用户名: 密码: 验证码:
扫频超声预处理对玉米醇溶蛋白特性及其酶法制备ACE抑制肽的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米醇溶蛋白为玉米淀粉加工工业的主要副产物,因其含有大量的非极性氨基酸,不溶于水,此外还缺乏色氨酸和赖氨酸,营养价值低,在食品工业中的应用受到限制。国内外研究表明,玉米醇溶蛋白酶解物具有良好的ACE抑制活性,但是传统的制备方法存在酶解时间长、酶的使用效率低和产物转化率低等缺点。本论文旨在通过扫频超声波预处理改善玉米醇溶蛋白酶解制备ACE抑制肽的效率和产品活性。基此,本文初步研究了扫频超声场的性质;系统研究了扫频超声处理后,玉米醇溶蛋白溶解度、巯基含量、表面疏水性等理化性质,荧光光谱、红外光谱、圆二色谱等分子结构特征,以及表面形貌、粒径等蛋白颗粒表面微观结构的变化;探讨了经超声处理后玉米醇溶蛋白制备ACE抑制肽的酶解特性;研究了超声预处理后反应热动力学特性的变化。主要研究结论如下:
     (1)关于扫频超声场的声学性质,高速摄像法和碘释放法的研究表明,40kHz的超声振板产生的超声空化产额最高,观察到的超声空化现象最为明显,且扫频模式的效果优于定频模式。
     (2)关于扫频超声对玉米醇溶蛋白理化性质影响的研究发现,一定的扫频超声处理能够显著提高玉米醇溶蛋白的水溶性和疏水性、促使肽链伸展、改变其转变温度,上述参数的变化说明超声可以被用于促使蛋白向着有利于酶解反应的方向发展,尤其是疏水性的增加,意味着超声波引起了蛋白内部疏水性氨基酸外露,更有利于蛋白内部疏水性基团与酶的接触,从而可制备出高活性的ACE抑制肽。
     (3)关于扫频超声对玉米醇溶蛋白分子结构特性的影响,紫外和荧光发射光谱分析发现,超声波改变了蛋白的结构,处理后表现出荧光猝灭现象,说明超声波使玉米醇溶蛋白多肽链发生了不同程度的伸展;红外光谱和圆二色谱分析表明,超声波处理后玉米醇溶蛋白α-螺旋结构的含量逐渐增加,p-折叠和无规则卷曲变化无规律,表明扫频超声处理改变了包括氢键在内的维持玉米醇溶蛋白二级结构的作用力,从而使四种二级结构的含量发生了变化。
     (4)关于扫频超声对玉米醇溶蛋白颗粒微观结构的影响,原子力显微镜测试结果表明,超声波使得玉米醇溶蛋白良好的网状结构被破坏断裂,导致很多蛋白聚集体变得分散,并出现了许多游离球状蛋白颗粒;玉米醇溶蛋白颗粒变小,且蛋白更加均匀;电子显微镜分析表明,与对照相比,超声波使玉米醇溶蛋白颗粒表面更加粗糙,甚至出现小的空洞,表明超声导致蛋白颗粒疏松,蛋白酶容易进入玉米醇溶蛋白颗粒内部,有利于疏水性氨基酸的释放;粒径检测发现,较高频率的超声使蛋白分子粒径分布向大的粒径方向迁移,表明扫频超声预处理引起了玉米醇溶蛋白分子的极化;破坏了维持蛋白分子四级结构的作用力,导致了蛋白亚基解离和疏水性基团的外露;两极分化的亚基相互吸引通过非共价键重新形成更大的蛋白聚集体。
     (5)关于扫频超声对玉米醇溶蛋白酶解特性影响的研究发现,定频和扫频两种模式的超声波均能引起玉米醇溶蛋白水解度的显著提高,且能不同程度地改变玉米醇溶蛋白酶解液的ACE抑制率;其中40+2kHz扫频超声波预处理玉米醇溶蛋白时,其水解度最高提高了21.7%,而其酶解液的ACE抑制率最高达到了46.1%,比对照组抑制率提高1.33倍;40±2kHz/68±2kHz组合双频组合超声波预处理后,酶解液的抑制活性最高为43.7%,与未超声对照组相比提高了1.21倍。酶解产物分子量分布及氨基酸分析进一步表明,超声波预处理后酶解产物的小分子量肽链增多,疏水性氨基酸含量和支链氨基酸含量提高,这些都与酶解产物ACE抑制率的提高有关。
     (6)关于扫频超声对玉米醇溶蛋白酶解热动力学参数的影响。单频扫频超声波和双频扫频式超声波分别使玉米醇溶蛋白的Ea从5.84kJ/mol降到4.70和5.74kJ/mol;使AH从46.05kJ/mol降到36.55和45.20kJ/mol。说明扫频超声预处理均有利于蛋白酶解催化反应的进行,使反应更容易。
Zein is a co-product of the corn starch industry. It is insoluble in water due to high proportion of nonpolar amino acid residues. In addition, the notable absence of tryptophane and lysine in zein accounts for its lower nutritional value and limits its application in food industry. Zein hydrolysate showed a strong ACE-inhibitory activity. However, traditional enzymolysis has many disadvantages, such as long enzymolysis time, low utilization rate of the enzyme, and low conversion rate of the substrate. The objective of this study was to enhance the efficiency and productivity by preparation of ACE-inhibitory peptides on enzymatic from zein with sweeping frequency ultrasond (SFU) pretreatment. The characteristics of ultrasonic field of water was studied first The objective of this research was to observe the impact of SFU pretreatment on physicochemical properties of zein, were precisely studied by the methods of solubility, surface hydrophobicity and free sulfhydryl content. The structure of zein after SFU pretreatment was investigated by the methods of CD and FT-IR spectra and change of surface morphology, particle size was also invested to assess the enzymatic properties of zein for preparation of ACE inhibitory peptides after ultrasonic pretreatment. Thermodynamic parameters of zein changed with different sweeping frequency ultrasonic treatments. It proved that ultrasonic could promote enzymatic hydrolysis. The main achievements are summarized as follows:
     (1) Characteristics of ultrasonic field of water were studied by high speed photography and iodine release method.The ultrasounic cavitation yield at40kHz was remained highest for the range of ultrasounic frequency and the cavitation phenomenon observed for40kHz by high speed photography also more obvious than others The effect ultrasounic cavitation for sweeping model is better than fixed model.
     (2) Effects of SFU pretreatment on physicochemical properties of zein was studied. After SFU pretreatment significant increase was observed in increased in solubility and surface hydrophobicity which indicates the polypeptide chains of zein extended and denaturation temperatures were changed. The change for some ultrasonic parameters indicated that ultrasonic pretreatment was beneficial to protein hydrolysis reaction. Specialy an increase for surface hydrophobicity indicated ultrasonic pretreatment help the enzyme to attack the interior of zein aggregate easily which resulted in the release of hydrophobic amino acids from zein aggregate. These changes play an important role in improvement of ACE-inhibitory activity of hydrolysates.
     (4) Effects of SFU pretreatment on physical microstructure of zein were studied. Microstructure analysis by AFM revealed that upon SFU pretreatment, the fine meshwork structure of zein was ruptured and there were many dissociated protein globules. As compared to control the particle size of ultrasound-pretreated zein was smaller as well as more homogeneous. Analysis of SEM showed that compared with the smooth surface of untreated zein, the surface structures of the ultrasonic-treated zein became rough and their specific surface area was larger. Interestingly, several micro-holes appeared in the zein following ultrasound pretreatment. The results suggested that ultrasound might loosen the tissue of zein aggregate, and help the enzyme to attack the interior of zein aggregate easily which resulted in the release of hydrophobic amino acids from zein aggregate. The particles size of zein increased upon the higher ultrasounic frequency showed sweeping frequency ultrasounic pretreatment induced polarization of zein and dissociation of sub-units and molecular unfolding; changed molecular conformation and caused hydrophobic groups and free sulfhydryls buried inside the molecules to expose.
     (5) Effect of SFU pretreatment on enzymatic characteristics of zein was studied. Significant increase was observed in degree of hydrolysates of zein and hydrolysates of ACE inhibition.The degree of hydrolysates of zein was significantly increased under the sweeping ultrasonic and fixed ultrasonic pretreatment, and hydrolysates of ACE inhibition were also increased. Compared to control, the40±2-kHz SFU pretreatment increased by21.7%and hydrolysate ACE-inhibitory activity was46.1%representing by1.33times increase over the control. Hydrolysate ACE-inhibitory activity was43.7%after dual sweeping frequency ultrasounic pretreatment (40±2kHz/68±2kHz) pretreatment, representing by1.21times increase over the control. Amino acid composition and molecular weight profile revealed that hydrolysates of sweeping frequency ultrasounic pretreatment zein had a higher relative concentration of low molecular weight peptides, hydrophobic amino acid and branched-chain amino acid as compared to control. These changes play an important role in improvement of ACE-inhibitory activity of hydrolysates
     (6) Analyzing results of thermodynamic parameters for zein showed that the values of Ea, AH, AS and AG could be decreased after sweeping frequency ultrasonic pretreatment. Single frequency sweeping and dual frequency ultrasonic pretreatment decreased thermodynamic parameters Ea from5.84kJ/mol to4.70and5.74kJ/mol;ΔH from46.05kJ/mol to36.55and45.20kJ/mol.It indicated the digestion of zein become more facility and benefit to release more activity ACE-inhibitory peptides.
引文
[1]中国社会科学院农村发展研究所,国家统计局农村社会经济调查司.《中国农村经济形势分析和预测(2012-2013)》[M].北京:社会科学文献出版社.2013年04月.
    [2]Tatiana C, Bicudo, R C B. Zein secondary structure in solution by circular dichroism. Biopolymers.2007,89(3):175-178.
    [3]Wang Q, Geil P, Padua G Role of hydrophilic and hydrophobic interactions in structure development of zein films [J]. Journal of Polymers and the Environment.2004,12(3):197-202.
    [4]Esen A. Separation of alcohol-soluble proteins (zeins) from maize into fractions by differential solubility [J]. Plant Physiology.1986,80:623-627.
    [5]Shukla R, Cheryan M. Zein:the industrial protein from corn. Journal of Industry and Crops Production,2001,13:171-192.
    [6]Watson, S.A., Ramstad, P.E. Corn:chemistry and technology [J]. American Association of Cereal Chemists.1987,113-118.
    [7]Argos p., Pedersen K, Marks MDM, et al. A structural model for maize zein proteins [J]. Journal of Biological Chemistry.1982,257:9984-9990.
    [8]Cabra V, Arreguin R, Vazquez-Duhalt R. et al. Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein [J]. Biochimica Et Biophysica Acta-Proteins and Proteomics.2006,1764(6):1110-1118.
    [9]郑喜群.玉米黄粉的酶解工艺与抗氧化活性肽的制备[D]:[博士学位论文].北京:中国农业大学,2006.
    [10]Beck M. I, Tomka I, Waysek E. Physico-chemical charac-terization of zein as a film coating polymer-A direct compari-son with ethyl cellulose [J]. Pharm.1996,14:137-150.
    [11]Takahashi K, Ogata A, Yang W H, et al. Increased hydrophobicity of carboxymethyl starch film by conjugation with zein [J]. Bioscience Biotechnology and Biochemistry.2002,66(6): 1276-1280.
    [12]李秀明,陈野,王君予,等.PPC对挤压成型Zein-PPC复合薄膜性质的影响[J].食品科学,2012,(23):6-10.
    [13]Cho SY, Lee SY, Rhee C. Edible oxygen barrier bilayer film pouches from com zein and soy protein isolate for olive oil packaging [J]. LWT-Food Science and Technology.2010,43(8): 1234-1239.
    [14]Kong B, Xiong YL. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action [J]. Journal of Agricultural and Food Chemistry.2006, 54(16):6059-6068.
    [15]李世敏,张丽君,刘冬,等.玉米降血压肽的分离纯化研究[J].食品科学,2006,27(7):69-71.
    [16]李升福,闻海波.玉米蛋白水解物的功能性——抗疲劳的研究[J].食品科学,2006,27(8):245-247.
    [17]Ariyoshi Y Angiotensin-converting enzyme inhibitors derived from food proteins [J]. Trends in Food Science & Technology.1993,4:139-144.
    [18]赵金兰.用玉米渣生产降血压活性肽[J].食品与机械,1998(5):7-8.
    [19]Susumu Maruyama, Shinsuke Miyoshi, Takasumi Osa, Hideoki Tanaka.Prolyl endopeptidase inhibitory activity of peptides in the repeated sequence of various proline-rich proteins [J]. Journal of Fermentation and Bioengineering.1992,74(3):145-148.
    [20]何慧,谢笔钧,杨卓.大豆蛋白和玉米蛋白酶解肽及其活性研究[J].粮油食品科技,2002,10(1):14-16.
    [21]李鸿梅.玉米功能肽的制备及其生理活性的研究[D].吉林:吉林大学,2008.
    [22]王梅,谷文英.酶解玉米黄粉蛋白制备可溶性肽[J].粮油食品科技,1999,7(1):1-3.
    [23]王梅,戴军.高效凝胶过滤色谱法测定玉米蛋白酶解物寡肽的分子量分布[J].食品与发酵工业,1998,24(5):25-27.
    [24]郑冬梅,李升福,孔保华.玉米蛋白水解条件的优化研究[J].食品科学,2002,23(3):52-56.
    [25]郑冬梅,孔保华,李升福.玉米蛋白及其水解肽的研究动态[J].食品与发酵工业,2002,28(11):55-59.
    [26]Penas E, Prestamo G, Gomez R. High pressure and the enzymatic hydrolysis of soybean whey proteins. Food Chemistry,2004,85:641-648.
    [27]Chicon R, Lopez-Fandino R, Quiros A, et al. Changes in chymotrypsin hydrolysis of B-lactoglobulin A induced by high hydrostatic pressure [J]. Journal of Agricultural and Food Chemistry,2006,54:2333-2341.
    [28]刘静,陈均志.微波双酶协同水解大豆分离蛋白制备小分子肽的研究[J].食品研究与开发,2006,27(8):9-13
    [29]Liu Y X, Jin QZ, Shan L, et al. The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system [J]. Ultrasonics Sonochemistry,2008,15 (4):402-407.
    [30]Song J, Tao WY, Chen W Y. Ultrasound-accelerated enzymatic hydrolysis of solid leather waste [J]. Journal of Cleaner Production,2008,16 (5):591-597
    [31]Richards W T, Loomis A L. The chemical effects of high frequency sound waves I. A Preliminary survey [J]. Journal of American Chemical Society,1927,49(12):3086-3100.
    [32]林仲茂.声化学发展概况[J].应用声学,1993,12(1):1-5
    [33]冯若,李化茂.声化学及其应用[M].合肥:安徽科技出版社,1992年6月
    [34]Suslick K S. The chemical effects of ultrasound [J]. Scitific American,1989, (2):80-86
    [35]Margulis M A. Fundamental aspects of sonochemistry [J]. Ultrason,1992,30(3):152-155
    [36]Suslick K S. The Temperature of cavitation [J]. Science,1991,253(5026):1397-1399
    [37]Madanshetty S L, Apfel R E.Microcavitation:enhancement and applications [J]. Journal of Acoustical Society American,1991,90(3):1508-1514.
    [38]Tuulmets A,Raik P.Ultrasonics acceleration of ester hydrolyses [J]. Ultrasonics Sonochemistry, 1999,6(1-2):85-87.
    [39]徐小丽,曹雁平.超声技术在食品工业中的研究进展[J].食品科技,2006(7):1-5.
    [40]张斌,许莉勇.超声萃取技术研究与应用进展[J].浙江工业大学学报,2008,36(5):558-561.
    [41]Patist A, Bates D. Ultrasonic innovations in the food industry:From the laboratory to commercial production [J]. Innovative Food Science and Emerging Technologies,2008,9: 147-154.
    [42]Knorr D, Zenker M, Heinz V, et al. Applications and potential of ultrasonics in food processing [J]. Trends in Food Science & Technology,2004,15:261-266.
    [43]Mason TJ, Paniwnyk L, Lorimer JP. The uses of ultrasound in food technology [J]. Ultrasonics Sonochemistry,1996,3:253-260
    [44]程存弟.超声技术[M].西安:陕西师范大学出版社,1993年8月.
    [45]罗登林,丘泰球,贲永光.超声对超临界CO2反相微萃取人参皂苷的影响[J].江苏大学学报:自然科学版,2006,27(3):202-206.
    [46]孙冰玉,石彦国.超声波对醇提大豆浓缩蛋白起泡性的影响[J].中国食品学报,2006,6(6):100-104.
    [47]Chouvardas V G, Miliou AN, Hatalis M K. Tactile displays:Overview and recent advances [J]. Displays,2008,29(3):185-194.
    [48]Brendan J O, Daly, Edmund M, Graham P G, et al. High-power low-frequency ultrasound:A review of tissue dissection and ablation in medicine and surgery [J]. Journal of Materials Processing Technology,2008,200(1-3):38-58
    [49]Aharon G. Doping nanoparticles into polymers and ceramics using ultrasound radiation [J]. Ultrasonics Sonochemistry,2007,14(4):418-430
    [50]Mizrach A. Ultrasonic technology for quality evaluation of fresh fruit and vegetables in pre-and postharvest processes [J]. Postharvest Biological Technology,2008,48(3):315-330.
    [51]Ryo S, Tomoko T, Yoichi N, et al. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology [J]. International Journal of Pharmaceutics,2008, 354(1-2):49-55.
    [52]Kamaljit V, Raymond M, Lloyd S,et al. Applications and opportunities for ultrasound assisted extractionin the food industry [J]. Innovative Food Science & Emerging Technologies,2008, 9(2):161-169
    [53]Castro L M D, Priego-Capote F. Ultrasound-assisted preparation of liquid samples [J]. Talanta, 2007,72(2):321-334.
    [54]朱国辉,黄卓烈,丘泰球,等.功率超声对酶促反应的影响[J].应用声学,2001,20.(4):45-48
    [55]Barton S, Bullock C, Weir D. The effects of ultrasound on the activities of some glycosidase enzymes of industrial importance [J]. Enzyme Microbial Technology,1996,18(3):190-194
    [56]Liu YY, Yoshikoshi A, Wang BC, et al. Influence of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare callus cells [J]. Colloids and Surfaces B:Bioiflterfaces.2003,27:287-293.
    [57]Pitt WQ Ross SA. Ultrasound increases the rate of bacterial cell growth. Biotechnology Progress [J].2003,19(3):1038-104.
    [58]Nguyen TTT, Le VVM. Effects of ultrasound on cellulolytic activity of cellulase complex [J]. International Food Research Journal.2013,20(2):557-563.
    [59]黄卓烈,林茹,何平.超声波对酵母过氧化氢酶及多酚氧化酶活性的影响[J].中国生物工程杂志,2003,23(4):89-93
    [60]朱国辉,黄卓烈,徐凤彩,等.超声波对菠萝果蛋白酶活性和光谱的影响[J].应用声学,2003,22(6):10-14.
    [61]肖贵平.木瓜蛋白酶超声法提取工艺及其酶学性质[J].福建农林大学学报,2005,34(3)318-323.
    [62]陈小丽,黄卓烈,巫光宏.超声波对淀粉酶催化活性的影响[J].华南农业大学学报,2005,26(1):76-79
    [63]Stephen Barton, Clive Bullock, Deborah Weir. The effects of ultrasound on the activities of some glycosidase enzymes of industrial importance [J]. Enzyme and Microbial Technology. 1996,18(3):190-194.
    [64]Li CZ, Yoshimoto M, Tsukuda N, et al. A kinetic study on enzymatic hydrolysis of a variety of pulps for its enhancement with continuous ultrasonic irradiation [J]. Biochemical Engineering Journal,2004,19(2):155-164
    [65]朱少娟,施用晖,乐国伟.超声波对胰蛋白酶水解酪蛋白的影响[J].食品与生物技术学报,2005,24(2):50-54
    [66]钟振声,文锡莲,陈然.物理改性对大豆分离蛋白功能性质的影响.中国油脂,2008,33(5):21-24.
    [67]华欲飞.大豆分离蛋白性能优化关键技术[J].中国油脂,2001,26(6):79-81.
    [68]云田田,陈敏,杨颖,等.不同预处理方法对制备水解植物蛋白的影响[J].食品科技,2008(2):121-124.
    [69]杨铭铎,沈春燕,张根生.猪骨呈味物质提取的研究(Ⅰ)——酶解猪骨最佳工艺条件[J].食 品科学,2007,28(9):210-215.
    [70]Jia JQ, Ma HL, Zhao WR, et al. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein [J]. Food Chemistry,2010,119:336-34.
    [71]丁青芝,马海乐,骆林,等.超声处理对菜籽蛋白酶解效果的影响[J].农业工程学报,2009,25(1):294-299.
    [72]何荣海.条斑紫菜降血压肽制备技术的研究[D].江苏:江苏大学,2006.
    [73]刘斌.基于超声波预处理的麦胚ACE抑制肽酶法制备技术研究[D].江苏:江苏大学,2010.
    [74]冯若,朱昌平,赵逸云,王双维,陈兆华.双频正交辐照的声化学效应研究[J].科学通报.1997,42(9):925-929.
    [75]罗登林,丘泰球,贲永光.超声对超临界CO2反相微萃取人参皂苷的影响[J].江苏大学学报:自然科学版,2006,27(3):202-206.
    [76]梁召峰.大功率低频超声清洗声场的声场特性及测量方法研究[D]:陕西师范大学,2004.
    [77]林仲茂,方启平.超声波清洗(11)[J].化学清洗,1998,14(5):41-44
    [78]冯若.超声手册[M].南京:南京大学出版社,1999年:78-83,658-662.
    [79]Romdhane M, Gourdon C, Casemattar G Development of a thermoelectric sensor for ultrasonic intensity measurement [J]. Ultrasonics.1995,33(2):139.
    [80]李化茂,谢安东等.超声空化场的影像研究.声学技术,1997,16(3):117-118.
    [81]谢锦平,李化茂等.鲁米诺声致荧光谱的检测及空化场分布影像.赣南师范学院学报,2000,6:91-93.
    [82]Miguel M, Castellanos, Dolores Reyman. ESR-spin trapping Study on the Sonochemisty of liquids in the Presence of oxygen. Evidence for the Superoxide Radical anion formation [J]. Ultrasonics Sonochemistry.2001,8:17-22.
    [83]Weissler A, Cooper H W, Snyder S. Chemical effect of ultrasonic waves:oxidation of potassium iodine solution by carbon tetrachloride. Jorunal of American Chemical Society,1950,72: 1769-1775.
    [84]朱昌平,冯若,陈非华等.双频辐照的声化学产额及频率效应[J].南京大学学报(自然科学),1998,34(1):93-96.
    [85]朱昌平,李林,徐勇.用碘释放法研究三维正交超声辐照的空化产率的增强效应[J].荆州师范学院学报(自然科学版),2000,23(2):35-37.
    [86]Huang Jinlan, Feng Fuo, Zhu Changping, et al. Low-MHz frequency effect on a sonochemical reaction determined by an electrical method [J]. Ultrasonics Sonochemistry,1995,2(2):93-97
    [87]Hernandez-Izquierdo J M, Krochta VM. Thermoplastic processing of proteins for film formation-A review [J]. Journal of Food Science.2008,73:R30-R39
    [88]Liu J, LeeW. Plasticized prolamine composition.2004, US2004086595A1
    [89]Chiue H, Iwami K, Kusano T, Ibuki F. Decreased antioxidative activity of maize zein in response to deamidation rate [J]. Bioscience Biotechnology and Biochemisitry,1994, 58:198-199
    [90]Zhu L, Chen J, Tang X, Xiong Y Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate [J]. Journal Agricultural Food Chemistry, 2008,56:2714-2721
    [91]Guo H, Shi Y. A novel zein-based dry coating tablet design for zero-order release [J]. International Journal of Pharmaceutics.2009,370:81-86.
    [92]Hurtado-Lopez P, Murdan S. Formulation and characterization of zein microspheres as delivery vehicles [J]. Journal of Drug Delivery Science and Tecchnology,2005,15:267-272
    [93]Liu X, Sun Q, Wang H, Zhang L, Wang J. Microspheres of corn protein, zein, for an ivermectin drug delivery system [J]. Biomaterials.2005,26:109-115
    [94]Zhong Q, Jin M. Nanoscalar structures of spray-dried zein microcapsules and in vitro release kinetics of the encapsulated lysozyme as affected by formulations [J]. Journal Agricultural and Food Chemistry.2009,57:3886-3894
    [95]Rees ED, Singer SJ. A preliminary study of the properties of proteins in some nonaqueous solvents [J]. Archives Biochem Biophys.1956,63:144-159
    [96]Zhang Boce, Luo Yangchao, Wang Qin. Effect of acid and base treatments on structural, rheological, and antioxidant properties of a-zein [J]. Food Chemistry,2011,124(1):210-220
    [97]John M J, Bellmann C, Anandjiwala R D. Kenaf-polypropylene composites:Effect of amphiphilic coupling agent on surface properties of fibres and omposites [J]. Carbohydrate Polymers.2010,82(3):549-554.
    [98]Bull M K, Hayman M M, Stewart C M, et al. Effect of prior growth temperature, type of enrichment medium,and temperature and time of storage on recovery of listeria monocytogenes following high pressure processing of milk [J]. International Journal of Food Microbiology.2005,101(1):53-61.
    [99]Li Yonghui, Sun Xiuzhi Susan. Nanocomposites of PLA and surface grafted MgO:preparation and characterization [J]. Journal of Biobased Materials and Bioenergy.2011,5(4):452-459.
    [100]Floury J, Desrumaux A, Axelos M A V, et al. Degradation of methyl cellulose during ultra-high pressure homogenization [J]. Food Hydrocolloids,2002,16(1):47-53.
    [101]Kim S, Xu J Y, Liu S. Production of biopolymer composites by particle bonding[J]. Composites Part A:Applied Science and Manufacturing,2010,41(1):146-153.
    [102]Kim S. Production of composites by using gliadin as a bonding material [J]. Journal of Cereal Science.2011,54(1):168-172.
    [103]Guessasma S, Benseddiq N, Lourdin D. Effective Young's modulus of biopolymer composites with imperfect interface [J]. International Journal of Solids and Structures,2010,47(18/19): 2436-2444.
    [104]Koseki S, Mizuno Y, Yamamoto K. Use of mild-heat treatment following high-pressure processing toprevent ecovery of pressure-injured listeria monocytogenes in milk [J]. Food Microbiology.2008,25(2):288-293.
    [105]Lu Jun, Zhang Hongtao, Wei Deyun, et al. Experimental computation process of the surface energy of leaves by acquiring drop image information[J]. Journal of Nanoelectronics and Optoelectronics,2012,7(2):173-176.
    [106]Jambrak AR, Herceg Z, Subaric D, Babic J, Brncic M, Brncic SR, Bosiljkov T, Cvek D, Tripalo B, Gelo J (2010) Ultrasound effect on physical properties of cornstarch. Carbohyd Polym 79:91-100.
    [107]Giizey D, Gulseren I, Bruce B, Weiss J. Interfacial properties and structural conformation of thermosonicated bovine serum albumin [J]. Food Hydrocolloid.2006,20:669-677.
    [108]Gordon and Pilosof, L. Gordon, A.M.R. Pilosof Application of high intensity ultrasounds to control the size of whey proteins particles [J]. Food Biophysics.2010,5:203-210
    [109]陶慰孙,李惟,姜涌明主编.蛋白质分子基础[M].第二版.北京:高等教育出版社,1995.
    [110]陈俊辉,陶力,李俊等.生物化学实验[M],第二版,北京:科学出版社,2003年4月.
    [111]Akio Kato, Shuryo Nakai. Hydrophobicity determined by a fluorescence probe methods and its correlation with surface properties of proteins [J]. Biochimica et Biophysica Acta.1980, 624(1),13-20.
    [112]Beveridge T, Toma S J, Nakai S. Determination of SH and S-S groups in some food proteins using Ellman's reagent [J]. Journal of Food Science.1974,39(1):49-51..
    [113]Hao Hu, Jiahui Wu, Eunice C.Y. etl Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions [J]. Food Hydrocolloids.2013,30(2):647-655.
    [114]Jambrak AR, Mason TJ, Lelas V, et al. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions [J]. Journal of Food Engineering.2008, 86(2):281-287.
    [115]张书策,赵金林,姜宜宽.扫频式超声波对苎麻纤维脱胶效果的研究[J],山东纺织科技,2006,3:1-3.
    [116]张书策.扫频式超声波纺织实验仪的设计与罗布麻脱胶效果研究[S].山东:青岛大学,2007.
    [117]Brian Sutten, Cheryl Larkins. Miraclean Trends in Making Ultrasonic Frequency Work for You. Miraclean Ultrasonic Cleaning Systems. http://www.pfonline.com/articles/0406show.html.
    [118]Piero Ciuti, Nikolai V, Dezhkunov, Alberto Francescutto, Anatoly I. Kulak, Glauco Iernetti. Cavitation activity stimulation by low frequency field pulses [J]. Ultrasonics Sonochemistry. 2000,7(4):213-216.
    [119]汤虎,孙智达,徐志宏等.超声波改性对小麦面筋蛋白溶解度影响的研究[J].食品科学,2008,29(12):368-372.
    [120]Brostow W, Chiu R, Kalogeras IM, Vassilikou-Dova A. Prediction of glass transition temperatures:binary blends and copolymers Mater [J]. Letter.2008,62:3152-3155.
    [121]Fried JR, Karasz FE, MacKnight WJ. Compatibility of poly(2,6-dimethyl-1,4-phenylene oxide (PPO)/poly(styrene-co-4-chlorostyrene) blends. I. Differenetial scanning calorimetry and density studies [J]. Macromolecules.1978,11:150-158.
    [122]蒋将.pH偏移处理诱导熔球态大豆蛋白的结构变化及功能性质的改善.[D].江苏:江南大学,2011.
    [123]汤虎.超声波及琥珀酰化法改性小麦面筋蛋白的研究.[S].湖北:华中农业大学,2008.
    [124]陶慰孙,李惟,姜涌明主编.蛋白质分子基础[M].第二版.北京:高等教育出版社,1995.
    [125]Francesco Bonomi, Alessandro Fiocchi, Hanne Fr(?)kiaer, et al. Reduction of immunoreactivity of bovine β-lactoglobulin upon combined physical and proteolytic treatment [J]. Journal of Dairy Research.2003,70(1):51-59.
    [126]谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究[J].高等学校化学学报.2003,24(2):226-231.
    [127]Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. Biochim Biophys Acta.2005,1751:119-139.
    [128]Lobley A, Whitmore L, Wallace BA. DICHROWEB:an interactive website for the analysis of protein secondary structure from circular dichroism spectra [J]. Bioinformatics. 2002,18:211-212.
    [129]Seerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra:comparison of CONTIN, SELCON and DCSSTR methods with expanded reference set [J]. Anal Biochemistry.2000,287:252-260.
    [130]Whitmore L, Wallace BA. Protein secondary structure analyses from circular dichroism spectroscopy:methods and reference databases [J]. Biopolymers.2007,89:392-400
    [131]Guo Y, Liu Z, An H, Li M, Hu J. Nano-structure and properties of maize zein studied by atomic force microscopy. Journal of Cereal Science.2005,41:277-281.
    [132]Demchenko AP. Ultraviolet spectroscopy of protein [M]. Germany:Springer-Verlag,1986.
    [133]Cheung H S, Chushman D W. Spectrophotometic assay and properties of the angiotensin-converting enzyme of rabbit lung [J]. Biochem Pharmacol,1971,20(7):1637-1648.
    [134]贾俊强.超声对酶法制备小麦胚芽ACE抑制肽的影响及其作用机理[D].江苏:江苏大学,2009
    [135]吴丹,徐桂英.光谱法研究蛋白质与表面活性剂的相互作用[J].物理化学学报,2006,22(2):254-260.
    [136]刘斌,马海乐,李树君等.超声波处理对脱脂麦胚分离蛋白结构的变化研究[J].光谱学与光谱分析,2011,31(8):2220-2225.
    [137]贾俊强,马海乐,赵伟睿等.超声波处理对麦胚清蛋白结构和功能性质的影响[J].过程工程学报,2009,9(2):107-112.
    [138]赵伟.高压脉冲电场在液态蛋杀菌中的应用及其对微生物和蛋白质的作用机制.[D],江苏:江南大学,2009
    [139]Venyaminov, S. Y., Yang, J. T. Determination of protein secondary structure. In Circular dichroism and the conformational analysis of biomolecules [M]. New York:Fasman, G D.,Plenum Press,1996:69-107.
    [140]Giizey D, Giilseren I, Bruce B, Weiss J. Interfacial properties and structural conformation of thermosonicated bovine serum albumin [J]. Food Hydrocolloid.2006,20:669-677.
    [141]Stathopulos PB, Scholz GA, Hwang YM. Sonication of proteins causes formation of aggregates that resemble amyloid [J]. Protein Science.2004,13(11):3017-3027..
    [142]Lefevre, T,& Subirade, M. Structural and interaction properties of β-Lactoglobulin as studied by FTIR spectroscopy [J]. International Journal of Food Science and Technology.1999, 34(5/6):419-428.
    [143]Subirade M, Kelly I, Gueguen J,& Pezolet M. Molecular basis of film formation from a soybean protein:comparison between the conformation of glycinin in aqueous solution and in films [J]. International Journal of Biological Macromolecules.1998,23:241-249.
    [144]Jackson M,& Mantsch HH. Halogenated alcohols as solvents for proteins:FTIR spectroscopic studies. Biochimica et Biophysica Acta,1992,1118:139-143
    [145]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究[D].广州:华南理工大学,2007
    [146]Gulseren I, Giizey D, Bruce BD, Weiss J. Structural and functional changes in ultrasonicated bovine serum albumin solutions [J]. Ultrasonics Sonochemistry.2007,14,173-183
    [147]雷卓,白晓军,成晓玲,等.原子力显微镜在生物制品中的应用[J].中国生物制品学杂志,2006,19(4):438-440.
    [148]董秀萍:海参、扇贝和牡蛎的加工特性及其抗氧化活性肽的研究[D].江苏:江苏大学,2010.
    [149]Guo Y, Liu Z, An H, Li M, Hu J. Nano-structure and properties of maize zein studied by atomic force microscopy [J]. Journal of Cereal Science.2005,41:277-281.
    [150]Lin Lin, Haiying Cui, Ronghai He, Lei Liu, Cunshan Zhou, Wael Mamdouh, Haile Ma. Effect of ultrasonic treatment on the morphology of casein particles [J]. Ultrasonics Sonochemistry. 2014,21(2):513-519
    [151]Ibrahim Gulseren, Demet Guzey, Barry D. Bruce, Jochen Weiss. Structural and functional changes in ultrasonicated bovine serum albumin solutions [J]. Ultrasonics Sonochemistry. 2007,14(2):173-183.
    [152]Shukla R, Cheryan M. Zein:the industrial protein from corn [J]. Industial Crops and Products. 2001,13:171-192.
    [153]Francesco Bonomi, Alessandro Fiocchi, Hanne Frokiaer, et al. Reduction of immunoreactivity of bovine β-lactoglobulin upon combined physical and proteolytic treatment [J]. Journal of Dairy Research.2003,70(1):51-59.
    [154]刘斌,马海乐,李树君,等.超声波处理对脱脂麦胚分离蛋白结构的变化研究[J].光谱学与光谱分析,2011,31(8):2220-2225.
    [155]Jia J, Ma H, Zhao W, Wang Z, Tian W, Luo L, He R. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein [J]. Food Chemistry.2010, 119:336-342.
    [156]Khanal SK, Grewell D, Sung S, van Leeuwen J. Ultrasound applications in wastewater sludge pretreatment:a review [J]. Critical Reviews Environmental Science and Technology.2007 (a), 37:277-313.
    [157]Khanal SK, Montalbo M, van Leeuwen J, Srinivasan G, Grewell D. Ultrasound enhanced glucose release from corn in ethanol plants. Journal of Biotechnology and Bioengineering. 2007(b):98:978-985.
    [158]Jambrak AR, Herceg Z, Subaric D, Babic J, Brncic M, Brncic SR, Bosiljkov T, Cvek D, Tripalo B, Gelo J. Ultrasound effect on physical properties of cornstarch [J]. Carbohydrate Polymers.2010,79:91-100
    [159]Ariyoshi Y. Angiotensin-converting enzyme inhibitors derived from food proteins [J].Trends in Food Science and Technology.1993,4,139-144
    [160]吴琼英.降血压发酵乳的制备及其性能研究[D].江苏:江苏大学,2004.
    [161]辛志宏.从小麦胚芽中提取降血压肽的研究[D].江苏:江苏大学,2003
    [162]Adler-Nissen J. Enzymatic Hydrolysis of Food Proteins [M]. New York:Elsevier,1986.
    [163]B. A. Murray, D. J. Walsh, R. J. FitzGerald. Modification of the furanacryloyl-L-phenylalanylglycylglycine assay for determination of angiotensin-I-converting enzyme inhibitory activity [J]. Journal of Biochemical and Biophysical Methods.2004,59 (2): 127-137
    [164]刘志国,王亚林.米糠蛋白降血压肽(ACE抑制肽)的制备方法:中国200410012953.6[P].2005-01-12.
    [165]Huang Q, Li L, Fu X. Ultrasound effects on the structure and chemical reactivity of cornstarch granules [J]. Starch.2007,59:371-378.
    [166]Jambrak AR, Herceg Z, Subaric D, Babic J, Brncic, et al. Ultrasound effect on physical properties of comstarch [J]. Carbohyd Polym.2010,79:91-100.
    [167]丘泰球,杨日福,丁彩梅.双频超声交替强化超声临界流体萃取装置的设计与应用[J].应用声学,2006,25(1):38-42.
    [168]贾俊强.超声对酶法制备小麦胚芽ACE抑制肽的影响及其作用机理[D].江苏:江苏大学,2009
    [169]Karki B, Lamsal BP, Jung S, van Leeuwen JH, Pometto III AL, Grewell D, Khanal SK. Enhancing protein and sugar release from defatted soy flakes using ultrasound technology [J]. Journal of Food Engineering.2010,96:270-278
    [170]Villamiel M, de Jong P. Inactivation of Pseudomonas fluorescens and Streptococcus thermophilus in Trypticase Soy Broth and total bacteria in milk by continuous-flow ultrasonic treatment and conventional heating [J]. Journal of Food Engineering.2000,45:171-179.
    [171]安志丛.预处理对小麦面筋蛋白功能性质及酶解特性的影响研究[S].江苏:江南大学,2009.
    [172]倪莉,陶冠军,戴军,等.血管紧张素转化酶活性抑制剂丝素肽的分离、纯化和结构鉴定[J].色谱,2001,19(3):222-225.
    [173]于娅,杨瑞金,王璋.牡蛎功能短肽的制备及ACE抑制活性[J].无锡轻工大学学报,2004,23(2):49-52.
    [174]管骁 姚惠源.酶法制备燕麦麸蛋白ACE抑制肽的研究.食品与机械,2006,22(6):12-15.
    [175]刘志国,吴琼,吕玲肖,等.酶解米糠蛋白分离提取ACE抑制肽及其结构研究[J].食品科学,2007,28(3):223-227.
    [176]朱丽娟.玉米蛋白水解物体外消化产物的抗氧化及ACE抑制活性研究[S].江苏:江南大学,2008.
    [177]张宇昊.花生短肽制备及其功能活性研究[[)].北京:中国农业科学院.2007.
    [178]丁青芝,马海乐,骆林,等.超声处理对菜籽蛋白酶解效果的影响[J].农业工程学报,2009,25(1):294-299.
    [179]毛丽琴.双低油菜ACEI活性肽制备技术研究[S].江苏:江苏大学,2007.
    [180]何荣海,马海乐,周存山,等.超声波在酶法生产紫菜降血压肽过程中的应用[J].江苏大学学报(自然科学版),2007,28(1):4-7.
    [181]Levine I N.Physical Chemistry[M]. Boston:McGraw-Hill,2002.
    [182]朱铭莪,白红英,代伟,等.陕西几种土壤过氧化氢酶的动力学和热力学特征[J].西北农业大学学报,1989,17(1):20-25.
    [183]Kadkhodaee R, Povey M J W. Ultrasonic inactivation of Bacillus a-amylase I effect of gas content and emitting face of probe [J]. Ultrasonics Sonochemistry.2008,15(2):133-142
    [184]郭锴,唐小恒,周绪美.化学反应工程[M].北京:化学工业出版社,2000.
    [185]藏雅茹.化学反应动力学[M].天津:南开大学出版社,1995.
    [186]赵学庄,罗渝然,藏雅茹,等.化学反应动力学原理[M].北京:高等教育出版社,1984.
    [187]McClements D J. Advances in the application of ultrasound in food analysis and processing [J]. Trends in Food, Science & Technology September,1995,6(9):293-299.
    [188]Knorr D, Zenker M, Heinz V, et al. Applications and potential of ultrasonics in food processing [J]. Trends in Food Science & Technology.2004,15(5):261-266.
    [189]董晓燕.生物化学实验[M].北京:化学工业出版社,2003.
    [190]韩丙军,陈丽霞,黄华平,等.印楝素A降解动力学研究[J].热带作物学报.2008,29(1):97-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700