用户名: 密码: 验证码:
湿法超微粉碎对马铃薯渣的改性及其功能特性和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯渣是马铃薯淀粉生产过程中的副产物。湿渣呈浆状,持水量高,生产季节集中且易发酵,大量的薯渣堆积会造成环境污染;若烘干则成本过高,通常作为饲料或当成废渣作掩埋处理,但会导致土壤和地下水的污染,同时利用程度较低,且运输成本较高。本文对马铃薯渣进行湿法超微粉碎,改善了马铃薯渣的粗糙口感,提高了薯渣的功能性质,并获得便于干燥的均一稠状物料,有利于马铃薯渣的保存,使马铃薯渣成为一种富含膳食纤维的功能性食品配料应用于食品工业中,提高了马铃薯渣的利用价值。本文主要研究结果如下:
     首先,将胶体磨作为超微粉碎设备,对薯渣进行处理。对处理后的马铃薯渣进行形态结构观察、红外光谱分析、X-射线衍射扫描,可以发现随着胶体磨磨齿间隙的减小,马铃薯渣细胞壁结构得到了降解,薯渣纤维亲水性增强,相对结晶度略有下降;在磨齿间隙为12μm时即可得到平均粒径小于100μm的超微粉体。此时,薯渣颗粒比表面积较大,密度为0.22g/ml,纤维之间的空间网络结构最为松散。同时,随着胶体磨磨齿间隙的减小,马铃薯渣中PSDF的含量逐渐提高。在胶体磨间隙为5μm时,其PSDF达16.87g/100g,比处理前提高了36.60%。综上所述,胶体磨可以达到对马铃薯渣改性的目的。
     其次,研究了在不同胶体磨磨齿间隙下马铃薯渣及从马铃薯渣中的有效成分可溶性膳食纤维(PSDF)和不溶性膳食纤维(PIDF)的水溶性、膨胀力、持水力和粘度的变化。结果表明:超微粉碎可以使薯渣中不溶性纤维成分转化成可溶性成分。随着胶体磨磨齿间隙的减小,马铃薯渣的水溶性由14.12%上升到21.52%,提高了52.4%。在胶体磨磨齿间隙为12μm时,改性薯渣的膨胀力、持水力达到最高,分别为9.42 ml/g和7.21g/g,较处理前分别提高了33.8%和42.5%。同时,胶体磨的处理还提高了马铃薯渣中PSDF和PIDF的粘度,经剪切乳化后的PIDF显示出较PSDF好的粘度性质。随着胶体磨磨齿间隙的减小,马铃薯渣获得了处理前几乎没有的粘度特性,由11 mPa.s上升到108mPa.s,提高了881.8%。
     再次,研究了在不同胶体磨磨齿间隙下马铃薯渣、PIDF、PSDF与降血脂、降血糖功能相关的性质,包括胆酸钠吸附能力、持油力、阳离子交换能力、胰脂酶活力抑制力、葡萄糖的束缚能力和淀粉酶活力的抑制力。结果表明:PIDF和PSDF均具有一定的功能特性,两者混合后发生了协同作用从而提高了改性薯渣的功能性质。在降血脂性质方面,改性薯渣的最大胆酸钠吸附能力为13.44mg/g、持油力为7.26g/g、阳离子交换能力为512mmol/kg、胰脂酶活力抑制力为67.2%,分别比处理前提高了41.03%、45.8%、23.7%和39.7%;在降血糖性质方面,改性薯渣对葡萄糖束缚能力和对淀粉酶活力的抑制力较处理前均有所提高,在葡萄糖浓度为100mmol/L时葡萄糖束缚力最大提高了68.4%,而对淀粉酶抑制力最大提高了81.0%,其束缚量和抑制力分别为0.682mmol/g和28.6%。在这些功能特性中,改性马铃薯渣空间网络结构的包囊能力及其比表面积的增大起了重要的作用。综合而言,在胶体磨磨齿间隙为12μm时所获得的改性薯渣物化性质及功能特性较佳。
     最后,将上述综合功能性质较佳的改性薯渣添加到面团中,通过快速粘度糊化仪、面粉粉质仪、拉伸仪来测定改性马铃薯渣的添加对面团流变学性质的影响。结果表明:对马铃薯渣的改性处理可以有效地提高添加马铃薯渣后面粉的加工特性,使其耐热稳定性和耐剪切性增强,而对其回生程度影响不大。同时,改性薯渣的添加提高了面团的吸水率、弱化了面团,因此添加薯渣后的面团适于应用在以低筋面粉为原料的蛋糕、曲奇等面制品中。研究改性马铃薯渣的添加对曲奇品质的影响,为企业生产含改性马铃薯渣的健康型曲奇提供指导意义。结果显示改性薯渣的添加可抑制曲奇风味的散失、延缓曲奇硬度的上升和抑制曲奇中油脂的氧化作用从而延长曲奇的贮存期。在改性薯渣添加量为10%时饼干的品质与空白相差较小。随着贮存时间的延长,添加改性薯渣的曲奇总体呈现出较空白好的感官品质。
Potato pulp is one of the main by-products in potato starch processing. The wet slurry with high water holding capacity is not convenient drying, and easy to fermentation on the production season, and then cause environmental pollution. Generally, potato pulps were treated as fodder for animal or as a fill in farmland. These methods can not effectively settle the massive accumulation of potato residue, and transportation cost is high. In this paper, potato pulp was treated by wet ultrofine grinding, which improve the the rough taste of potato residue and the functional properties. Moreover, the homogeneous slurry achieved can be dried easily by various dring equipment and is conducive to the preservation of potato residue. Then the modified potato pulp rich in Dietary fiber can be applicated in food industry as functional food ingredients. As a result, the utilization value of potato pulp is improved. In this paper, the results are as follows:
     First of all, colloid mill is used as a ultrofine grinding equipment to treat potato pulp. The morphological infrared spectroscopy and X-ray diffraction scanning changes of potato pulp treated with colloid mill. Meanwhile, infrared spectroscopy and X-ray diffraction scanning were used to test the changes of potato pulp insoluble dietary fiber (PIDF), the results showed the degradation of potato pulp cell wall structure , the enhancement of hydrophilic ability and the slightly decrease of relative crystallinity in PIDF. It also proved that a ultrafine powder with an average particle size of less than 100μm can be achieved when the colloid grind clearance at 12μm. At this point, the potato residue particles pose larger specific surface area, the smallest density of 0.22 g / ml and the most loose network structure. In conclusion, modified potato pulp can be achedved by colloid mill.
     Secondly, the water solubility, swelling and water retention capacity and viscosity of potato pulp , PSDF and PIDF treated by colloid mill in different colloid grind clearance was studied. The research shows that the treatment of potato pulp by colloid mill can change insoluble fiber ingredients into soluble components. As the grinding clearance decreased, the residue solubility increased from 14.12% to 21.52% by 52.4%. The modified residue get the best swelling and water retention capacity reached 9.42 ml / g and 7.21 g / g increase by 38.1% and 42.5% respectively when at 12μm grinding clearance. Heat treatment in food processing will greatly increase the physical property. At the same time, colloid mill treatment can effectively increase the viscosity of potato pulp, PIDF and PSDF. As colloid grinding clearance decreased, potato pulp showed viscosity property that barely existed before, and the viscosity increased from 11mPa.s to 108mPa.s by 881.8%.
     Moreover, The physicochemical properties relative to hypoglycemic and decreasing serum lipids functional properties of potato pulp, PIDF and PSDF after colloid mill treatment at different grind clearance were studied. The physicochemical properties includes bile sodium adsorbabilty, oil holding capacity, cation exchange capacity, pancreatic lipase activity inhibitory, glucose absorption capacity andα-amylase inhibitory activity. The result revealed that both PIDF and PSDF had certain functional properties and there was a Synergistic Effect between them to improve the properties of modified potato pulp. In decreasing serum lipids side, the modified potato residue has a bile sodium adsorbability of 13.44 mg/ g, oil holding capacity of 7.26 g / g, cation exchange capacity of 512 mmol / kg, pancreatic lipase inhibitory activity of 67.2 %, increased 41.03%, 45.8%, 23.7% and 39.7% respectively than the production without treatment; In hypoglycemic side, the related characters of the modified pulp were improved. The golucose absorption capacity had a maxium increasement by 68.4 %, and theα-amylase inhibitory activity had a maxium increasement by 81.0 %, the absorption capacity and inhibitory activity were 0.682 mmol / g and 28.6%. Hypoglycemic in nature, the study showed that glucose modified potato residue on capacity constraints and the amylase inhibition of both the former than the increase in glucose concentration was 100 mmol / L, the largest increase 68.4 percent, while the amylase Suppression of the largest increase 69.6 percent, the shackles of force and suppression were 0.682 mmol / g and 28.6%. The porous structure of modified potato pulp and its large specific surface area plays an important role in these features. In general, a product with better physical and chemical nature was obtained with colloid mill treatment at the gind clearance of 12μm.
     Finally, the optimum modified potato residue was added to different gluten content flours, Then rapid viscosity analyzer (RVA), farinograph and extensograph were applied to test the change of the dough rheology. The results showed that the pasting curve can be used to judge the quality of different flours. A higher gluten content flour is company with lower peak viscosity and pasting temperature. The addition of modified potato residue dilutes the gluten and starch content of flours, which lead to the downward of the pasting curve overall, including the decreasement of peak viscosity, breakdown, setback and final viscosity. As a result, the heat-resistant stablilty of flours is increased while the retragradation degree is reduced relatively. Simultaneity, the interaction of potato residue fiber and gluten accelerate the water absorption ability of the dough but worsene the quality, so that the formation and stability time is shorted and the degree of softening is increased. The modified residue was added to cookies at last. The test showed that the storage period is extended by the addition of modified potato pulp. it’s due to that the pulp can inhibite the loss of flavor, delay the increasement of hardness and prevent the oxidation of oil in cookies. The addition of modified potato pulp by 10% is supposed to have a similar taste as the control. With the prolonging of storage period, the cookies shows nicer sensory quality than the control.
引文
1.周庆锋.中国马铃薯淀粉产业发展报告[J].中国食品添加剂,2007(G00):62—71
    2.赵萍,张珍.马铃薯渣生料发酵饲料生产[J].食品与发酵工业,2001,27(3):82—84
    3.貟建民,史琦云.马铃薯渣固体发酵生产菌体蛋白饲料的研究[J].微生物学杂志,.1999(2):23—27
    4.赵凤敏,李树君.中心组合设计法优化马铃薯薯渣固态发酵工艺[J].农业机械学报,2006.37(8):45—48
    5.袁惠君.微生物发酵对马铃薯渣膳食纤维得率及性质的影响[J].兰州理工大学学报,2005,31(5):75—77
    6.吕金顺等.马铃薯渣制膳食纤维的工艺研究[J].中国马铃薯,2001,15(6):332—334
    7.刘达玉.酶碱法提取薯渣膳食纤维及其改性研究[J].食品研究与开发,2005,26(5):63—66
    8.王卓.马铃薯膳食纤维的制备、性能及应用研究[D]:[硕士学位论文].无锡:江南大学食品学院,2007
    9.张应桂,杨军,王颖.马铃薯果胶提取条件的研究[J].河南化工,1998(9):18—19
    10.郑燕玉,吴金福.微波法从马铃薯渣中提取果胶工艺的研究[J].泉州师范学院学报(自然科学),2004,(7):57—61
    11.万建华.马铃薯渣果胶的提取及其性质的研究[D]:[硕士学位论文].无锡:江南大学食品学院,2008
    12.杨庆文,孙文敬,谢红,等.利用马铃薯渣和黑淀粉发酵柠檬酸的菌种选育[J].山西农业科学,2004,32(4):57—59
    13. Huchette.Food containing potato pulp [P]. Unite States Patent,4160849.1979—07—10
    14. Frank mayer. Potato pulp: Properties,physical modification and applications. Ploymer degradation and stability,1998,59(1):231—235
    15. Rogols. Non-edible composite material comprising potato peel product [P]. Unite States Patent,6547867.2003—04—15
    16.胡国华.功能性食品胶[M].北京.化学工业出版社,2004.413
    17.郑建仙.功能性食品(第一卷)[M].北京.中国轻工业出版社,1995.7
    18.郑建仙.功能性膳食纤维[M].北京.化学工业出版社,2005.6—9
    19.戚勃,李好来.膳食纤维的功能特性及在食品工业在的应用现状[J].现代食品科技,2006,22(3):272—279
    20.卢宏科,王琴,区子弁.膳食纤维的功能与应用[J].广东农业科学,2007(4).67—70
    21.金英姿.膳食纤维的功能及其在食品中的应用研究[J].新疆石油教育学院学报,2004,7(6):16—17
    22. Dello Staffolo M. Influence of dietary fiber addition on sensory and rheological properties of yogurt . International Dairy Journal, 2004(14) : 263—268
    23.王大为,张艳荣.玉米膳食纤维在冰淇淋中应用的研制[J].食品科学,2003,24(4):104—107
    24.周亚军,王淑杰.膳食纤维营养保健香肠的研制[J]食品工业科技,2004,25(2):83—85
    25.刘成梅,刘伟,林向阳.Microfluidize对膳食纤维溶液物理性质的影响[J].食品科学,2004(2):72—75
    26.杜崇旭,牛铭山,刘雪娇.膳食纤维改性与应用的研究进展[J].大连民族学院学报,2005,7(5):18—21
    27.郑水林.超微粉体加工技术与应用[M].北京:化学工业出版社,2005.1—30
    28.李冷,蒋晓强.国内外湿式微粉碎的研究进展[J].国外金属矿选矿,1998(8).3—6
    29.盖国胜.超微粉体技术[M].北京.化学工业出版社,2004.1
    30.张炳文,宋永生,郝征红.植物性食品资源开发中的高新技术—超细粉碎技术[J].现代商贸工,.2003(7): 38—42
    31.周坚,肖安红.功能性膳食纤维食品[M].北京:化学工业出版社, 2005.1—50
    32.郑慧.苦荞数皮超微粉碎及其粉体特性研究[D]:[硕士学位论文].陕西:西北农林科技大学食品科学与工程学院.2007
    33.陈存社,刘玉峰.超微粉碎对小麦胚芽膳食纤维物化性质的影响[J].食品科技,2004(9):88—94
    34.刘成梅.瞬时高压作用的机制及杀菌和纤维改性研究[D]:[博士学位论文].南昌:南昌大学生命科学与食品工程学院,2006
    35.刘彩兵,盛勇,涂铭旌.米糠超微细化的正交试验研究[J].食品科技,2003(5):97—101
    36.洪杰.湿法超微粉碎对大豆膳食纤维素微粒结构及物性的影响[D]:[硕士学位论文].北京:中国农业大学食品科学与营养工程学院,2005
    37.陈奇伟.联合干燥法生产马铃薯渣滓干粉[J].淀粉与淀粉糖,2005(2):52—53
    38.陈志成.薯类精深加工利用技术[M].北京.化学工业出版社,2003.4
    39. Inglett.dietary fiber gels for calorie reduced foods and method for preparing the same[P].United States Patent,5766662.1998—06—16
    40.郑建仙.功能性膳食纤维[M].北京:化学工业出版社,2005.156—161
    41.谢苗,高薇薇,邓海燕,等.不同品种海带膳食纤维的形态观察及物理性质[J].广东化工,2005,32(2):21—24
    42.唐启义,冯明光.DPS数据处理系统[M].北京.科学出版社,2007.85—141
    43.刘树立,王春艳,盛占武,等.超微粉体技术在食品工业中的优势及应用研究[J].四川食品与发酵,2006,42(6):5—7
    44.纵伟,张青锋,赵光远,等.湿法超微粉碎对红枣浆理化性质的影响[J].江苏农业科学,2006(6):374—375
    45.蓝海军,刘成梅,涂宗财,等.大豆膳食纤维的湿法超微粉碎、干法超微粉碎比较研究[J].食品科学,2007,28(6):171—174
    46. gong sun xia.高压均质机的工作原理及应用[EB/OL].http://down.foodmate.net/ziliao/sort/12/5021.html,2007—11—12
    47.肖旭霖.食品加工机械与设备[M].北京:中国轻工业出版社,2002:142—144
    48.罗钟南,钟原,杨耕兴,等.红外光谱法测定玻璃中羟基含量[J].灯与照明,1999,23(6) :1—3
    49.邱玉桂,陈晓军,孙凌虹,等.Soda-AQ苇浆强化氧漂机理的研究[J].中国造纸学报,1999,14(1):50—56
    50.蒋建新,杨中开,朱莉伟,等.竹纤维结构及其性能研究[J].北京林业大学学报,2008,30(1) :128—132
    51.洪杰,张绍英.湿法超微粉碎对大豆膳食纤维素微粒结构及物性的影响[J].中国农业大学学报,2005,10(3): 90—94
    52. Sowbhagya H B, Florence Suma P, Mahadevamma S.Spent residue from cumin– a potential source of dietary fiber. Food Chemistry ,2007,104(3):1220—1225
    53.胡国华.食品胶体[M].北京:化学工业出版社,2004:147
    54.郑慧,王敏,吴丹.超微粉碎对苦荞麦理化及功能性质的研究[J].食品与发酵工业,2006,32(8):5—9
    55.陈亚非,葛亚中,罗琦珊.复合膳食纤维通便作用的研究.[J]现代食品科技,2005,21(2): 43—46
    56. Nauss K M, Jacobs L R, Newbeme P M. Dietary fat and fiber: relationship to caloric intake, body growth, and colon tumorigenesis. Journal of Clinial Nutrition,1987,45:243—251
    57. Chau Cha-Fai, Wang Yi-Ting,Wen Yu-Ling.Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chemistry, 2007,100(4):1402—1408
    58. Hendrick Joey, Tadahiro tadokoro , Curt emenhiser , etc. various fiber have different effects on lipase-catalyzed hydrolysis of tributyrin in vitro. Journal of Nutrion,1992,122(2):269—277
    59.王子花,申瑞玲,李文全.膳食纤维降血糖作用研究进展[J].粮食与油脂,2006(7):42—44
    60.盖国胜.超微粉碎技术[M].北京:化学工业出版社, 2004.1—8
    61.潘思铁,王可兴,刘强.不同粒度超微粉碎米粉理化特性研究[J].中国粮油学报,2003,18(5):1—4
    62. Zunft H J F, Luder W.Carob pulp preparation rich in insoluble fiber lowers total and LDL cholesterol in hypercholesterolemic patients. Journal of Nutrition, 2003,42(5):235—242
    63.胡国华.米糠膳食纤维对胆酸钠吸附作用的研究[J].中国食品添加剂,2001(2):10—12
    64. Sangnark A, Noomhorm A. Efect of particle sizes on functional properties of dietary fiber prepared from sugarcane bagasse. Food Chemistry, 2003, 80(2): 221—229
    65. Chau Chi-Fai, Cheung Peter C-K.Effect of the physico-chemical properties of three legume fiber on cholesterol absorption in hamsters . Nutrition Research.,1999,19(2): 257—265
    66.欧仕益,高孔荣,赵谋明.膳食纤维抑制膳后血糖升高的机理探讨[J].食品科学,1998,19(3):48—52
    67. Zhou K, Xia W, Zhang C, etc. In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties. LWT-Food Science and Technology, 2006,39(10):1087—1092
    68.胡叶碧.改性玉米皮膳食纤维的酶法制备及其降血脂机理研究[D]:[博士学位论文].无锡:江南大学食品学院,2008
    69.大连理工大学无机化学教研室.无机化学(上册)[M].第3版.北京:高等教育出版社,1990.328—339
    70.王镜岩,朱圣庚,徐长法.生物化学(上册)[M].第3版.北京:高等教育出版社,2002.79—121
    71.刘育.超分子化学[M].北京:化学工业出版社,2001.1—5
    72. Crist R H, Martin J R, Guptill P W,etc. Interaction of metals and protons with algae 2 Ion-exchange in adsorption and protons with algae. Environmental Science and Technology,1990,24(3):337—342
    73. Ozer A, Ozer D, Dursun G, etc. Cadmium(II) adsorption on Cladophora crispata in batchstirred reactors in series. Waste Management,1999,19(3): 233—240
    74. Goodhart R S,Shils M E.Modern Nutrition in Health and Disease. 6th ed. Philadelphia.Lea and Febiger,1980(6):113
    75. Ou S, Kwok K C, Li Y, etc. In vitro study of possible role of dietary fibre in lowering postprandial serum glucose. Journal of Agricultural Food Chemistry,2001,49(2): 1026—1029
    76.高瞩,姚惠源,郭贯新.燕麦可溶性膳食纤维降糖机理的初步探讨[J].粮食与饲料工业,2001 (2):47—48
    77.林作楫.食品加工与小麦品质改良[M].北京:中国农业出版社,1994.41—42
    78.牟德华,李艳,崔福来.高膳食纤维儿童食品的研制[J].食品工业科技,1997(2):43—45
    79. Larrea M A, Chang Y K, Martinez-Bustos F. Some functional properties of extruded orange pulp and its effect on the quality of cookies. LWT - Food Science and Technology,2005,38(3): 213—220
    80.项惠丹,许时婴,王璋.高纤维酥性糕点的研制[J].食品与发酵业,2007,33(2):150—154
    81.孙彩玲,田纪春,张永祥.TPA质构分析模式在食品研究中的应用[J].实验科学与技术,2007,5(2):1—4
    82. Zaidul I S M, Nik Norulaini N A, Mohd Omar A K, etc. RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydrate Polymers,2007, 69(4): 784—791
    83.李次力,缪铭.甜玉米粉对面团流变学特性、微观结构及汉堡包品质的影响[J].食品科学,2008,29(02):39—42
    84. Sudha M L,Baskaran V,Leelavathi K. Apple pomace as a source of dietary fiber and polyphenlos and its effect on the rheological characteristics and cake making.Food Chemistry,2007,104(2):686—692
    85. Arti Arora, Mary Ellen Camire. Performance of potato peels in muffins and cookies.Food Research International, 1994, 2(1):15—22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700