materials Science and Engineering:A. 2005,408(1-2):255-263.
    [68]叶天竺,薛建玲.金属矿床深部找矿中的地质研究[J].中国地质.2007(5):855-869.
    [69]李幸凡.我国金属矿产成矿区带地球化学普查发展历史[J].矿产与地质.2005(6):137-144.
    [70]朱裕生,王全明,张晓华,等.中国成矿区带划分及有关问题[J].地质与勘探.1999(4):1-4.
    [71]张国伟,董云鹏,赖绍聪,等.秦岭-大别造山带南缘勉略构造带与勉略缝合带[J].中国科学(D辑:地球科学).2003(12):1121-1135.
    [72]李小壮.试论二叠纪以来松潘—甘孜印支地槽褶皱系的构造演化[J].四川地质学报.1982: 37-45.
    [73]李小壮.论松潘—甘孜褶皱系的构造演化[J].四川地质学报.1982:68.
    [74]黄汲清,李春昱.中国及其邻区大地构造论文集[M].北京:地质出版社,1981:1-176.
    [75]张洪荣,黄秀英.四川阿坝——秀山地学断面[J].四川地质学报.1993(2):94-109.
    [76]杨森楠.秦岭古生代陆间裂谷系的演化[J].地球科学.1985:53-62.
    [77]杨森楠,周国藩.亚洲东部大陆边缘的构造扩张和地球动力环境[J].地质科技情报.1992(1):14-20.
    [78]王全伟,姚书振,骆耀南.川西北微细浸染型金矿成矿构造系统及其动力学分析[M].成都电子科技大学出版社:成都电子科技大学出版社,2003:1-112.
    [79]王世称,陈永良.初论基于数字地球技术系统的巨型矿床统计评价[J].2001.
    [80]张均,吕新彪,杨逢清,等.川西北金矿地质和成矿预测[M].武汉:中国地质大学出版社,2002:1-250.
    [81]宋昊,施泽明,倪师军,等.四川省绵远河水系重金属物源探讨及环境质量评价[J].地球与环境.2011(4):543-550.
    [82]Coplen T B. Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory[J]. Geochimica et Cosmochimica Acta.2007,71(16):3948-3957.
    [83]Coplen T B. Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory[J]. Geochimica et Cosmochimica Acta.2007,71(16):3948-3957.
    [84]Hopple J A, Hannon J E, Coplen T B. Comparison of two stable hydrogen isotope-ratio measurement techniques on Antarctic surface-water and ice samples[J]. Chemical Geology.1998, 152(3-4):321-323.
    [85]黎彤.Element Abundances of China's Continental Crust and Its Sedimentary Layer and Upper Continental Crust[J]. Chinese Journal of Geochemistry.1995(1):26-32.
    [86]黎彤,梅孜文.华北三重构造层的沉积演变和岩石化学特征[J].大地构造与成矿学.1990(4):275-282.
    [87]赵振华.微量元素地球化学原理[M].北京:科学出版社,1997:1-238.
    [88]赵振华,周玲棣.REE geochemistry of some alkali-rich intrusive rocks in China[J]. Science in China(Series D:Earth Sciences).1997(2):145-158.
    [89]赵振华,赵惠兰.TRACE ELEMENT GEOCHEMISTRY OF INARTICULATE BRACHIOPODS AND SEDIMENTARY ROCK ON THE CAMBRIAN-ORDOVICIAN BOUNDARY[J]. Science in China,Ser.B.1990(7):873-886.
    [90]Zoheir B, Akawy A, Hassan I. Role of fluid mixing and wallrock sulfidation in gold mineralization at the Semna mine area, central Eastern Desert of Egypt:Evidence from hydrothermal alteration, fluid inclusions and stable isotope data[J]. Ore Geology Reviews.2008,34(4):580-596.
    [91]Monecke T, Monecke J, Monch W, et al. Mathematical analysis of rare earth element patterns of fluorites from the Ehrenfriedersdorf tin deposit, Germany:evidence for a hydrothermal mixing process of lanthanides from two different sources[J]. Mineralogy and Petrology.2000,70(3):235.
    [92]Barrat J A, Boulegue J, Tiercelin J J, et al. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa[J]. Geochimica et Cosmochimica Acta.2000,64(2):287-298.
    [93]Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology.1991,93(3-4): 219-230.
    [94]Bau M, Balan S, Schmidt K, et al. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems[J]. Earth and Planetary Science Letters.2010,299(3-4):310-316.
    [95]Craddock P R, Bach W, Seewald J S, et al. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea:Indicators of sub-seafloor hydrothermal processes in back-arc basins[J]. Geochimica et Cosmochimica Acta.2010,74(19):5494-5513.
    [96]Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta.1999,63(5):627-643.
    [97]Fulignati P, Gioncada A, Sbrana A. Rare-earth element (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy)[J]. Journal of Volcanology and Geothermal Research.1999,88(4):325-342.
    [98]Gleason J D, Marikos M A, Barton M D, et al. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) systems[J]. Geochimica et Cosmochimica Acta.2000,64(6):1059-1068.
    [99]Jiang S, Yu J, Lu J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China:implication for migmatitic-hydrothermal fluid evolution and ore genesis[J]. Chemical Geology.2004,209(3-4):193-213.
    [100]Lottermoser B G. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geology Reviews.1992,7(1):25-41.
    [101]Mayanovic R A, Anderson A J, Bassett W A, et al. On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aqua and chloro complexes[J]. Chemical Geology.2007,239(3-4):266-283.
    [102]Mayanovic R A, Anderson A J, Bassett W A, et al. The structure and stability of aqueous rare-earth elements in hydrothermal fluids:New results on neodymium(III) aqua and chloroaqua complexes in aqueous solutions to 500℃ and 520 MPa[J]. Chemical Geology.2009,259(1-2): 30-38.
    [103]Michard A. Rare earth element systematics in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta.1989,53(3):745-750.
    [104]Parsapoor A, Khalili M, Mackizadeh M A. The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran)[J]. Journal of Asian Earth Sciences. 2009,34(2):123-134.
    [105]Schmidt K, Garbe-Schonberg D, Bau M, et al. Rare earth element distribution in >400 ℃ hot hydrothermal fluids from 5°S, MAR:The role of anhydrite in controlling highly variable distribution patterns[J]. Geochimica et Cosmochimica Acta.2010,74(14):4058-4077.
    [106]Terakado Y, Fujitani T. Behavior of the rare earth elements and other trace elements during interactions between acidic hydrothermal solutions and silicic volcanic rocks, southwestern Japan[J]. Geochimica et Cosmochimica Acta.1998,62(11):1903-1917.
    [107]Whitney P R, Olmsted J F. Rare earth element metasomatism in hydrothermal systems:the Willsboro-Lewis wollastonite ores, New York, USA[J]. Geochimica et Cosmochimica Acta.1998, 62(17):2965-2977.
    [108]Zeng Z, Chen C A, Yin X, et al. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan:Evidence from trace and rare earth element composition[J]. Journal of Asian Earth Sciences.2011,40(2):661-671.
    [109]滕彦国,倪师军,张成江.成矿流体活动的地温信息及地球物理示踪[J].地质地球化学.1999(3):17-22.
    [110]滕彦国,张成江,倪师军.阿西金矿床流体成矿的元素地球化学标志[J].地质找矿论丛.1999(2):38-44.
    [111]倪师军,曹志敏,张成江,等.成矿流体活动信息的三个示踪标志研究[J].地球学报.1998:53-56.
    [112]鲍征宇,韩吟文,马振东,等.高等教育面向21世纪课程教材地球化学[M].北京:地质出版社,2003:1-321.
    [113]Faure G, Botoman G.13C/12C ratios in calcite associated with heat-altered coals-Reply[J]. Chemical Geology:Isotope Geoscience section.1986,59(0):335-336.
    [114]Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits [J]. Economic Geology.1972,67(5):551-578.
    [115]骆耀南,曹志敏,温春齐,等.大水沟独立碲矿床——世界首例碲化物脉型矿床地质地球化学[M].成都:西南交通大学出版社,1996:1-160.
    [116]刘建明,刘家军,郑明华,等.微细浸染型金矿床的稳定同位素特征与成因探讨[J].地球化学.1998(6):585-591.
    [117]毛景文,赫英,丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J].矿床地质.2002(2):121-128.
    [118]季宏兵,王世杰,文锦明.川西北地区马脑壳金矿床的成矿年代学[J].矿物岩石地球化学通报.1999(2):27-30.
    [119]周渝峰,郑明华,刘建明.川西北三叠系地层中金矿床的矿石建造特征及其成因[J].黄金.1994(3):11-14.
    [120]倪师军,张成江,滕彦国.成矿流体地球化学界面:Ⅰ概念的由来及发展[J].地质地球化学.2001(3):19-21.
    [121]滕彦国,倪师军,张成江,等.成矿流体地球化学界面:Ⅲ应用实例研究[J].地质地球化学.2001(3):26-31.
    [122]张成江,滕彦国,倪师军.成矿流体地球化学界面:Ⅱ组成及标志[J].地质地球化学.2001(3):22-25.
    [123]付小方,侯立玮.四川南坪马脑壳金矿区的构造与成矿[J].四川地质学报.1997(2):115-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700