用户名: 密码: 验证码:
聚苯胺和玉米醇溶蛋白管性能、制备以及在神经损伤修复的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要分为三个部分:
     第一部分是种子细胞的分离培养。此部分通过对神经进行预变性处理,从成年SD大鼠的坐骨神经内分离扩增出雪旺细胞,为后续工作提供种子细胞。
     第二部分对聚苯胺作为植入式电极涂层材料进行评价。实验表明:1、聚苯胺涂层以纳米球形颗粒(20nm~40nm)形态界面聚合于铂电极表面;2、在体外长期电刺激模型中,此涂层保护电极抵抗电流腐蚀效果显著,并长期稳定。涂层整体完整,无脱落、开裂,纳米球形颗粒微观形貌亦保持,显示出良好的抗腐蚀性和稳定性;3、在SD大鼠视网膜匀浆电刺激模型中,聚苯胺涂层有效抑制电极对网膜匀浆组织的非特异性吸附,并保护其所在组织遭受电刺激诱发的脂质过氧化的攻击,展现出良好的组织保护作用。
     第三部分对玉米醇溶蛋白管的制备及其对SD大鼠5mm坐骨神经缺损的修复作用进行了初步研究。
     第一节重点探讨玉米醇溶蛋白神经导管的制备及基本性能评价,就其导电性、通透性、生物活性、力学性能等展开研究。自主研发导管制备方法——浸提法,并申请中国专利保护。结果表明: 1、玉米醇溶蛋白及其降解产物具有良好的细胞相容性,PC12细胞对其降解产物存在剂量依赖性;2、导管管壁具有选择通透性;管内壁涂覆具有缓释潜能的纳米级玉米醇溶蛋白微球;管体力学性能适配手术操作和体内植入;3、导管导电性通过涂覆聚苯胺来实现。聚苯胺本身具有良好的细胞相容性,但其降解产物在一定浓度下对细胞的增殖有抑制作用;4、导管生物活性可通过接种细胞或细胞外基质来实现。
     第二节建立SD大鼠5mm坐骨神经缺损动物模型,评价无生物活性导管和导电导管的实际修复功效。结果显示,无生物活性导管和导电导管均能在4周内成功桥接SD大鼠5mm坐骨神经缺损,再生轴突长过神经缺损与远端神经相连。这为更好的修复周围神经提供了可能。
     本文的创新点主要有:
     一、将聚苯胺用作植入式电极涂层,首次在SD大鼠视网膜匀浆体系下评价聚苯胺涂层的保护作用。
     1、聚苯胺涂层具有纳米级微观形貌,球形纳米颗粒形态展现出良好的稳定性;
     2、在体外电刺激模型中,聚苯胺涂层保护电极抗电流腐蚀效果显著,不仅涂层长期稳定,而且纳米级微观形貌保持良好;
     3、在SD大鼠视网膜匀浆电刺激模型中,聚苯胺涂层有效减少电极对网膜组织碎片的非特异性吸附,从而降低炎症反应程度;此外还能明显保护所在组织遭受电刺激引发的脂质过氧化攻击。
     二、首次将玉米醇溶蛋白引入周围神经损伤领域,并将其制备成神经导管用于修复神经损伤。玉米醇溶蛋白管及其制备方法申请中国专利保护。
     1、玉米醇溶蛋白神经导管具有良好的细胞相容性。导管植入体内后可被降解吸收;体外细胞实验显示PC12细胞对玉米醇溶蛋白管的降解产物存在剂量依赖性。
     2、自主研发导管的制备方法。此法操作简单,可重复性强,适用范围广。可制备不同管径(>0.28mm)、管长和壁厚(>18μm)的组织工程用导管。
     3、首次将玉米醇溶蛋白与聚苯胺相结合,实现导电导管的制备。为损伤神经早期功能恢复提供可行性。
The main contents of the thesis are as follows:
     PART 1: In vitro expansion of Schwann cells from the predegeneratedsciatic nerves of adult SD rat. This part was a prepation of seeding cells forlater investigaion.
     PART 2: Evaluation of polyaniline (PANi) as implanted electrodecoatings. It revealed that 1) PANi was in situ polymerized on platinum (Pt)electrodes with nanoparticles from 20nm to 40nm; 2) in long-term electricalstimulation model, PANi coatings showed excellent anticorrosion propertyduring 6 months electrical stimulation, as well as the intactness and thestability; 3) in SD rat retinal homogenate stimulation model, PANi coatingsdramatically protected electrodes and surrounding tissue against nonspecificadsorption and peroxidation, respectively.
     PART 3: The fabrication and the investigation of zein conduits in SD rat5mm sciatic nerve regeneration.
     The first part was the fabrication and characterization of zein conduits,focus on the conductivity, permeability, bioactivity, mechanical property, etc.The zein conduits and its fabrication were applied China Patent. It indicatedthat 1) zein and its degraded products are biocompatible on PC12 cells; 2) zein conduits were selectively permeable; inner surface coated withnanoscaled microspheres, which was releasable; mechanical property wassuitable for operation and implant; 3) the conductivity of zein conduits wasobtained from PANi coating. PANi are biocompatible on PC12 cells, ratherthan its degraded products, which hamper the cell proliferation in specificcontent; 4) the bioactivity was obtained from implant cells or ECM.The second part was the evaluation of non-bioactive conductive zeinconduits in SD rat model with 5mm sciatic nerve gaps. It showed thatregenerated axons accomplished to connect the distal nerve ends in 4 weeksin both zein conduits and conductive zein conduits. It was feasible inperipheral nerve restoration.
     The innovations were mainly in two aspects:
     1. Utilization of PANi as coating materials to the implanted electrodes. Itis the first time to evaluate the PANi coating properties in SD rat retinalhomogenate model.
     1) The morphology of PANi coating was nanoparticles ranging from20nm to 40nm, which exhibited excellent properties on stability;
     2) In long-term electrical stimulation system, the PANi coating showedsplendid anticorrosion property in long-term electrical stimulation, as well asthe intactness and the stability;
     3) In the SD rat retinal homogenate electrical stimulation model, thePANi coatings dramatically protected electrodes against nonspecificadsorption, which reduced the inflammation, as well as the protection ofsurrounding tissue from peroxidation.
     2. It is firstly to introduce zein into peripheral nerve restoration tofabricate nerve conduits. The zein conduits and its fabrication method were applied China Patent.
     1) Zein conduits were biocompatible and biodegradable. PC12 cells relyon the zein degraded products.
     2) The procedure of fabrication of zein conduits was simple and wideuse, which could obtain conduits with controllable inner dimmers (>0.28μm),length and depth (>18μm) for tissue engineering.
     3) Combined zein with PANi to obtain conductive zein conduits, firsly,for nerve repair and restoration.
引文
[1] Langer R, Vacanti JP. Tissue Engineering. Science 1993;260:920-926.
    [2] Cheung HY, Lau KT, Lu TP, et al. Acritical review on polymer-basedbio-engineered materials for scaffold development. Composites Part B:Engineering 2007;38:291-300.
    [3] Tang JB.Vein conduits with interposition of nerve tissue for peripheral nervedefects. J Reconstr Microsurg 1995;11:21-26.
    [4] Tetsuya K, Masayoshi T,Yukinobu T, et al. Nerve regeneration across a25-mm gap bridged by a polyglycolic acid-collagen tube:a histological andelectrophysiological evaluation of regenerated nerves. Brain Res1996;740:66-74.
    [5] Levi ADO, Sonntag VKH, Dickman C, et al. The role of cultured Schwanncells grafts in the repair of gaps within the peripheral nervous system ofprimates. Exp Neurol 1997;143:25-36.
    [6] Hadlock TA, Sundback CA, Hunter DA, et al. Anew artificial nerve graftcontaining rolled Schwann cell monolayers. Microsurgery 2001;21:96-101.
    [7] Rodriguez FJ, Verdu E, Ceballos D, et al. Nerve guides seeded withautologous Schwann cells improve nerve regeneration. Exp Neurol2000;161:571-584.
    [8] Hadlock T, Sundback C, Koka R, et al. Anovel, biodegradable polymerconduit delivers neurotrophins and promotes nerve regeneration.Laryngoscope 1999;109:1412-1416.
    [9]王晓冬,顾晓松,张沛云,等.人工组织神经移植物辅加神经再生素修复大鼠周围神经缺损的实验研究.解剖学报2002;33:131-134.
    [10]杨有雄,廖建春,陆勤康,等.视神经管的显微外科解剖学研究.解剖与临床2007;12:7-10.
    [11] Verdu E, Ceballos D, Vilches JJ, et al. Influence of aging on peripheral nervefunction and regeneration. J Peripher Nerv Syst 2000;5:191-208.
    [12] Evans GRD. Chanllenges to nerve regeneration. Semin Surg Oncol2000;19:312-318.
    [13] Lundborg G.A25-year perspective of peripheral nerve surgery: evolvingneuroscientific concepts and clinical significance.Am J Hand Surg2000;25:391-414.
    [14] Matsuyama T, Mackay M, Midha R. Peripheral nerve repair and graftingtechniques:a review. Neurol Med Chir 2000;40:187-199.
    [15] Amit Pabari, Shi YuYang, Afshin Mosahebi, et al. Recent advances inartificial nerve conduit design: Strategies for the delivery of luminal fillers. JControl Release. In press.
    [16]曹常松,张基仁.组织工程化神经修复周围审计缺损的研究进展.中华创伤杂志2010;26:573-576.
    [17]陈兴泳,唐洲平,唐荣华.神经组织工程研究进展.脑与神经疾病杂志2007;15:397-399.
    [18] Young RC, Wiberg M, Terenghi G. Poly-3-hydroxybutyrate (PHB): aresorbable conduit for long-gap repair in peripheral nerves. Br J Plast Surg2002;55:235-240.
    [19] Wang SF, Cai L. Polymers for fabricating nerve conduits_Review Article.International Journal of Polymer Science 2010;1-20.
    [20] Hudson TW, Evans GR, Schmidt CE. Engineering strategies for peripheralnerve repair. Clin Plast Surg 1999;26:617-628.
    [21] Shi K, Kokini JL, Huang QR. Engineering zein films with controlled surfacemorphology and hydrophilicity. JAgric Food Chem 2009;57:2186-2192.
    [22]吴德升,赵定麟,何北平,等.修复周围神经损伤的组织工程研究.生物医学工程杂志1997;14:108-110.
    [23]朱丹字,崔蒋,李大婧,等.玉米醇溶蛋白的性质、制备工艺和应用研究进.江苏农业科学2010;6:24-26.
    [24]汪学荣,阚建全,彭顺清,等.用玉米醇溶蛋白涂膜保鲜牛肉的研究.农业工程学报2005;21:157-160.
    [25]李昀,李素燕,赵一诺,等.玉米醇溶蛋白在冷却肉保鲜中的应用.食品工业科技2008;3:262-264.
    [26] Tu J, Wang H, Li H, et al. The in vivo bone formation by mesenchymal stemcells in zein scaffolds. Biomaterials 2009;30:4369-4376.
    [27]王华杰,王林嵩,王瑾晔.玉米醇溶蛋白-肝素微球的制备和缓释.科学技术与工程2003;3:557-560.
    [28] Dang J, Sun QS, Wang JY. Basic study of corn protein, zein, as a biomaterialin tissue engineering, surface morphology and biocompatibility. Biomaterials2004;25:4691-4697.
    [29] Liu XM, Sun QS, Wang HJ. Microspheres of corn protein, zein, for anievemrctin drug delivery system. Biomaetirals 2005;26:109-115.
    [30] Gong SJ, Wang HJ, Sun QS, et al. Mechanical properties and in vitrobiocompatibility of porous zein scaffolds. Biomaterials 2006;27:3793-3799.
    [31] Qu ZH, Wang HJ, Tang TT, et al. Evaluation of the zein/inorganics compositeon biocompatibility and osteoblastic differentiation.Acta Biomaterialia2008;4:1360-1368.
    [32]刘健,吴景景,李娜,等.玉米醇溶蛋白制备牙周组织工程支架材料.中国组织工程研究与临床康复2010;14:7873-7877.
    [33] Shirawa H, Louis EJ, MacDiarmid AG, et a1. Synthesis of electronicallyconducting polymers:Halogen derivatives of poIyacetylene, (CH)x. J ChemSoc Chem Commun 1977;39:578-579.
    [34] Lee K, Cho S, Park SH, et al. Metallic transport in polyaniline. Nature2006;441:65-68.
    [35] Parker ID. Carrier tunneling and device characteristics in polymerlight-emitting diodes. JAppl Phys 1994;1656-1666.
    [36] Tran HD, Li D, Kaner RB. One-Dimensional conducting polymernanostructures:Bulk synthesis and applications. Adv Mater2009;21:1487-1499.
    [37] Zhang LP, Peng H, Kilmartin PA, et al. Poly (3.4-ethylenedioxythiophene)and polyaniline bilayer nanostructures with high conductivity andelectrocatalytic activity. Macromolecules 2008;41:7671-7678.
    [38]李程,杨小刚,黄文君.聚苯胺纳米材料的合成与应用.微纳电子技术2011;48;92-117.
    [39] Green RA, Lovell NH, Wallace GG, et al. Conducting polymers for neuralinterfaces: Challenges in developing an effective long-term implant.Biomaterials 2008;29:3393-3399.
    [40] Abidian MR, Corey JM, Kipke DR, et al. Conducting polymer nanotubesimprove electrical properties of neural electrodes. Small 2010;6:421-429.
    [41] Runge MB, Dadsetan M, Baltrusaitisetal J. The development of electricallyconductive polycaprolactone fumarate polypyrrole composite materials fornerve regeneration. Biomaterials 2010;31:5916-5926.
    [42] Zhang QS, YanYH, Li SP, et al. The synthesis and characterization of anovel biodegradable and electroactive polyphosphazene for nerve regeneration.Materials Science and Engineering C 2010;30:160-166.
    [43] Burkhard S, Erhard M,Bernhard S,et al.Rat Schwann cells in bioresorbablenerve guides to promote and accelerate axonal regeneration.Brain Research2003;963:321-326.
    [44] Dahlin L, Brandt J, NilssonA, et al. Schwann cells, acutely dissociated froma predegenerated nerve trunk, can be applied into a matrix used to bridgenerve defects in rats. Acta Neurochir Suppl 2007;100:57-59.
    [45]李奕,林巍巍,王晓冬,等.成年大鼠周围神经损伤后远侧端雪旺细胞变化的体外研究南通大学学报(医学版)2006;26:414-416.
    [46] Gerburg K, Hisham F, Welfgang S, et al. In vivo predegeneration ofperipheral neves: an effective technique to obtain activated Schwann cells fornerve conduits. J Neurosci Methods 1999;89:17-24.
    [47] Danielsen N, Kerns JM, Holmquist B, et al. Pre-degenerated nerve graftsenhance regeneration by shortening the initial delay period. Brain Res1994;666:250-254.
    [48] Evans GR, Brandt K, Katz S, et al. Bioactive poly(L-lactic acid) conduitsseeded with Schwall cells for peripheral nerve regeneration. Biomaterials2002,23:841-848.
    [49] Levi AD, Guenard V,Aebischer P, et al. The functional characteristics ofSchwann cells cultured from human peripheral nerve after transplantation intoa gap within the rat sciatic nerve. J Neurosci 1994;14:1309-1319.
    [50] Levi AD, Bunge RP. Studies of myelin formation after transplantation ofhuman Schwann cells into the severe combined immunodeficient mouse. ExpNeurol 1994:130:41-52.
    [51]金迪,崔浩. Schwann细胞与视神经再生.国外医学眼科分册2003;27:240-243.
    [52] Mimura T, Dezawa M, Kanno H. Peripheral nerve regeneration bytransplantation of bone marrow stromal cell-derived Schwann cells in adultrats. J Neurosurg 2004;101:806-812.
    [53] Reynolds BA, Weiess S. Generation of neurons and astrocytes from isolatedcell of the adult mammalian central nervous system. Science1992;255:1707-1709.
    [54] Alessandri G, Emanueli C, Iadeddu P. Genetically engineered stem cellttherapy for tissue regeneration. Ann NYAcad Sci 2004;1015:271-284.
    [55] Privat A. Stem cells and neural repair. Bull Acad Natl Med2005;189:305-313.
    [56] Campos LS. Neurospheres: insights into neural stem cell biology. J NeurosciRes 2004;78:761-769.
    [57] Parker MA, Anderson JK, Corliss DA, et al. Expression profile of anoperationally-defined neural stem cell clone. Exp Neurol 2005;194:320-332.
    [58] Hsu SH, Su CH, Chiu IM.Anovel approach to align adult neural stem cellson micropatterned conduits for peripheral nerve regeneration: a feasibilitystudy.Artif Organs 2009;33:26-35.
    [59] Jiang X,Xu R, Yang Z, et al. Experimental study on trace marking andoncogenicity of neural stem cells derived from bone mrrow. Cell MolNeurobiol 2008;28:689-71l.
    [60] Shimizu S, Kitada M, Ishikawa H, et al. Peripheral nerve regeneration by thein vitro differentiated-human bone marrow stromal cells with Schwann cellproperty. Biochem Biophys Res Commun 2007;359:915-920.
    [61] Zurita M, Bonilla C, Otero L,et al. Neural transdifferentiation of bonemarrow stromal cells obtained by chemical agents is a short-time reversiblephenomenon. Neurosci Res 2008;60:275-280.
    [62] Ao Q, Funga CK, TsuiAYP. The regeneration of transected sciatic nerves ofadult rats using chitosan nerve conduits seeded with bone marrow stromalcell-derived Schwann cells. Biomaterials 2011;32:787-796.
    [63]后振中,黄美荣,李新贵.共聚对聚吡咯的改性作用.石油化工2010;39:1289-1295.
    [64] Li DF, Wang W, Wang HJ, et al. Polyaniline ?lms with nanostructure used asneural probe coating surfaces. Appl Surf Sci 2008;255:581-584.
    [65] Wang HJ, Ji LW, Li DF, et al. Characterization of nanostructure and cellcompatibility of polyaniline films with different dopant acids.J Phys Chem B2008;112:2671-2677.
    [66] Wang HJ, Fu JX, Wang W, et al. Preparation of a hydrophobic polythiophenefilm to improve protein adsorption and proliferation of PC 12 cells. J PhysChem B 2008;112:16290-16299.
    [67] Li LM, Cao PJ, Sun MJ, et al. Intraorbital optic nerve stimulation withpenetrating electrodes: in vivo electrophysiology study in rabbits. GraefesArch Clin Exp Ophthalmol 2009;247:349-361.
    [68] Chen W, Liu PP, She ZY, et al. Biocompatibility study on polyimide filmelectrode with optic nerve glial cells of rat. Chinese Journal of Neuroanatomy2009;25:244-248.
    [69] Pillai AR, Ouseph PP, Ramachandran KK, et al. Spectrophotometricdetermination of trace amounts of platinum with thiocyanate and rhodamine6G. Chem Anal 1996;41:787-791.
    [70] Sloane DL, Leung R, Craik CS, et al. Aprimary determinant forlipoxygenase positional specificity, Nature 1991;354:149-152.
    [71] Wang JY, Sekine S, Saito M. Effect of Docosahexaenoic Acid andAscorbateon Peroxidation of Retinal Membranes of ODS Rats. Free Radical Res2003;37:419-424.
    [72] Wang XS, Ma H, Xiang SP, et al. The resolving effect of soybean storageprotein subunits under different separation gel concentrations of SDS-PAGE.Chinese journal of Oil Crop Sciences 2004;26:75-80.
    [73] Lee JY, Bashur CA, Goldstein AS, et al. Polypyrrole-coated electrospunPLGA nanofibers for neural tissue applications. Biomaterials2009;30:4325-4335.
    [74] Valle LJ, Aradilla D, Oliver R, et al. Cellular adhesion and proliferation onpoly(3,4-ethylenedioxythiophene): Benefits in the electroactivity of theconducting polymer. European Polymer Journal 2007;43:2342-2349.
    [75] Richardson-Burns SM, Hendricks JL, Foster B, et al. Polymerization of theconducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) aroundliving neural cells. Biomaterials 2007;28:1539-1552.
    [76] Wang LP, Di L, Ji LW, et al. The Compatibility of Some ConductivePolymers on PC-12 Pheochromocytoma Cells. Proceedings of the 3rd IEEEInt. Conf. on Nano/Micro Engineered and Molecular Systems 2008;834-837.
    [77] Kamalesh S, Tan P, Wang J, et al. Biocompatibility of electroactive polymersin tissues. J Biomed Mater Res 2000;52:467-478.
    [78] Gizdavic-Nikolaidis M, Travas-Sjdic J, Bowmaker GA,et al. Conductingpolymers as free radical scavengers. Synth Met 2004;140:225-232.
    [79] Saikiaa JP, Banerjeeb S, Konwara BK, et al. Biocompatible novelstarch/polyaniline composites: Characterization, anti-cytotoxicity andantioxidant activity. Colloid Surface B: Biointerfaces 2010;81:158-164.
    [80]沙兆林,苏广均,施磊,等.导电聚苯胺的合成.南通工学院学报2000;16:25-27.
    [81]阳范文,罗亦萍,唐建斌.复合氧化剂在合成导电聚苯胺中的应用.化学研究2000;48-50.
    [82] Wang Y, Shi YC, Xu XK, et al. Preparation of PANI-coated poly(styrene-co-styrene sulfonate) nanoparticles in microemulsion media. Colloidsand Surfaces A: Physicochemical and Engineering Aspects 2009;345:71-74.
    [83] Delvaux M, Duchet J, Stavaux PY,et al. Chemical and electrochemicalsynthesis of polyaniline micro-and nano-tubules. Synthetic Metals2000;113:275-280.
    [84] Huang JX, Virji S, Weilier BH, et al. Polyaniline nanofibers: facile synthesisand chemical sensors. Journal of the American Chemical Socitey2003;125:314-315.
    [85] Mosqueda Y, Perez-Cappe E,Arana J, et al. Preparation and characterizationof LiNi0.8Co0.2O2/PANI microcomposite electrode materials under assistedultrasonic irradiation. Journal of Solid State Chemistry 2006;179:308-314.
    [86] Araujo WS, Margarit ICP, Ferreira M, et al. Undoped polyanilineanicorrosive properties. Electrochimica Acta 2001;46:1307-1312.
    [87] DeBerry DW. Modificaton of the electrochemical and corrosion behavior ofstainless steel with electroactive coating. Electrochemcal Society1985;132:1022-1026.
    [88] Wessling B. Passivation of metals by coating with polyaniline: corrosionpotential shift and morphological changes. Advanced Materials1994;6:226-228.
    [89] Jain FC, Rosato JJ, Kalonia KS, et al. Formation of an active elective barrierat Al/semicondoctor interface: a novel approach in corrosion prevention.Corrosion 1986;42:700-707.
    [90] Wei Y, Wang JG, Jia XR, et al. Polyaniline as corrosion protection coatingson cold rolled steel. Polymer 1995;36:4535-4537.
    [91] Cheung KC. Implantable microscale neural interfaces. Biomed Microdevices2007;9:923-938.
    [92] Mattioli-Belmonte M, Giavaresi G, Biagini G, et al. Tailoring biomaterialcompatibility: In vivo tissue response versus in vitro cell behavior. Int JArtifOrgans 2003;26:1077-1085.
    [93]赵保路.氧自由基和天然抗氧化剂.科学出版社1999;1-150.
    [94] Dorfman AL, Joly S, Hardy P, et al. The effect of oxygen and light on thestructure and function of the neonatal rat retina. Doc Ophthalmol2009;118:37-54.
    [95] Guajardo M, TerrasaAM, CataláA. Lipid-protein modifications duringascorbate-Fe2+ peroxidation of photoreceptor membranes: Protective effect ofmelatonin. J Pineal Res 2006;41:201-210.
    [96] Mattson MP. Modif ication of ion homeostasis by lipid peroxidation: roles inneuronal degeneration and adaptive plasticity. Trends Neurosci1998;21:53-57.
    [97] Anthony GE. Electroconductive hydrogels: Synthesis, characterization andbiomedical applications-Review. Biomaterials 2010;31:2701-2716.
    [98] Schmidt CE, Shastri VR, Vacanti JP, et al. Stimulation of neurite outgrowthusing an electrically conducting polymer. Proc NatlAcad Sci USA1997;94:8948-8953.
    [99] Nomura H, Tator CH, Shoichet MS. Bioengineered strategies for spinal cordrepair. J Neurotrauma 2006;23:496-507.
    [100] Novikova LN, Novikov LN, Kellerth JO. Biopolymers and biodegradablesmart implants for tissue regeneration after spinal cord injury. Curr OpinNeurol 2003;16:711-715.
    [101] Liu YX, Chan-Park MB. Hydrogel based on interpenetrating polymernetworks of dextran and gelatin for vascular tissue engineering. Biomaterials2009; 30:196-207.
    [102]王瑾晔,狄伶.谷物类醇溶蛋白管及其制备方法.中国专利No.201010121405,2010.
    [103] Girot AL, Langlois P, Sangleboeuf JC, et al. Asynthetic aragonite-basedbioceramic influence of process parameters on porosity and compressivestrength. Biomaterials 2002;23:503-510.
    [104] Balgude AP,Yu X, SzymanskiA, et al. Agarose gel stiffness determines rateof DRG neurite extension in 3D cultures. Biomaterials 2001;22:1077-1084.
    [105] Emilie Mercey, Patricia Obe?d, Denise Glaise, et al. The application of 3Dmicropatterning of agarose substrate for cell culture and in situ comet assays.Biomaterials 2010;31:3156-3165.
    [106] Lu HX, Hoshibaa T, Kawazoe N, et al. Autologous extracellular matrixscaffolds for tissue engineering. Biomaterials 2011;32:2489-2499.
    [107]危岩,李保松,付长奎,等.电活性导电聚合物在生物医学中的应用.高分子学报2010;12:1399-1405.
    [108]Cheng S. Nanostructured, electroactive and bioapplicable materials. Doctoraldissertation of Drexel university, 2002.
    [109]Huang LH, Hu J, Wang X, et al. Synthesis and characterization ofelectroactive and biodegradable ABAblock copolymer of polylactide andaniline pentamer. Biomaterials, 2007;28:1741-1751.
    [110]Bidez PR, Li S, MacDiarmid AG, et al. Polyaniline, an electroactive polymerwith potential application in tissue engineering. J Biomater Sci Polym Ed,2006;17:199-212.
    [111]Lelkes PI, Li M, PetersA, et al. Designing intelligent polymeric scaffolds fortissue engineering: blending and co-electrospinning synthetic and naturalpolymers. In: Gdoutos E E, Experimental analysis of nano and engineeringmaterials and structures. Netherlands: Springer 2007;831-832.
    [112]Guo Y, Mylonakis A, Zhang Z, et al. Templated synthesis of electroactiveperiodic mesoporous organosilica bridged with oligoaniline. Chem Eur J,2008;14:2909-2917.
    [113]Chang H, YuanY, Shi N, et al. Electrochemical DNAbiosensor based onconducting polyaniline nanotube arrayAnal Chem 2007;79:5111-5115.
    [114]Cucchi I, Boschi A, Arosio C, et al. Bio-based conductive composites:Preparation and properties of polypyrrole (PPy)-coated silk fabrics. Synth Met2009;159:246-253.
    [115]Casella GT, Bunge RP, Wood PM, et al. Improved method for harvestinghuman Shwann cels from mature peripheral nerve and expansion in vitro. Glia.1996;17:327-338.
    [116]Boyan BD, Hummert TW, Dean DD, et al. Role of material surfaces inregulating bone and cartilage cell response. Biomaterials 1996;17:137-146.
    [117]何留民,全大萍,廖凯荣.具有多纵向排列通道的多孔神经导管的制备研究.组织工程与重建外科杂志2006;2:312-315.
    [118]Hollinger JO, Battistone GC. Biodegradable bone repair materials: syntheticpolymers and ceramics. Clin Orthop Rel Res 1986;207:290-305.
    [119]Schmalenberg KE,Uhrich KE. Micropatterned polymer substrates controlalignment of proliferating Schwann cells to direct neuronal regeneration.Bioamteirals 2005;26:1423-1430.
    [120]Chen G, Zhou P, Mei N, et al. Silk fibroin modified porouspoly(ε-caprolactone) scaffold for human fibroblast culture in vitro. J Mater SciMater Med 2004;15:671-677.
    [121]Hong JK, Madihally SV. Three-dimensional scaffold of electrosprayed fiberswith large pore size. Acta Biomaterialia 2010;6:4734-4742.
    [122]张群卫,朱礼根,鲁传华.玉米醇溶蛋白体内外降解行为的研究.安徽化工2010;36:15-17.
    [123]张志军,刘强,王世杰.神经导管的基础与临床研.医学综述2010;16:647-650.
    [124]Godbey WT, Hindy BSS, Sherman ME, et al. Anovel use of centrifugal forcefor cell seeding into porous scaffolds. Biomaterials 2004;25:2799-2805.
    [125]许屏,荧光和免疫荧光染色技术及应用.人民卫生出版社2000;25-28.
    [126]Tremble TE, Short FG. The physiology of nerve transplantation. Hand Clin2000;16:105-122.
    [127]Lawton LW. Plasticizers for zein: their effect on tensile properties and waterabsorption of zein films. Cereal Chem 2004;81:1-5.
    [128]黄国平,杨晓泉,温其标.增塑剂对玉米醇溶蛋白成膜性能的影响.华南理工大学学报2004;3:38-40.
    [129]Cao JN, Wu S, Zhao H, et al. The use of laminin modified linear orderedcollagen scaffolds loaded with laminin-binding ciliary neurotrophic factor forsciatic nerve regeneration in rats. Biomaterials 2011;32:3939-3948.
    [130]Birch R, Bonney G, Wynn Parry CB. Surgical disorders of theperipheralnerve. Edinburgh: Churchill Livingstone 1998;145-148.
    [131]吕荣.周围神经损伤修复及功能恢复评价.中国组织工程研究与临床康复2011;15:1454-1458.
    [132]Bellamkonda RV. Peripheral nerve regeneration:An opinion on channels,scaffolds and anisotropy. Biomaterials 2006;27:3515-3518.
    [133]GulatiAK. Immunological fate of Schwann cell-populated acelluar basallamina nerve allografts. Transplantation 1995;59:1168-1622.
    [134]Bain JR, Mackinnon SE, Hunter DA.Functional evaluation of completesciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast ReconstrSurg 1989;83:129-138.
    [135]谢雪涛,张长青,苏琰,等.小肠黏膜下层和自体翻转静脉修复周围神经.中国修复重建外科杂志2007;21:149-153.
    [136]Mauritz C, Grothe C, Haastert K. Comparative study of cell culture andpurification methods to obtain highly enriched cultures of proliferating adultrat Schwann cells. J Neurosci Res 2004;77:453-61.
    [137]De Medinaceli L, Freed WJ, Wyatt RJ. An index of the func-tional conditionof rat sciatic nerve based on measurements made from walking tracks. ExpNeurol 1982;77:634-643.
    [138]Walker JL, Evans JM, Meade P,et al.Gait- stance duration as a measure ofinjury and recovery in the rat sciatic nerve model. J Neurosci Methods1994;52:47-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700