用户名: 密码: 验证码:
茶薪菇发酵制备麦麸膳食纤维与阿魏酰低聚糖及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦麸是小麦制粉过程中形成的副产物,主要由皮层和部分糊粉层构成,富含纤维素、半纤维素等成分,还含有0.4-0.7%的阿魏酸,且多以共价键的形式与细胞壁多糖连接。因而麦麸可作为制备膳食纤维(Dietary Fibre, DF)和阿魏酰低聚糖(Feruloyl oligosaccharides, FOs)的原料。
     本研究以麦麸为原料,采用食药用真菌发酵法制备膳食纤维和FOs。通过比较食药用真菌在麦麸培养基中的生长特性、产酶情况及生成膳食纤维和FOs产量,筛选得发酵菌株;研究培养基成分及发酵条件对发酵菌株生成膳食纤维、FOs和胞外酶的影响,确定产酶诱导物及最佳发酵条件;比较不同发酵条件下菌株产酶情况,揭示发酵法制备膳食纤维和FOs的机理;通过乙醇沉淀和大孔树脂吸附及柱层析法对FOs分离纯化,采用气相色谱、液相色谱、红外和质谱等方法鉴定FOs的组成及结构;比较发酵前后不溶性膳食纤维(Insoluble dirtary fibre, IDF)的物理特性,不同来源的可溶性膳食纤维(Soluble dietary fibre, SDF)和不同结构的FOs抗氧化、抗肿瘤及其对肠道微生物作用。主要研究结果如下:
     1、比较了平菇、灵芝、荼薪菇等食药用真菌在麦麸培养基中生长、产酶及生成膳食纤维和FOs的情况。结果发现,茶薪菇适于发酵法制备膳食纤维和FOs,经该菌发酵后膳食纤维含量达68.49%,其中含有19.24%的SDF, FOs产量为35.4μM。
     比较了各菌株在麦麸培养基和PDA培养基中的生长速度,结果表明:食药用真菌在麦麸培养基中的生长情况优于PDA培养基,其中以猴头菇和平菇最明显。测定各菌株在麦麸培养基中的产酶情况可知,各菌均能生成淀粉酶、蛋白酶、纤维素C1酶和木聚糖酶等,其中猴头菇亦可生成阿魏酸酯酶;酶活测定结果显示发酵过程中茶薪菇生成淀粉酶、蛋白酶和纤维素C1酶和木聚糖酶活性高于其他菌株。膳食纤维和FOs产量与纤维素酶和木聚糖酶的相关性分析表明,膳食纤维产量与β-葡萄糖苷酶活性负相关(r=-0.71),FOs产量与木聚糖酶活性正相关(r=0.912)。
     2、比较了氮源和无机盐种类对茶薪菇发酵后膳食纤维品质(SDF/(SDF+IDF))的影响,由结果得知:酵母膏、MgSO4·7H2O和VB1与膳食纤维品质显著正相关。采用D-Optimal实验设计方法研究了上述三基质组分添加量对膳食纤维品质的影响,结果表明:随酵母膏、MgSO4·7H2O和VB1添加量的增大,膳食纤维品质先上升后下降,当三基质组分浓度分别为2.50g/L、1.10g/L和0.14g/L时,发酵后膳食纤维品质最好,SDF占总膳食纤维的22.3%。
     研究了发酵条件对茶薪菇发酵后膳食纤维品质的影响,结果显示,装液量、pH值、接种量和发酵温度与发酵时间均显著影响膳食纤维品质,其中装液量对膳食纤维品质影响呈负效应;pH值和接种量对膳食纤维品质的影响趋势相似,随pH值和接种量的增大,膳食纤维品质先上升后下降最后变化迟缓;发酵温度的升高和发酵时间的延长使膳食纤维品质先上升后下降。茶薪菇最佳发酵条件为:发酵温度25℃、装液量60 mL、pH值5.5、接种量12%和发酵时间6 d,在该条件下获得的膳食纤维中含有24.83%的SDF。
     比较了培养基及发酵条件对茶薪菇产酶的影响,结果表明在优化的培养基及发酵条件下,茶薪菇生成淀粉酶、蛋白酶和纤维素cl酶的活性均显著高于其他培养基及发酵条件,在发酵4 d,淀粉酶分别提高了30%和20%,蛋白酶提高了20%和27%,纤维素cl酶提高了45%。
     3、考察了碳源、氮源和金属离子及表面活性剂种类对茶薪菇生成FOs和木聚糖酶的影响,由结果得知:在麦麸培养基中添加10g/L的葡萄糖、10g/L的乳糖和1g/L的蛋白胨,可促进茶薪菇木聚糖酶的合成,超出上述浓度则抑制荼薪菇木聚糖酶的合成。在设定范围内,FOs产量随葡萄糖和乳糖添加量的增加而增大,采用Taguchi OA实验,以木聚糖酶和FOs产量为指标,经Design Expert软件分析得,荼薪菇发酵制备FOs的最佳培养基组成为:在50g/L的麦麸处理液中添加15g/L的葡萄糖和乳糖及1g/L的蛋白胨,该培养基组成下,FOs产量和木聚糖酶活达最大值,分别为0.335mM和1.27 U/mL。
     发酵条件中摇瓶装液量、发酵时间对茶薪菇生成木聚糖酶影响显著,随装液量增加,木聚糖酶活性先上升后下降,发酵时间的延长使木聚糖酶活性先升高后趋于平缓。摇瓶装液量对FOs产量影响呈负相关,FOs产量随pH值升高、接种量增大和发酵时间的延长先增加后减少。经Design Expert软件分析确定茶薪菇发酵制备FOs的最佳发酵条件为:摇瓶装液量90 mL、接种量12%、pH5.5、发酵时间6 d,在该条件下,FOs产量为0.428 mM。麦麸纤维结构观察结果显示,发酵后麦麸纤维纵向及横向结构断裂,表层出现褶皱,出现溶解现象,部分结构脱离纤维主体。
     4、采用乙醇沉淀、Amberlite XAD-2树脂吸附和葡聚糖LH-20分离纯化FOs,并对其结构进行解析,结果表明:乙醇浓度大于50%时,可析出FOs,60-90%乙醇析出的FOs对乳酸菌增值效果最佳;再经Amberlite XAD-2树脂吸附和葡聚糖LH-20分离得FOs-1、FOs-2和FOs-3三组分,单糖组成及结构分析表明FOs由木糖、阿拉伯糖和阿魏酸组成,且三组分为不同聚合度的FOs,其中组分FOS-1聚合度为3-6,FOs-2中含有聚合度为2-3的阿魏酰低聚木糖和阿魏酰阿拉伯糖基木糖,FOs-3组分中含有阿魏酰阿拉伯糖和阿魏酰阿拉伯糖基木三糖。
     5、茶薪菇发酵后IDF的持水力、溶胀性和持油力分别比发酵前提高8.85%、23.13%和15.21%,吸附胆酸钠、脱氧胆酸钠和牛磺胆酸钠的能力均比发酵前提高10%以上。
     SDF和FOs对DPPH自由基抑制率均大于60%,对羟自由基抑制率均达80%以上;FOs总还原能力高于SDF。可见,SDF和FOs均具有较强的抗氧化能力。
     SDF和FOs对乳酸菌具有显著增值作用,其中以FOs-2组分和发酵上清液中提取的SDF效果最好。FOs-2组分可抑制大肠杆菌和金黄色葡萄球菌的生长,发酵上清液中提取的SDF可抑制大肠杆菌的生长。
     采用MTT法检验了SDF和FOs对人结肠癌细胞株HCT-116的抗肿瘤活性,结果表明,两种物质对肿瘤细胞均有抑制作用,且FOs的抑制效果优于SDF,并以FOs-1组分效果最好。当其浓度为1 mg/mL时,抑制率可达54.7%。发酵法制得的SDF对肿瘤细胞的抑制效果显著高于麦麸原样中提取的SDF,浓度为1 mg/mL时,抑制率可达45%。对给药后的肿瘤细胞进行可见光形态学观察后发现,结肠癌细胞株给药后出现贴壁减少、细胞变圆、浮起等现象。
Wheat bran is the by-product of wheat milling, which is composed of episperm, peel and aleurone. And it contains some starch, protein, cellulose and hemicellulose. In addition, there are 0.4~0.7 g ferulic acids in 100 g wheat bran, importantly, these acids mostly bound in bran in the form of covalent linkage with cell wall polysaccharides. Therefore, wheat bran is good material for preparation of dietary fiber (DF) and feruloyl oligosaccharides (FOs).
     In this study, wheat bran was used as the material, DF and FOs was obtained by submerged fermentation of edible mushrooms. The comparison of different mushrooms' growth rates, biosythensis of enzymes and the production of DF and FOs from wheat bran were carried out, and then the optimal strain for fermentation was screened out. Effects of culture medium and fermentation conditions on yields of DF and FOs, and on biosythensis of xylanase were investigated. The mechanism of DF and FOs preparation by fermentation was revealed by detecting the enzymes secreted by mushroom in different culture conditions. FOs were puried by precipitating of ethanol, absorption of resin and chromatography of column. The compositions and structures of FOs were analyzed through HPLC, GC, IR and MS. Lastly, the biological activities of DF and FOs were studied, their antioxidant and antitumor and effects on the growth of intestinal microorganisms were compared. The main results and findings were shown as follows:
     1. Agrocybe chaxingu, the common edible mushroom, was suitable for the preparation of DF and FOs. The yield of DF reached 68.49% after fermentation,of which, SDF was 19.24%. The production of FOs by fermentation was the highest yield among these edible mushrooms, and it was 35.4μM.
     The growth rates of mushrooms in medium of wheat bran and PDA were determined, and results showed that all of the mushrooms grew well in these medium, and the growth rate in wheat bran was higher than that in PDA medium. Hericium erinaceus and Pleurotus ostreatus were the best strains, which grew well in wheat bran medium. Enzymes detection indicated that mushrooms used in our study could secrete amylase, protease, cellulase and xylanase. Hericium erinaceus also could secrete ferulic acid esterase, which was the first reported to our knowledge. The activities of these enzymes were different from the species of the mushrooms. Agrocybe chaxingu was the only strain, which could secrete higher amylase, protease, cellulase and xylanase during fermentation. In the end, the correlation of DF and FOs production with activities of enzymes was analyzed, and results proved that correlation between DF yield and cellulase activity was negative effect (r=-0.711), and xylanase activity positively influenced FOs production (r=0.912).
     2. Effects of nitrogen source and inorganic salt on the quality of DF were investigated. Results showed that yeast poast, MgSO4·7H2O and VB1 influenced DF quality positively. And then the optimal additions of the three substances were optimized by D-Optimal design, and results were analyzed by Design Expert. The optimal fermentation medium was determined:under the condition of 2.50 g/L yeast posat,1.10 g/L MgSO4·7H2O and 0.14 g/L VB1 in wheat bran of 50 g/L, the best quality of DF, which contains 22.3% SDF in total DF, was obtained.
     The culture conditions of fermentation temperature, volume capacity, pH and inoculum quantity and fermentation time influenced DF quality effectively. The effect of volume capacity on DF quality was linearity. DF quality decreased with the increase of volume capacity, and the optimal value was 60 mL/250 mL. The influence of inoculum quantity on DF quality was similar with the effect of pH on DF, both curves fitted well with Guass equation. By analyzing the experiments' results, the optimal culture condition was obtained. Under the condition of fermentation temperature 25℃, volume capacity 60 mL/250 mL, pH value 5.5, inoculum quantity 12% and fermentation time 6 d, the best quality DF was obtained, and it contained 24.83% SDF.
     Effects of culture conditions on the secretion of enzymes from Agrocybe chaxingu during fermentation were investigated, results indicated that activities of amylase, protease and cellulase were increased under the optimal medium and condition. Among them, amylase and protease improved by 30% and 20% than the based medium, respectively, and cellulase of C1 got up to 145% of the initial activity.
     3. Effects of medium components on the bio-synthesis of xylanase and FOs yield were studied, and results showed that carbon and nitrogen source could regulated the yields of xylanase and FOs secreted by Agrocybe chaxingu. Glucose, lactose and peptone improved the bio-synthesis of xylanase, and their additions influenced the enzyme activity effectively. The best additions of glucose, lactose and peptone were 15 g/L,15 g/L and 1 g/L, respectively. Under this medium, the yield of 0.335 mM FOs and 1.27 U/mL xylanase was produced.
     Volume capacity and fermentation time influenced the bio-synthesis of xylanase significantly; and the activity of xylanase first improved and then decreased with the increase of volume capacity. With the prolonging of fermentation time, the biosynthesis of xylanase first increased and then unchanged. The influence of culture condition on FOs production was not as same as the effect on bio-synthesis of xylanase, especially, the effect of volume capacity. For FOs, the yield was decreased with the increase of volume capacity. FOs yield first improved and then decreased with the raise of pH, increase of inoculum volume and prolonging of fermentation time. Under the conditions of volume capacity 90 mL, inoculum quantity 12% and pH 5.5, and feremtnation time 6 d, the highest yields of FOs (0.428 mM) and xylanase (1.36 U/mL) were obtained.
     The structure of wheat bran fiber before and after fermentation by Agrocybe chaxingu was detected by scanning electron microscopy. Results indicated that the fiber structure changed significantly by fermentation. Originally, the fiber combined tightly with smooth surface, while, they were not smooth and broke dnown after fermentation.
     4. The FOs were isolated and purified by precipitation of ethnol, absorption of resin Amberlite XAD-2 and Sephadex LH-20. Results showed that concentration of ethnol influenced FOs precipitation significantly. FOs started to precipitate when ethnol concentration was higher than 50%. The precipitation of 60~90% ethnol increased the growth of lactic acid higher than the precipitations under other concentrations. And then, the precipitation of 60~90% was purified by Amberlite XAD-2 and Sephadex LH-20, and three components of FOs were obtained. The analysis of FOs'structure showed that they were composed of xyln, arabinose and ferulic acid, and the degree of FOs-1 was 3 to 6, FOs-2 degree was 1 to 3 and FOs-3 was 0 and 3.
     5. The physical characteristics of IDF were improved by fermentation. The water hoding power, swelling ability and oil hoding power of IDF increased by 8.85%,23.13% and 15.21%, respectively. The adoption of bile salt was also improved by fermentation.
     DPPH radical-scavenging activities of FOs and SDFs were higher than 60%. The hydroxyl radical scavenging activity of SDF from wheat bran was the highest among FOs and other SDF samples, the inhibition rate was 89%, followed by FOs and SDF-Out. The FOs have the highest antioxidant capacity among SDFs and FOs, followed by SDF-In and SDF-Ou, while the lowest was SDF-0. In a word, both SDFs and FOs showed high antioxidant ability.
     FOs and SDFs could increase the growth of lactic bacteria and influence the growth of E. coli and Staph. aureu. FOs-2 was the best among them, which only increased the growth of lactic bacteri, but also inhibited the growth of E. coli and Staph aureu. SDF-Out could increase the growth of lactic bacteri and inhibit the growth of E.coli, there was no function on Staph. aureu.
     MTT assay was used to analyses the effects of FOs and SDFs on human colon cancer cell of HCT-116. Results indicated that both FOs and SDFs could inhibit the growth of HCT-116, and the inhibition of FOs was higher than SDFs, especially FOs-1. The inhibition of HCT-116 reached 54.7% when the concentration of FOs-1 was 1 mg/mL. SDFs obtained by fermentation inhibited HCT-116 higher than that from wheat bran, and the inhibition was 45% when their concentrations were 1 mg/mL. Morphological observation of HCT-116 cell after treated by FOs-1 showed that cellular shrinkage to round, and cell floated, therefore, the cell closing to wall decreased.
引文
[1]Hipsley EH. Dietary "fibre" and pregnancy toxaemia [J]. British Medical Journal,1953,2(4833): 420-422
    [2]Trowell H. Definition of dietary fiber and hypotheses that it is a protective factor in certain diseases [J]. American Journal of Clinical Nutrition,1976,29(4):417-427.
    [3]Lichon MJ, James KW. Determination of dietary fiber and carbohydrate composition of foods by a modified version of the englyst method. Journal AOAC Internal,1996,79(1):54-61
    [4]闵锐,何云海,姚晓敏.膳食纤维研究的现状与展望[J].上海师范大学学报,1998,27(3):68-74
    [5]谢碧霞,李安平等.膳食纤维[M].北京:科学出版社,2006.
    [6]Esposito F, Arlotti G, Bonifati AM, Napolitano A, Vitale D, Fogliano V. Antioxidant activity and dietary fibre in durum wheat bran by-products [J]. Food Research International, 2005,38:1167-1173
    [7]Chantaro P, Devahastin S, Chiew N. Production of antioxidant high dietary fiber powder from carrot peels [J]. LWT-Food Science and Technology,2008,41:1987-1994
    [8]Trinidad TP, Mallillin AC, Valdez DH, Loyola AS, Askali-Mercado FC, Castillo JC, Encabo RR, Masa D B, Maglaya AS, Chua MT. Dietary fiber from coconut flour:A functional food [J]. Innovative Food Science and Emerging Technologies,2006,7:309-317
    [9]Wong KH, Cheung PCK. Enzymatic preparation of mushroom dietary fibre:A comparison between analytical and industrial enzymes [J]. Food Chemistry,2009,115:795-800
    [10]Cheung PCK. Dietary fibre content and composition of some edible fungi determined by two methods of analysis [J]. Journal of the Science of Food and Agriculture,1997,73,255-260.
    [11]李来好.海藻膳食纤维的提取、毒理和功能特性的研究[D].中国海洋大学,2005
    [12]胡叶碧.改性玉米皮膳食纤维的酶法制备及其降血脂机理研究[D].无锡:江南大学,2008
    [13]Guillon F, Champ M. Structural and physical properties of dietary fibres, and consequences of processing on human physiology [J]. Food Research International,2000,33:233-245
    [14]McDougal GJ, Morrison IM, Stewart D, Hillman JR. Plant cell walls as dietary fibre:range, structure, Processing and function [J]. Journal Science Food Agricultural,1996,70:133-150
    [15]Sangnark A, Noomhorm A. Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse [J]. Food Chemistry,2003,80:221-229
    [16]Nawirska A. Binding of heavy metals to pomace fibers [J]. Food Chemistry,2005,90:395-400
    [17]Jensen BB. Possible ways of modifying type and amount of products from microbial fermentation in the gut. In:Piva, A., Bach Knudsen, K.E., Lindberg, J.E. (Eds.), Gut Environment of Pigs. Nottingham University Press, Nottingham,2001.pp.181-200
    [18]Scharlau D, Borowicki A, Habermann N, Hofmann T, Klenow S, Miene C, Munjal U, Stein K, Glei M. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre [J]. Mutation Research,2009,682:39-53
    [19]Bourquin LD, Titgemeyer EC, Fahey GC. Fermentation Of Various Dietary Fiber Sources By Human Fecal Bacteria [J]. Nutrition Research,1996,16:1119-1131
    [20]Bach Knudsen KE, Jensen BB, Hansen I. Digestion of polysacchrides and other major components in the small and large intestine of pigs diets condisting of oat fractions rich in β-D-glucan[J]. British Journal Nutritin,1993,70:537-556
    [21]Johansen HN, Bach Knudsen KR, Wood PJ, Fulcher RG. Physico-chemical properties and the digestibility of polysaccharides from oats in the gastrointestinal tract of pigs [J]. Journal Science Food Agricultural,1997,73:81-92
    [22]Drzikova B, Dongowski G, Gebhardt E, Habel A. The composition of dietary fibre-rich extrudates from oat affects bile acid binding and fermentation in vitro [J]. Food Chemistry,2005,90:181-192
    [23]刘树兴.膳食纤维的制备及特性[J].西北轻工业学院学报,1996,2(14):108-111
    [24]Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation [J]. Nutrition Reviews, 2001,59:129-39.
    [25]Kimm S. The role of dietary fiber in the development and treatment of childhood obesity [J]. Pediatrics,1995,96:1010-1014.
    [26]Miller WC, Niederpruem MG, Wallace JP, Lindeman AK. Dietary fat, sugar and fiber predict body fat content [J]. Journal of the American Dietetic Association,1994,94:612-615.
    [27]Birketvedt GS, Aaseth J, Florholmen JR, Ryttig K. Long-term effect of fibre supplement and reduced energy intake on body weight and blood lipids in overweight subjects [J]. Acta Medica, 2000,43:129-132.
    [28]Rolls BJ, Ello-Martin JA, Tohill BC. What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management? Nutrition Reviews,2004, 62:1-17.
    [29]王振军,郑毅,杨新庆.纤维与便秘[J].中国临床医生杂志,2007,35:14-16
    [30]Burkitt DP, Trowell HC. Dietary fibre and western diseases [J]. Irish Medical Journal,1977,70: 272-277.
    [31]Ferguson LR, Roberton AM, Watson ME, Triggs CM, Harris PJ. The effects of a soluble-fibre the adsorption of carcinogens fibres polysaccharide on to insoluble dietary [J]. Chemico-Biological Interactions,1995,95:245-255
    [32]Spiller RC. Pharmacology of dietary fibre [J]. Pharmacology & Therapeutics,1994,62:407-427
    [33]Lairon D. Nutritional and metabolic aspects of postprandial lipemia [J]. Reproduction, Nutrition, Development,1996.36,345-355
    [34]马正伟,张喜忠.复合膳食纤维对高胆固醇血症大鼠胆固醇代谢的长期作用[J].中国动脉硬化杂志,2000,10(5):400-404
    [35]Larrauri JA, Rup'erez P, Borroto B, Saura-Calixto F. Mango Peels as a New Tropical Fibre: Preparation and Characterization[J]. LWT,1996,29(8):729-733
    [36]Li WD, Shan F, Sun SC, Corke H, Beta H. Free radical scavenging properties and phenolic content of Chinese black-grained wheat [J]. Journal of Agricultural and Food Chemistry,2005,53: 8533-8536.
    [37]Martinez-Tome M, Murcia MA, Frega N, Ruggieri S, Jimenez AM, Roses F, Parras P. Evaluation of antioxidant capacity of cereal brans [J]. Journal of Agricultural and Food Chemistry,2004,52, 4690-4699.
    [38]Yu L, Haley S, Perret J, Harris M. Antioxidant properties of hard winter wheat extracts [J]. Food Chemistry,2002,78,457-461.
    [39]Adom KK, Sorrells ME, Liu RH. Phytochemical profiles and antioxidant activity of wheat varieties[J]. Journal of Agricultural and Food Chemistry,2002,51,7825-7834.
    [40]Sa'nchez-Alonso I, Jime'nez-Escrig A, Saura-Calixto F, Borderias AJ. Effect of grape antioxidant dietary fibre on the prevention of lipid oxidation in minced fish:Evaluation by different methodologies [J]. Food Chemistry,2007,101:372-378
    [41]Chantaro P, Devahastin S, Chiewchan N. Production of antioxidant high dietary fiber powder from carrot peels [J]. LWT-Food Science and Technology,2008,41:1987-1994
    [42]Esposito F, Arlotti G, Bonifati AM, Napolitano A, Vitale D, Fogliano V. Antioxidant activity and dietary fibre in durum wheat bran by-products [J]. Food Research International,2005, 38:1167-1173
    [43]Moller ME, Dahl R, Bφckman OC. A possible role of the dietary fibre product, wheat bran, as a nitrite scavenger [J]. Food and chemical toxicology,1988,26(10):841-845
    [44]Helsby NA, Zhu ST, Pearson AE, Tingle MD, Ferguson LR. Antimutagenic effects of wheat bran diet through modification of xenobiotic metabolizing enzymes [J]. Mutation Research,2000, 454:77-88
    [45]Bosaeus I, Carlsson NG, Sandberg AS, Andersson H. Effect of wheat bran and pectin on bile acid and cholesterol excretion in ileostomy patients [J]. Hum. Nutr. Clin. Nutr.1986,40C:429-440
    [46]Garcia JJ, Fernandez N, Diez M J, Sahagun A, Gonzalez A, Alonso ML, Prieto C, Calle AP, Sierra M. Influence of two dietary fibers in the oral bioavailability and other pharmacokinetic parameters of ethinyloestradiol [J]. Contraception,2000,62(5):253-257
    [47]Lario Y, Sendra E, Garc'ia-Pe'rez J, Fuentes C, Sayas-Barbera'E, Ferna'ndez-Lo'pez J, Pe'rez-Alvarez JA. Preparation of high dietary fiber powder from lemon juice by-products [J]. Innovative Food Science and Emerging Technologies,2004,5:113-117
    [48]Larrauri JA. New approaches in the preparation of high dietary fibre powders from fruit by-products [J]. Trends in Food Science & Technology,1999,10:3-8
    [49]华欲飞,顾玉兴,王洪晶.功能性人豆膳食纤维的制备及性能研究[J].中国油脂,2004,29(10):43-46
    [50]欧仕益,黄惠华,高孔荣.麦麸膳食纤维制备工艺的研究[J].粮食与饲料工业,1997,4:44-45
    [51]邵佩兰,李雯霞,徐明.不同提取方法对麦麸膳食纤维特性的影响[J].食品科技,2003,2:98-100
    [52]王亚伟,申晓琳,禹天真.麦麸制备膳食纤维的工艺研究[J].粮油加工与食品机械,2002,9:36-40
    [53]蔡宝玉,王雷,陶冠军,秦昉.莲藕残渣中纤维素的制备工艺[J].食品工业,2004,3:14-15
    [54]江汉湖主编.食品微生物学[M].北京:中国农业出版社,2005年第2版.
    [55]Camassola M, Dillon AJP, Biological pretreatment of sugar cane bagasse for the production
    of cellulases and xylanases by Penicillium echinulatum [J]. Industrial crop production,2009,29: 642-647
    [56]Xu F, Ding HS, Osborn D, Tejirian A, Brown K, Albano W, Sheehy N, Langston J. Partition of enzymes between the solvent and insoluble substrate during the hydrolysis of lignocellulose by cellulases [J]. Journal Of Molecular Catalysis B-Enzymatic,2008,51:42-48
    [57]吴疆鄂,王宏勋,刘剑.土豆渣微生物深加工初步研究[J].食品科技,2005(4):83-85
    [58]Wu JZ, Cheung PCK., Wong KH, Huang NL. Studies on submerged fermentation of Pleurotus tuber-regium (Fr.) Singer. Part 2:effect of carbon-to-nitrogen ratio of the culture medium on the content and composition of the mycelial dietary fibre [J]. Food Chemistry,2004,85:101-105
    [59]Lambo AM, Rickard O, Nyman MEG-L. Dietary fibre in fermented oat and barley β-glucan rich concentrates [J]. Food Chemistry,2005,89:283-293
    [60]郑建仙,耿立萍,高孔荣.蔗渣膳食纤维挤压改性的研究挤压降解机理及挤压对纤维物化性质的影响[J].华南理工大学学报,1996,24(12):64-68
    [61]陈雪峰,吴丽萍,刘爱香.挤压改性对苹果膳食纤维物理化学性质的影响[J].食品与发酵工业,2005,31(12):57-60
    [62]赵海军,史建新.超微粉碎技术在食品加工中的应用[J].农产频加工,2004(4):28-29
    [63]刘成梅,刘伟,林向阳Microfluidize对膳食纤维粒度分布的影响[J].食品科学,2004(1):52-55
    [64]涂宗财,侯鹏,刘成梅,陈钢.纳米技术及其在食品中的应用研究概述[J].江西食品工业,2004(2):16-17
    [65]李安平,胡春水,谢碧霞.乳酸菌发酵制备竹笋膳食纤维的研究[J].食品工业科技,1999(1):38-39
    [66]Choo CL, Aziz NAA. Effects of banana flour and b-glucan on the nutritional and sensory evaluation of noodles [J]. Food Chemistry,2010,119:34-40
    [67]卢宏科,王琴等.膳食纤维的功能与应用[J].广东农业科学,2007,4:67-70.
    [68]Sabanis D, Lebesi D, Tzia C. Effect of dietary fibre enrichment on selected properties of gluten-free bread [J]. LWT-Food Science and Technology,2009,42:1380-1389
    [69]Romo M, Mize C, Warfel K. Addition Of Hi-Maize, Natural Dietary Fiber, To A Commercial Cake Mix [J]. Poster Session:Science/Education/Management/Foodservice/Culinary/Research, Abstracts. 2008, Suppl 3 108 (9)
    [70]Sudha ML, Baskaran V, Leelavathi K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making [J]. Food Chemistry,2007,104: 686-692
    [71]Ajila CM, Leelavathi K, Rao UJSP. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder [J]. Journal of Cereal Science, 2008,48:319-326
    [72]杨志远,杨海军.膳食纤维的功能特性及其在乳制品中的应用[J].中国乳业,2003,11:33-34.
    [73]Kondo T, Nakae Y. Breath and methane excretion produced by commercial beverage containing dietary fiber [J]. Journal of Gastroenterology,1996,31:654-658.
    [74]Staffolo DM. Influence of dietary fiber addition on sensory and Theological properties of yogurt [J]. Internal Dairy Journal,2004,14:263-268.
    [75]Fry S. Phenolic components of the primary cell wall [J]. Biochemistry Journal,1982,203:493-504
    [76]Ishii T, Tobita T. Structural characterization of feruloyl oligosaccharides from spinach-leaf cell walls [J]. Carbohydrate Resource,1993,248:179-190
    [77]Ishii T. Feruloyl oligosaccharides from cell walls of suspension cultured spinach (Spinacia oleracea) cells and sugar beet (Beta vulgaris) pulp [J]. Plant Cell Physiology,1994,35:701-704
    [78]Colquhoun IJ, Ralet M-C, Thibault JF, Faulds CB, Williamson G Structure identification of feruloylated oligosaccharides from sugar beet pulp by NMR spec-troscopy [J]. Carbohydrate Resource,1994,263:243-256
    [79]Smith MM, Hartley RD. Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants [J]. Carbohydrate Resource,1983,118:65-80
    [80]Lequart C, Nuzillard JM, Kurek B, Debeire P. Hydrolysis of wheat bran and straw by an endoxylanase production and structural characterization of cinnamoyl oligosaccharides[J]. Carbohydrate Resource,1999,320:82-92
    [81]Wang J, Yuan XP, Sun BG, Cao YP, Tian Y, Wang CT. On-line separation and structural characterisation of feruloylated oligosaccharides from wheat bran using HPLC-ESI-MSn [J]. Food Chemistry,2009,115:1529-1541
    [82]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996.
    [83]Sangheetha PT, Ramesh MN, Prapulla SG. Recent trends in the microbial production, analysis and application of fructooligosaccharides [J]. Trends Food Science Technology,2005,16:442-457.
    [84]Harris PJ, Hartley RD. Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy [J] Nature,1976,259:508-510
    [85]Saulnier L, Vigouroux J, Thibault JF. Isolation and partial characterization of feruloylated oligosaccharides from maize bran [J]. Carbohydrate Research,1995,272:241-253
    [86]Yuan XP, Wang J, Yao HY. Production of feruloyl oligosaccharides from wheat bran insoluble dietary fibre by xylanases from Bacillus subtilis [J]. Food Chemistry,2006,95:484-492
    [87]Katapodis P, Christakopoulos P. Enzymic production of feruloyl xylo-oligosaccharides from corn cobs by a family 10 xylanase from Thermoascus aurantiacus [J]. LWT,2008,41:1239-1243
    [88]Ferreira P, Diez N, Faulds CB, Soliveri J, Copa-Patino JL. Release of ferulic acid and feruloylated oligosaccharides from sugar beet pulp by Streptomyces tendae [J]. Bioresource Technology,2007, 98:1522-1528
    [89]Rao RSP, Muralikrishna G. Structural characteristics of water-soluble feruloyl arabinoxylans from rice (Oryza sativa) and ragi (finger millet, Eleusine coracana):Variations upon malting [J]. Food Chemistry,2007,104:1160-1170
    [90]Rose DJ, Inglett GE. Production of feruloylated arabinoxylo-oligosaccharides from maize (Zea mays) bran by microwave-assisted autohydrolysis [J]. Food Chemistry,2010,119:1613-1618
    [91]Ishii T, Tobita T. Structural characterization of feruloyl oligosaccharides from spinach-leaf cell walls [J]. Carbohydrate Resource,1993,248:179-190
    [92]Sangheetha PT, Ramesh MN, Prapulla SG. Recent trends in the microbial production, analysis and application of fructooligosaccharides [J]. Trends Food Science Technology,2005,16:442-457.
    [93]Mussatto SI, Mancilha IM. Non-digestible oligosaccharides:A review [J]. Carbohydrate Polymers, 2007,68:587-597
    [94]Crittenden RG, Playne MJ. Production, properties and applications of food-grade oligosaccharides [J]. Trends in Food Science & Technology,1996,7:353-361.
    [95]Rivero-Urgell M, Santamaria-Orleans A. Oligosaccharides:Application in infant food [J]. Early Human Development,2001,65:S43-S52.
    [96]Darvill A, Bergmann C, Carlson RW, Cheong J-J, Eberhard S, Hahn MG, Lo V-M, Marfa V, Mohnen D, Neill MO, Spiro MD, Halbeek Hvan, York WS, Albersheim P, Oligosaccharins-oligosaccharides that regulate growth, development and responses in plants [J]. Glycobiology,1992,2:181-198
    [97]王松,杜昱光,白雪芳.寡聚糖诱导的植物抗性信号转导[J].生命科学研究,2001,5:29-32
    [98]Peter NK, Verma DPS. Phenolic compounds as regulators of gene expression in plant-microbe interactions [J]. Mol Plant-microbe Interact.1990,3:4-8
    [99]Ishii T. Structure and functions of feruloylated polysaccharides [J]. Plant Science.1997, 127:111-127
    [100]李向东,李怀方,范在丰.寡糖在植物防卫反应中的作用及其信号转导[J].河北农业大学学报,1999,22:47-49
    [101]Gibson GR. Fibre and effects on probiotics (the prebiotic concept) [J]. Clinical Nutrition Supplements,2004,1:25-31.
    [102]Wang Y. Prebiotics:present and future in food science and technology [J]. Food Resource Internal, 2009,42:8-12.
    [103]Roberfroid MB. Prebiotics:preferential substrates for specificgerms [J]. American Journal of Clinical Nutrition,2001,73:S406-409.
    [104]Alander M, MattoJ, Kneifel W, Johansson M, Kogler B, Crittenden R, Mattila-Sandholm T, Saarela M. Effect of galactooligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis Bb-12 in the gastrointestinal tract [J]. Internal Dairy Journal,2001,11:817-825.
    [105]Olano-Martin E, Gibson GR, Rastall RA. Comparison of the in vitro bifidogenic properties of pectins and pecticoligosaccharides[J]. Journal Applied Microbiology,2002,93:505-5
    [106]陈凤莲.小麦麸皮中低聚木糖的生物制备技术研究[D].哈尔滨:东北林业大学,2006
    [107]Vardakou M, Palop CN, Gasson M, Narbad A, Christakopoulos P. In vitro three-stage continuous fermentation of wheat arabinoxylan fractions and induction of hydrolase activity by the gut microflora [J]. The International Journal of Biological Markers,.2007,41:584-589
    [108]Yuan XP, Wang J, Yao HY. Feruloyl oligosaccharides stimulate growth of Bifidobacterium bifidum [J]. Anaerobe,2005,11:225-229.
    [109]Hayase F, Shibuya T, Sato J. Yamamoto M. Effects of oxygen and transition metals on the advanced Maollard of proteins with glucose [J]. Bioscience Biotechnology Biochemistry,1996, 60:1820-1825
    [110]Nagasawa T, Tabata N, Ito Y, Nishizawa N, Aiba Y, Kitts DD. Inhibition of glycation reaction in tissue protein mutations by water soluble rutin derivative [J]. Molecular And Cellular Biochemistry,2003,249:3-10
    [111]袁小平.酶解麦麸制备阿魏酰低聚糖及其生物活性研究[D].无锡:江南大学,2006
    [112]李德香,李伟男,王东.普通光镜下100例尿红细胞形态变化分析[J].医药世界,2009,11:21
    [113]Graf E. Antioxidant potential of ferulic acid [J]. Free Radical Biology and Medicine,1992, 13:435-448
    [114]Ohta T, Yamasaki S, Egashra Y, Sanada H. Antioxidant activity of corn barn hemicellulose fragments [J]. Journal Agricultural Food Chemistry,1994,42:653-656
    [115]Katapodis P, Vardakou M, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P. Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan [J]. Europen Journal Nutrition,2003,42:55-60
    [116]Rao RSP, Muralikrishna G. Water soluble feruloyl arabinoxylans from rice and ragi:Changes upon malting and their consequence on antioxidant activity [J]. Phytochemistry.2006,67:91-99
    [117]Yuan XP, Wang J, Yao H. Antioxidant activity of feruloylated oligosaccharides from wheat bran [J]. Food Chemistry,2005,90:759-764.
    [118]Ghoneum M, Gollapudi S. Modified arabinoxylan rice bran (MGN-3/Biobran) sensitizes human T cell leukemia cells to death receptor (CD95)-induced apoptosis [J]. Cancer Letters,2003,201: 41-49.
    [119]Ando H, Ohba H, Sakaki T, Takamine K, Kamino Y, Moriwaki S, Bakalova R, Uemura Y, Hatate Y. Hot-compressed-water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells [J].Toxicology in Vitro,2004,18:765-771
    [120]胡宗智,邹隽,付建科,尹义林.微波技术在壳聚糖制备中的应用研究进展[J].化学工程师,2007,1:46-49
    [121]Benko Z, Andersson A, Szengyel Z, Gaspar M, Reczey K, Stalbrand H. Heat extraction of maize fiber hemicellulose [J]. Applied Biochemistry and Biotechnology,2007,137:253-265.
    [122]Ralet MC, Thibault JF, Faulds CB, Williamson G. Isolation and purification of feruloylated oligosaccharides from cell walls of sugar-beet pulp [J]. Carbohydrate Research,1994, 263:227-241
    [123]Saulnier L, Jacqueline V, Jean-Francois. Thibault.Isolation and partial characterization of feruloylated oligosaccharides from maize bran [J]. Carbohydrate Research,1995,272:241-253
    [124]Allerding E, Ralph J, Steinhart H, Bunzel M. Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran [J]. Phytochemistry,2006,67:1276-1286
    [125]Ford CW. A feruloylated arabinoxylan liberated from cell walls of Digitaria decumbens (pangola grass) by treatment with borohydride [J]. Carbohydrate Research,1989,190:137-144
    [126]Schooneveld-Bergmans MEF, Hopman AMCP, Beldman G, Voragen AGJ. Extraction and partial characterization of feruloylated glucuronoarabinoxylans from wheat bran [J]. Carbohydrate Polymers,1998,35:39-47
    [127]李雄彪,吴锜.植物细胞壁[M].北京:北京大学出版社,1993.
    [128]Ishii T, Hiroi T. Linkage of phenolic acids to cell-wall polysaccharides of bamboo shoot [J]. Carbohydrate Research,1990,206:297-310
    [129]Kato A, Azuma J, Koshijima T, A new feruloylated trisaccharide from bagasse [J]. Chemistry Letter,1983:137-140
    [130]周德庆.微生物学教程[M].北京:高等教育出版社,2002年第二版
    [131]Xu Q, Chao YL, Wan QB. Health benefit application of functional oligosaccharides [J]. Carbohydrate Polymers,2009,77:435-441
    [132]徐幸莲,彭增起,邓尚贵主编.食品原料学[M].北京:中国计量出版社.2006
    [133]郭祯祥,李利民,温纪平.小麦麸皮的开发与利川[J].粮食与饲料工业,2003,6:43-45.
    [134]郑学玲,姚惠源,李利民,张晓东.小麦加工副产品—麸皮的综合利用研究[J].粮食与饲料工业,2001,12:38-39
    [135]Mathew S, Abraham TE. Feruic acid an antioxidant found naturally plant cell walls and feruloyl esterases involved in its release and their applications [J]. Critical Reviews In Biotechnology,2004, 24:59-83
    [136]Zhu KX, Huang S, Peng W, Qian HF, Zhou HM. Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber [J]. Food Research International, doi:10. 1016/j.foodres.2010.01.005
    [137]Maes C, Delcour A. Structural characterization of water-extractable and water-unextractable arabinoxylans in wheat bran [J]. Journal Cereal Science,2002,35:315-326
    [138]Izydorczyk MS, Dexter JE. Barley β-glucans and arabinoxylans:Molecular structure, physicochemical properties, and uses in food products-a Review [J]. Food Research International, 2008,41:850-868
    [139]Manisseri C, Gudipati M. Bioactive xylo-oligosaccharides from wheat bran soluble polysaccharides [J]. LWT-Food Science and Technology,2010,43:421-430
    [140]Madhukumar MS, Muralikrishna G Structural characterisation and determination of prebiotic activity of purified xylo-oligosaccharides obtained from Bengal gram husk (Cicer arietinum L.) and wheat bran (Triticum aestivum)[J]. Food Chemistry,2010,118:215-223
    [141]Clemente A. Enzymatic Protein Hydrolysates in Human Nutrition [J]. Trends Food Science and Technology,2000,11:254-262.
    [142]董文宾,杨兆艳,胡献丽,郑丹.植物来源生物活性肽研究概况[J].食品研究与开发,2005,26(1):53-55
    [143]张春红,郭维维,曹向宇,王雪.复合风味蛋白酶酶解麦麸蛋白制备麦麸抗氧化肽的研究[J].中国酿造,2009,3:178-190
    [144]郑学玲,姚惠源,李利民,张晓东.小麦加工副产品—麸皮的综合利用研究[J].粮食与饲料工业,2001,12:38-39
    [145]杨庆尧.食用菌生物学[M].上海:上海科学技术出版社,1981.
    [146]俞俊堂.生物化学工程[M].北京:化学工业出版社,1991.
    [147]林晓民,李振岐,侯军著.中国大型真菌的多样性[M].北京:中国农业出版社,2005.
    [148]刘旭东.食用菌栽培技术[M].北京:中国林业出版社,2008.
    [149]赵继鼎,张小清.中国真菌志第十八卷(灵芝科)[M].北京:科学出版社,2000.
    [150]Zhang J, Wang G, Li H, et al. Antitumor active protein-containing glycans from the Chinese mushroom Songshan Lingzhi, Ganoderma tsuage mycelium [J]. Bioscience Biotechnology Biochemistry,1994,58(7):1202-1205.
    [151]Zhang QH, Lin ZB. The antitumor activity of Ganoderma lucidum (Curt.:Fr.) P.Karst. (Lingzhi) (Aphyllophoromycrtideae) polysaccharides [J]. Internal Journal Medical Mushrooms,1999,1: 207-215.
    [152]Murugesan K, Kim YM, Jeon JR, Chang YS. Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum [J]. Journal of Hazardous Materials,2009,168:523-529
    [153]Coelho J da S, Oliveira ALD, Souza CGMD, Bracht A, Peralta RM. Effect of the herbicides bentazon and diuron on the production of ligninolytic enzymes by Ganoderma lucidum [J]. International Biodeterioration & Biodegradation,2010,64:156-161
    [154]林炎金,江枝和,陈大新,杨佩玉姬.松茸菇的营养成分研究初探[J].食用菌,1994,5:11
    [155]Gao H, Gu WY. Optimization of polysaccharide and ergosterol production from Agaricus brasiliensis by fermentation process [J]. Biochemical Engineering Journal,2007,33:202-210
    [156]彭凯文,宁正祥.食用菌的深层发酵培养及其应用[J].食品与机械,1995,6:34-35
    [157]Saul TB, Carmen S, Octavio L, Geoffrey D R, Gerardo DN. Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation:production of a novel laccase isoform [J]. Mycological Research,2008,112:1080-1084
    [158]Cai QH, Yue XY, Niu TG, Ji C, Ma QG. The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus [J]. Process Biochemistry,2004,39:1561-1566
    [159]Wang HX, Pleureryn TBNg., a Novel Protease from Fresh Fruiting Bodies of the Edible Mushroom Pleurotus eryngii [J]. Biochemical and Biophysical Research Communications, 2001,289:750-755
    [160]El-Zalaki EM, Hamza MA. Edible mushrooms as producers of amylases [J]. Food Chemistry, 1979,4:203-211
    [161]Pelaez F, Martinez MJ, Martinez AT. Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation [J]. Mycology Resource,1995,99 (1):37-42.
    [162]Hattori M, Isomura S, Yokoyama E, Ujita M, Hara A. Extracellular Trypsin-like Proteases Produced by Cordyceps militaris [J]. Journal Of Bioscience And Bioengineering,2005, 100:631-636
    [163]Wang ZS, He ZJ, Li SX, Yuan QS. Purification and partial characterization of Cu, Zn containing superoxide dismutase from entomogenous fungal species Cordyceps militaris [J]. Enzyme and Microbial Technology,2005,36:862-869
    [164]白秀峰主编,发酵工艺学[M].北京:中国医药科技出版社,2004年第一版
    [165]Nyochembeng LM, Beyl CA, Pacumbaba RP. Optimizing edible fungal growth and biodegradation of inedible crop residues using various cropping methods [J]. Bioresource Technology,2008,99: 5645-5649
    [166]Xiao JH, Chen DX, Xiao Y, Liu JW, Liu ZL, Wan WH, Fang N, Tan BB, Liang ZQ, Liu AY. Optimization of submerged culture conditions for mycelial polysaccharide production in Cordyceps pruinosa [J]. Process Biochemistry,2004,39:2241-2247
    [167]Oh JY, Cho EJ, Nam SH, Choi JW, Yun JW. Production of polysaccharide-peptide complexes by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala [J]. Process Biochemistry,2007,42:352-362
    [168]Mao XB, Eksriwong T, Chauvatcharin S, Zhong JJ. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris [J]. Process Biochemistry,2005,40:1667-1672
    [169]Prasad KK, Mohan SV, Rao RS, Pati BR, Sarma PN. Laccase production by Pleurotus ostreatus 1804:Optimization of submerged culture conditions by Taguchi DOE methodology [J]. Biochemical Engineering Journal,2005,24:17-26
    [170]Chen SC, Ma DB, Ge W, Buswell JA. Induction of laccase activity in the edible straw mushroom, Volvariella volvacea [J]. FEMS Microbiology Letters,2003,218:143-148
    [171]Park JP, Kim SW, Hwang HJ, Yun JW. Optimization of submerged culture conditions for the mycelia growth and exo-biopolymer production by Cordyceps militaris [J]. Letter Applied Microbiology,2001,33:76-81.
    [172]Hsieh C, Tsai MJ, Hsu TH, Chang DM, Lo CT. Medium optimization for polysaccharide production of Cordyceps sinensis [J]. Applied Biochemistry and Biotechnology,2005,120: 145-157.
    [173]Cai YJ, Buswell JA, Chang ST. Production of cellulases and hemicellulases by the straw mushroom, Volvariella volvacea [J]. Mycological Research,1994,98:1019-1024
    [174]Wang YX, Lu ZX. Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp. ACCC 50328 [J]. Process Biochemistry, 2005,40:1043-1051
    [175]Xu H, Sun LP, Shi YZ, Wu YH, Zhang B, Zhao DQ. Optimization of cultivation conditions for extracellular polysaccharide and mycelium biomass by Morchella esculenta As51620 [J]. Biochemical Engineering Journal,2008,39:66-73
    [176]Gerlach SR, Siedenberg D, Gerlach D, Schtigerl K, Giuseppin MLF, Hunik J. Influence of reactor systems on the morphology of Aspergillus awamori. Application of neural network and cluster analysis for characterization of fungal morphology [J]. Process Biochemistry,1998,33:601-615.
    [177]Litchfield JH, Overbeck RC, Davidson RS. Factors effecting the growth of morel mushroom mycelium in submerged culture [J]. Journal Agricultural Food Chemistry,1963,11:158-162.
    [178]Shih I-L, Tsai K-L, Hsieh CY. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris [J]. Biochemical Engineering Journal,2007,33:193-201
    [179]Zhang XY. Edible Fugus, Press of Chongqing University, Chongqing, China.1988.
    [180]Zhong JJ, Fang QH, Tang YJ. Enhanced production of valuable bioactive metabolites in submerged cultures of medicinal mushroom Ganoderma lucidum by manipulation of oxygen supply [J]. Journal Plant Biochemistry Biotechnology,2002,4:109-115.
    [181]Kurbanoglu EB, Algur OF, Zulkadir A. Submerged production of edible mushroom Agaricus bisporus mycelium in ram horn hydrolysate [J]. Industrial Crops and Products,2004,19:225-230
    [182]Techapun C, Poosaran N, Watanabe M, Sasaki K. Optimization of aeration and agitation rates to improve cellulase-free xylanase production by Thermotolerant Streptomyces sp. Ab 106 and repeated fed-batch cultivation using agricultural waste [J]. Journal Bioscience Bioengineering, 2003,9:298-301
    [183]Ko CH, Lin ZP, Tu J, Tsai CH, Liu CC, Chen HT, Wang TP. Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching [J]. Internal Biodeterioration Biodegradation,2010,64:13-19
    [184]Lin ES, Wang CC, Sung SC. Cultivating conditions influence lipase production by the edible Basidiomycete Antrodia cinnamomea in submerged culture [J]. Enzyme and Microbial Technology, 2006,39:98-102
    [1]Esposito F, Arlotti G, Bonifati BM, Napolitano A, Vitale D, Fogliano V. Antioxidant activity and dietary fibre in durum wheat bran by-products [J]. Food Research International,2005,38: 1167-1173
    [2]袁小平.酶解麦麸制备阿魏酰低聚糖及其生物活性研究[D].无锡:江南大学,2006
    [3]Wong KH, Cheung PCK. Enzymatic preparation of mushroom dietary fibre:A comparison between analytical and industrial enzymes [J]. Food Chemistry,2009,115:795-800
    [4]Ella A, John R, Hans S, Mirko B. Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran [J]. Phytochemistry.2006,67:1276-1286
    [5]柴丽红,王媛,左霖,杨莉,李春荣.发酵法制备苹果渣膳食纤维的工艺研究[J].食品科技-粮油加工,2004,11:69-71
    [6]孟秀梅,王宏勋,张晓昱.灵芝发酵芹菜渣条件优化研究[J].食品与药品,2006,8(7):54-56
    [7]Ferreira P, Diez N, Faulds CB, Soliveri J, Copa-Patino JL. Release of ferulic acid and feruloylated oligosaccharides from sugar beet pulp by Streptomyces tendae [J]. Bioresource Technology,2007, 98:1522-1528
    [8]白秀峰.发酵工艺学[M].北京:中国医药科技出版社,2004
    [9]Camassola M, Dillon AJP. Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum [J]. Industrial crops production,2009,29: 642-647
    [10]Xu F, Ding HS, Osborn D, Tejirian A, Brown K, Albano W, Sheehy N, Langston J. Partition of enzymes between the solvent and insoluble substrate during the hydrolysis of lignocellulose by cellulases [J]. Journal Of Molecular Catalysis B-Enzymatic,2008,51:42-48
    [11]Cai QH, Yue XY, Niu TG, Ji C, Ma QG. The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus [J]. Process Biochemistry,2004,39:1561-1566
    [12]Lee JS, Cho JY, Hong EK. Study on macrophage activation and structural characteristics of purified polysaccharides from the liquid culture broth of Hericium erinaceus [J]. Carbohydrate Polymers 2009, doi:10.1016/j.carbpol.2009.04.036
    [13]林晓民,李振岐,侯军著.中国大型真菌的多样性[M].北京:中国农业出版社,2005.
    [14]Wang ZS, He ZJ, Li SX, Yuan QS. Purification and partial characterization of Cu, Zn containing superoxide dismutase from entomogenous fungal species Cordyceps militaris [J]. Enzyme and Microbial Technology,2005,36:862-869
    [15]刘旭东.食用菌栽培技术[M].北京:中国林业出版社,2008.
    [16]Andersen A, Svendsen A, Vind J, Lassen SF, Hjort C, Borch K, Patkar SA. Studies on ferulic acid esterase activity in fungal lipases and cutinases [J]. Colloid Surface B:Biointerfaces,2002,26: 47-55.
    [17]Kunamneni A, Permaul K, Singh S. Amylase Production in Solid State fermentation by the Thermophilic Fungus Thermomyces lanuginosus [J]. Journal of bioscience and bioengineering, 2005,100:168-171
    [18]Wang RH, Rocky Chau Sing Law, Webb C. Protease production and conidiation by Aspergillus oryzae in flour fermentation [J]. Process Biochemistry,2005,40:217-227
    [19]Martins LF, Kolling D, Marli C, Dillon AJP, Ramos LP. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresource Technology,2008,99:1417-1424.
    [20]Han YJ, Chen HZ. Characterization of β-glucosidase from corn stover and its application in simultaneous saccharification and fermentation [J]. Bioresource Technology,2008,99:6081-6087
    [21]Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D. Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol [J]. Industrial Crops Production,2009,29:404-411
    [22]谢碧霞,李安平等.膳食纤维[M].北京:科学出版社,2006.
    [23]王学全,植物生理生化实验原理和技术[M].北京:高教出版社,2006.
    [24]徐昌杰,陈文峻,陈昆松,张上隆.淀粉含量测定的一种简便方法——碘显色法[J].生物技术,1998,8(2):41-43
    [25]高向阳主编.食品分析与检验[M].北京:中国计量出版社,2006.10
    [26]陈凤莲.小麦麸皮中低聚木糖的生物制备技术研究[D].哈尔滨:东北林业大学,2006.
    [27]Gessesse A, Mamo G. High-level xylanase production by an alkaliphilic Bacillus sp. by using solid-state fermentation [J]. Enzyme and Microbial Technology,1999,25:68-72
    [28]Solis-Pereira S, Favela-Torres E, Viniegra-Gonzalez G, Gutierrez-Rojas M. Effects of different carbon sources on the synthesis of pectinase by Aspergillus niger in submerged and solid-state fermentation [J]. Applied Microbiology Biotechnolgy.1993,39:36-41
    [29]Mao XB, Eksriwong T, Chauvatcharin S, Zhong JJ. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris [J]. Process Biochemistry,2005,40:1667-1672
    [30]Antoine C, Peyron S, V LP, Wheat bran tissue fractionation using biochemical markers [J]. Journal of Cereal Science.2004,39:387-393
    [31]Dobrev GT, Pishtiyski IG, Stanchev VS, Mircheva R. Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design [J]. Bioresource Technology.2007,98:2671-2678
    [32]付文杰,张莎莎.茶薪菇液体发酵培养基优化研究[J].安徽农业科学,2007,35(19):5668-5669
    [33]王明珠,黄瑞珊,吴其威.灵芝GL-2的液态发酵及形态学特性的研究[J].上海交通大学学报,1994,28(2):138-141
    [34]Ko HG, Park HG, Park SH, Choi CW, Kim SH, Park WM. Comparative study of mycelial growth and basidiomata formation in seven different species of the edible mushroom genus Hericium[J]. Bioresource Technology,2005,96:1439-1444
    [35]孙恒银,孙艳丽,徐良,纪亮,董洪新.黑木耳液体深层发酵培养基的初步筛选[J].食用菌,2006,5:13-14
    [36]Locci E, Laconi S, Pompei R, Scano P, Lai A, Marincol FC. Wheat bran biodegradation by Pleurotus ostreatus:A solid-state Carbon-13 NMR study [J]. Bioresource Technology,2008, 99:4279-4284
    [37]陈志杰.以糙米为主要原料的灵芝液态深层发酵及其饮料的开发[D].南京:南京农业大学,2006
    [38]H'ela ZM, Mechichi T, Dhouib A, Sayadi S, Martinez AT, Martinez MJ. Laccase purification and characterization from Trametes trogii isolated in Tunisia:decolorization of textile dyes by the purified enzyme [J].Enzyme and Microbial Technology.2006,39:141-148
    [39]王世东主编.食用菌[M].北京:中国农业大学出版社,2005
    [40]Shih IL, Tsai KL, Hsieh CY. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris [J]. Biochemical Engineering Journal,2007,33:193-201
    [41]Hattori M, Isomura S, Yokoyama E, Ujita M, Hara A. Extracellular Trypsin-like Proteases Produced by Cordyceps militaris [J]. Journal Of Bioscience And Bioengineering,2005,100:631-636
    [42]Kim HO, Lim JM, Joo JH, Kim SW, Hwang HJ, Choi JW, Yun JW. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea [J]. Bioresource Technology,2005,96:1175-1182
    [43]Yuan XP, Wang J, Yao HY. Production of feruloyl oligosaccharides from wheat bran insoluble dietary fibre by xylanases from Bacillus subtilis [J]. Food Chemistry.2006,95:484-492
    [44]Benoit I, Navarro D, Marnet N, Rakotomanomana N, Laurence LM, Sigoillot JC, Asthera M, Asther M. Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products [J]. Carbohydrate Resource,2006,341:1820-182
    [1]Couto, SR, Sanroman, Ma.A. Application of solid state fermentation to food industry-A review [J]. Journal of Food Engineering,2006,76:291-302.
    [2]柴丽红,王媛,左霖,杨莉,李春荣.发酵法制备苹果渣膳食纤维的工艺研究[J].食品科技-粮油加工,2004,11:69-72
    [3]韦小英.利用白腐菌生产蔗渣膳食纤维的研究[J].广西大学学报(自然科学版),2001, 26:120-124
    [4]孟秀梅,王宏勋,张晓昱.灵芝发酵芹菜渣条件优化研究[J].食品与药品,2006,8:54-58
    [5]白秀峰主编,发酵工艺学[M].北京:中国医药科技出版社,2007年第二版
    [6]周德庆,微生物学教程[M].北京:高等教育出版社,2005
    [7]Barrington S, Kim JW, Response surface optimization of medium components for citric acid production by Aspergillus niger NRRL 567 grown in peat moss [J]. Bioresource Technology,2008, 99:368-377
    [9]Francis F, Sabu A, Nampoothiri KM, Sumitra A, Ghosh S, Szakacs G, Pandey A. Use of response surface methodology for optimizing process parameters for the production of a-amylase by Aspergillus oryzae [J]. Biochemical Engineering Journal,2003,15:107-115
    [9]Zhong JJ, Fang QH, Tang YJ. Enhanced production of valuable bioactive metabolites in submerged cultures of medicinal mushroom Ganoderma lucidum by manipulation of oxygen supply [J]. J. Plant Biochemistry Biotechnology,2002,4:109-115.
    [10]Zhang X.Y. Edible Fugus, Press of Chongqing University, Chongqing, China.1988.
    [11]孙东平.灵芝深层培养基及灵芝多糖纯化的研究[D].华南理工大学,1996.
    [12]刘安玲,朱必凤,王华.茶薪菇液体发酵条件的研究[J].韶关学院学报(自然科学版),2001,22:149-153
    [13]Kim HO, Lim JM, Joo JH, Kim SW, Hwang HJ, Choi JW, Yun JW. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea [J]. Bioresource Technology,2005,96:1175-1182
    [14]付文杰,张莎莎.茶薪菇液体发酵培养基优化研究[J].安徽农业科学,2007,35:5668-5669
    [15]Shih IL, Pan K, Hsieh C, Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea [J]. Process Biochemistry,2006,41:1129-1135.
    [16]Yang FC, Huang HC, Yang MJ, The influence of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures [J]. Enzyme Microbial Technology,2003,33: 395-402
    [17]Xu GQ, Chu J, Zhuang YP, Wang YH, Zhang SL. Effects of vitamins on the lactic acid biosynthesis of Lactobacillus paracasei NERCB 0401 [J]. Biochemical Engineering Journal,2008,38:189-197
    [18]Li J, Li P, Liu F. Production of theanine by Xerocomus badius (mushroom) using submerged fermentation [J]. LWT,2008,41:883-889.
    [19]Zhang T, Wen SD, Tan TW. Optimization of the medium for glutathione production in Saccharomyces cerevisiae [J]. Process Biochemistry,2007,42:454-458
    [20]Hwang HJ, Kim SW, Xu CP, Choi JW, Yun JW, Production and molecular characteristics of four groups of exopolysaccharides from submerge culture of Phellinus gilvus [J]. Journal Applied Microbiology,2003,94:708-719.
    [21]Liu LH, Lin ZW, Zheng T, Lin L, Zheng CQ, Lin ZX, Wang SH, Wang ZH, Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969 [J]. Enzyme and Microbial Technology,2009,44:426-433.
    [22]Garraway, MO, Evans RC, Fungal Nutrition and Physiology. John Wiley, New York.1984.
    [23]Lee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ, Yun JW. Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa [J]. Enzyme and Microial Technology,2004,35:369-376.
    [24]Gerlach SR, Siedenberg D, Gerlach D, Schtigerl K, Giuseppin MLF, Hunik J. Influence of reactor systems on the morphology of Aspergillus awamori. Application of neural network and cluster analysis for characterization of fungal morphology [J]. Process Biochemistry,1998,33:601-615.
    [25]Hsieh C, Tsai MJ, Hsu TH, Chang DM, Lo CT, Medium optimization for polysaccharide production of Cordyceps sinensis [J]. Applied Biochemistry Biotechnology,2005,120:145-157.
    [26]Park JP, Kim SW, Hwang HJ,& Yun JW, Optimization of submerged culture conditions for the mycelia growth and exo-biopolymer production by Cordyceps militaris.[J]. Letter Applied Microbiology,2001,33:76-81.
    [27]杨焱,刘艳芳,张劲松,周昌艳,贾薇,唐庆九.赤芝G2深层发酵优化模式的研究[J].食用菌学报,2004,11(3):43-49.
    [28]Zhong JJ, Fang QH, Tang YJ, Enhanced production of valuable bioactive metabolites in submerged cultures of medicinal mushroom Ganoderma lucidum by manipulation of oxygen supply [J]. Journal Plant Biochemistry Biotechnology,2002,4:109-115.
    [29]谢碧霞,李安平.膳食纤维[M].北京:科学出版社,2006.
    [30]Trinidad TP, Mallillin AC, Valdez DH, Loyola AS, Askali-Mercado FC, Castillo JC, Encabo RR, Masa D B, Maglaya AS, Chua MT. Dietary fiber from coconut flour:A functional food [J]. Innovative Food Science and Emerging Technologies,2006,7:309-317.
    [31]李燕红,赵辅昆.纤维素酶的研究进展[J].生命科学,2005,17(5):392-397.
    [1]Allerdings E, Ralph J, Schatz PF, Gniechwitz D, Steinhart H, Bunzel M, Isolation and structural identification of diarabinosyl 8-O-4-dehydrodiferulate from maize bran insoluble fibre [J]. Phytochemistry,2003,66:113-124.
    [2]Li XM, Le GW, Shi YH, Microwave-assisted solid-phase oligosaccharides synthesis reaction and scavenging activity of synthetic product to free radical [J]. Carbohydrate Polymer,2006, 64:274-279
    [3]Yuan XP, Wang J, Yao HY, Production of feruloyl oligosaccharides from wheat bran insoluble dietary fibre by xylanases from Bacillus subtilis [J]. Food Chemistry,2006,95:484-492
    [4]谢碧霞,李安平.膳食纤维[M].北京:科学出版社,2006,pp:108-109
    [5]Ferreira P, Diez N, Faulds CB, Soliveri J, Copa-Patino JL. Release of ferulic acid and feruloylated oligosaccharides from sugar beet pulp by Streptomyces tendae [J]. Bioresource Technology,2007, 98:1522-1528
    [6]白秀峰主编.发酵工艺学[M].北京:中国医药科技出版社,2007年第二版
    [7]Purkarthofer H, Steiner W, Induction of endo-β-xylanase in the fungus Thermomyces lanuginosus [J]. Enzyme Microbial Technology,1995,17:114-118
    [8]Bahkali AH, Production of cellulase, xylanase and polygalacturonase by Verticillium tricorpus on different substrates [J]. Bioresource Technology,1995,51:171-174
    [9]Nout MJR, Bonants-van Laarhoven TMG, Jongh PD, Koster PGD. Ergosterol content of Rhizopus oligosporus NRRL 5905 grown in liquid and solid substrates [J]. Applied Micbiology Biotechnology,1987,26:456-461
    [10]Singh A, Kuhad RC, Kumar M. Xylanase production by a hyperxylanolytic mutant of Fusarium oxysporum [J]. Enzyme and Microbial Technology,1995,17:551-553
    [11]Bocchini DA, Alves-Prado HF, Baida LC, Roberto IC, Gomes E, Silva RD. Optimization of xylanase production by Bacillus circulans D1 in submerged fermentation using response surface methodology [J] Process Biochemistry,2002,38:727-731
    [12]王海.Sp.E-86菌株高产木聚糖酶机理和吸附特性及反应动力学的研究[D].无锡:江南大学,2002
    [13]Kim HO, Lim JM, Joo JH, Kim SW, Hwang HJ, Choi JW, Yun JW. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea [J]. Bioresource Technology,2005,96:1175-1182
    [14]Cho EJ, Oh JY, Chang HY, Yun JW. Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis [J]. Journal of Biotechnology,2006,127:129-140
    [15]Oliveira LA, Porto ALF, Tambourgi EB. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes [J]. Bioresource Technology,2006, 97:862-867
    [16]Cai QH, Yue XY, Niu TG, Ji C, Ma QG The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus [J]. Process Biochemistry,2004,39:1561-1566
    [17]de Vries RP, Kester HCM, Poulsen CH, Benen JAE, Visser J. Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides [J]. Carbohydrate Research,2000,327:401-410
    [18]Levin L, Herrmann C, Papinutti VL. Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology [J]. Biochemical Engineering Journal,2008,39:207-214
    [19]胡叶碧.改性玉米皮膳食纤维的酶法制备及其降血脂机理研究[D].无锡:江南大学,2008.
    [20]Ferreira G, Boer CG, Peralta RM. Production of xylanolytic enzymes by Aspergillus tamarii in solid state fermentation [J].FEMS Microbiology Letters,1999,173:335-339
    [21]Gupta S, Bhushan B, Hoondal GS, Improved xylanase production from a haloalkalophilic staphylococcus sp. SG-13 using inexpensive agricultural residues[J]. World Journal Microbiology Biotechnology,2001,16:505-510
    [22]Puchart V, Katapodis P, Biely P. Production of xylanases, mannanases and pectinases by the thermophilic fungus Thermomyces lanuginosus [J]. Enzyme Microbial Technology,1999, 24:355-361
    [23]Bocchini DA, Alves-Prado HF, Baida LC, Roberto IC, Gomes E, Da Silva R. Optimization of xylanase production by Bacillus circulans Dl in submerged fermentation using response surface methodology [J] Process Biochemistry,2002,38:727-731
    [24]许正宏.微生物耐碱性木聚糖酶的合成、调控及底物降解方式的研究[D].无锡:江南大学,2005
    [25]Zeng GM, Shi JG, Yuan XZ, Liu J, Zhang ZB, Huang GH, Li JB, Xi BD, Liu HL. Effects of Tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost [J]. Enzyme and Microbial Technology,2006,39:1451-1456
    [26]Hsieh Cy, Wang HL, Chen CC, Hsu TH, Tseng MH. Effect of plant oil and surfactant on the production of mycelial biomass and polysaccharides in submerged culture of Grifola frondosa [J]. Biochemical Engineering Journal,2008,38:198-205
    [27]Park JP, Kim SW, Hwang HJ, Cho YJ, Yun JW. Stimulatory effect of plant oils and fatty acids on the exo-biopolymer production in Cordyceps militaris [J]. Enzyme and Microbial Technology,2002, 31:250-255
    [28]Heck JX, Soares LHB, Ayub MAZ. Optimization of xylanase and mannanase production by Bacillus circulans strain BL53 on solid-state cultivation [J]. Enzyme and Microbial Technology, 2005,37:417-423
    [29]Khandeparkar RDS, Bhosle NB. Isolation, purification and characterization of the xylanase produced by Arthrobacter sp. MTCC 5214 when grown in solid-state fermentation [J]. Enzyme and Microbial Technology,2006,39:732-742
    [30]Michaud P, Courtois J, Courtois B, Heyraud A, Colin-Morel P, Seguin JP, Barbotin JN. Physicochemical properties of extracellular (1→4)-β-d-glucuronan produced by the Rhizobium meliloti M5N1CS strain during fermentation:evidence of degradation by an exoenzyme activated by Mg2+[J]. International Journal of Biological Macromolecules,1994,16:301-305
    [31]Li Y, Liu ZQ, Zhao H, Xu YY, Cui FJ. Statistical optimization of xylanase production from new isolated Penicillium oxalicum ZH-30 in submerged fermentation [J]. Biochemical Engineering Journal,2007,34:82-86
    [32]Allerding E, Ralph J, Steinhart H, Bunzel M. Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran [J]. Phytochemistry,2006,67:1276-1286
    [33]Ishii T, Hiroi T. Linkage of phenolic acids to cell-wall polysaccharides of bamboo shoot [J]. Carbohydrate Research,1990,206:297-310
    [1]Tadashi I. Structure and functions of feruloylated polysaccharides [J]. Plant science,1997, 127:111-127
    [2]Wang J, Yuan XP, Sun BG, Cao YP, Tian Y, Wang CT. On-line separation and structural characterisation of feruloylated oligosaccharides from wheat bran using HPLC-ESI-MSn [J]. Food Chemistry,2009,115:1529-1541
    [3]Huang XY, Wang DY, Hu YL, Lu Y, Guo ZH, Kong XF, Sun JL. Effect of sulfated astragalus polysaccharide on cellular infectivity of infectious bursal disease virus [J]. International Journal of Biological Macromolecules,2008,42:166-171
    [4]Reis A, Coimbra MA, Domingues P, Ferrer-Correia AJ, Domingues Rosario MM. Fragmentation pattern of underivatised xylo-oligosaccharides and their alditol derivatives by electrospray tandem mass spectrometry [J]. Carbohydrate Polymers,2004,55:401-409
    [5]Saulnier L, Vigouroux J, Thibault JF. Isolation and partial characterization of feruloylated oligosaccharides from maize bran [J]. Carbohydrate Research,1995,272:241-253
    [6]Finke B, Stahl B, Pfenninger A, Karas M, Daniel H, Sawatzki G. Analysis of high-molecular-weight oligosaccharides from human milk by liquid chromatography and MALDI-MS [J]. Analytical Chemistry,1999,71:3755-3762.
    [7]Ekeberg D, Knutsen SH, Sletmoen M. Negative-ion electrospray ionisation-mass spectrometry (ESI-MS) as a tool for analysing structural heterogeneity in kappa-carrageenan oligosaccharides [J]. Carbohydrate Research,2001,334,49-59
    [8]Yuan XP, Wang J, Yao HY. Production of feruloyl oligosaccharides from wheat bran insoluble dietary fibre by xylanases from Bacillus subtilis [J]. Food Chemistry,2006,95:484-492
    [9]赵永芳编.生物化学技术原理及应用[M].北京:科学出版,2005
    [10]Allerdings E, Ralph J, Steinhart H, Bunzel M. Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran [J]. Phytochemistry,2006,67:1276-1286
    [11]潘铁英,张玉兰,苏克曼.波谱解析法[M].上海:华东理大学出版社,2009年
    [12]邹建平,王璐,曾润生编著.有机化合物结构分析[M].北京:科学出版社,2005年
    [13]刘祖同,罗信昌编著.食用蕈菌生物技术及应用[M].北京:清华大学出版社,2002
    [14]Swennena K, Courtin CM, Bruggen BV, Vandecasteele C, Delcour JA. Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures [J]. Carbohydrate Polymers,2005,62:283-292
    [15]Mussatto SI., Mancilha IM. Non-digestible oligosaccharides:A review [J]. Carbohydrate Polymers, 2007,68:587-597
    [16]Chen HM, Yan XJ. Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system [J]. Biochimica et Biophysica Acta,2005,1722:103-111
    [17]Enoki T, Sagawa H, Tominaga T, Nishiyama E, Koyama N, Sakai T, Yu FG, Ikai K, Kato I. Drugs, foods or drinks with the use of algae-derived physiologically active substances, U.S. Patent.2003, 0105029 A1.
    [18]Weinberger F, Dohnert G, Kloareg B, Potin P. Signal released by an endophytic attacker acts as a substrate for a rapid defensive reaction of the red alga Chondrus crispus [J]. Chemistry Biochemistry, 2002,3:1260-1263.
    [19]Moura P, Barata R, Carvalheiro F, Girio F, Loureiro-Dias MC, Esteves MP. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains [J]. LWT,2007,40:963-972
    [20]Sφrensen HR, Pedersen S, Meyer AS. Characterization of solubilized arabinoxylo-oligosaccharides by MALDI-TOF MS analysis to unravel and direct enzyme catalyzed hydrolysis of insoluble wheat arabinoxylan [J]. Enzyme and Microbial Technology,2007,41:103-110
    [21]Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates [J]. Glycoconjugate Journal,1988,5:397-409
    [1]Malliard P, Chesson A. Modification to swede (Brassica napus L.) anterior to the terminal ileum of pigs:some implications for the analysis of dietary fiber [J]. British Journal of Nutrition,1984.52, 583-594
    [2]谢碧霞,李安平.膳食纤维[M].北京:科学出版社,2006.
    [3]Larrauri JA, Rup'erez P, Borroto B, Saura-Calixto F. Mango Peels as a New Tropical Fibre: Preparation and Characterization [J]. LWT,1996,29(8):729-733
    [4]Joanne L. Slavin, Ph.D., R.D. Dietary fiber and body weight [J]. Nutrition,2005,21:411-418
    [5]Ferguson LR, Roberton AM, Watson ME, Triggs CM, Harris PJ. The effects of a soluble-fibre the adsorption of carcinogens fibres polysaccharide on to insoluble dietary [J]. Chemico-Biological Interactions,1995,95:245-255
    [6]Chantaro P, Devahastin S, Chiewchan N. Production of antioxidant high dietary fiber powder from carrot peels [J]. LWT-Food Science and Technology,2008,41:1987-1994
    [7]Zhu KX, Huang S, Peng W, Qian HF, Zhou HM. Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber [J]. Food Research International, doi:10.1016/j.foodres.2010.01.005
    [8]Vardakou M, Palop CN, Gasson M, Narbad A, Christakopoulos P. In vitro three-stage continuous fermentation of wheat arabinoxylan fractions and induction of hydrolase activity by the gut microflora [J]. International Journal of Biological Markers,2007,41:584-589
    [9]陈凤莲.小麦麸皮的低聚木糖生物制备研究[D].哈尔滨:东北林业大学,2006
    [10]Ohta T, Yamasaki S, Egashra Y, Sanada H, Antioxidant activity of corn barn hemicellulose fragments [J]. Journal Agricultural Food Chemistry,1994,42:653-656
    [11]袁小平,王静,姚惠源.小麦麸皮阿魏酰低聚糖对红细胞氧化性溶血抑制作用的研究[J].中国粮油学报,2005,20:13-16
    [12]Yuan XP, Wang J, Yao HY. Feruloyl oligosaccharides stimulate the growth of Bifidobacterium bifidum [J]. Anaerobe,2005,11.225-229
    [13]邵佩兰,李雯霞,徐明.不同提取方法对麦麸膳食纤维特性的影响[J].食品科技,2003(11):98-100
    [14]Sangnark A, Noomhorm A. Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse [J]. Food Chemistry,2003,80(2):221-229
    [15]Robertson JA, Monredon FD, Dysseler P, Guillon F, Amado R, Thibault TF. Hydration properties of dietary fiber and resistant starch:a European collaborative study [J]. Lebensmittel-Wissenschaft und-Technologie,2000,33:72-79
    [16]贺继东,夏文水,张家骊.壳聚糖吸附胆酸盐的研究[J].食品工业科技,2008,29:80-83
    [17]Tsuda T, Watanabe M, Ohshima K, Norinobu S, Choi SW, Kawakishi S, Osawa T. Antioxidative activity of the anthocyanin pigments cyanidin 3-O-beta-D-glucoside and cyanidin [J]. Journal of Agricultural and Food Chemistry,1994,42(11):2407-2410.
    [18]Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion [J]. Journal of Agricultural and Food Chemistry,1992,40:945-948.
    [19]胡叶碧.改性玉米皮膳食纤维的酶法制备及其降血脂机理研究[D].无锡:江南大学,2008.
    [20]涂宗财,李金林,江菁琴,任维.微生物发酵法研制高活性大豆膳食纤维的研究[J].食品工业科技,2005,26:49-52
    [21]王宏勋,王岩岩,毛一兵,张晓昱.粉葛渣膳食纤维生物改性研究[J].食品工业科技,2007,28:104-106
    [22]范龚健.紫玉米酒花色苷衍生物形成机理及其抗氧化和抗肿瘤活性研究[D].南京农业大学,2009
    [23]Katapodis P, Vardakou M, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P. Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan [J]. European Journal Nutrition,2003,42:55-60
    [24]Tsai SY, Huang SJ, Mau JL. Antioxidant properties of hot water extracts from Agrocybe cylindracea[J]. Food Chemistry,2006,98:670-677
    [25]Lo KM, Peter CK. Cheung Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. alba [J]. Food Chemistry,2005,89:533-539
    [26]Wang HX, Ng TB, Liu WK, Ooi VEC, Chang ST. Polysaccharide-peptide complexes from the cultured mycelia of the mushroom coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages [J]. The International Journal of Biochemistry & Cell Biology,1996, 28:601-607
    [27]Chen HM, Yan XJ. Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system [J]. Biochimica et Biophysica Acta,2005,1722:103-111
    [28]谷鸿喜,陈锦英主编.医学微生物学[M].北京:北京大学医学出版社,2009.7
    [29]Jensen BB. Possible ways of modifying type and amount of products from microbial fermentation in the gut. In:Piva, A., Bach Knudsen, K.E., Lindberg, J.E. (Eds.), Gut Environment of Pigs. Nottingham University Press, Nottingham,,2001:pp.181-200
    [30]Scharlau D, Borowicki A, Habermann N, Hofmann T, Klenow S, Miene C, Munjal U, Stein K, Glei M. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre [J]. Mutation Research,2009,682:39-53
    [31]Burkitt DP, Trowell HC. Dietary fibre and western diseases [J]. Irish Medical Journal,1977, 70:272-277
    [32]Diyabalanage T, Mulabagal V, Mills G, DeWitt DL, Nair MG. Health-beneficial qualities of the edible mushroom, Agrocybe aegerita [J]. Food Chemistry,2008,108:97-102
    [33]Yang N, Li DF, Feng L, Liu W, Xiang Y, Sun H, Wang DC. Structural Basis for the Tumor Cell Apoptosis-Inducing Activity of an Antitumor Lectin from the Edible Mushroom Agrocybe aegerita [J].Journal of Molecular Biology,2009,387:694-705.
    [34]Ghoneum M, Gollapudi S. Modified arabinoxylan rice bran (MGN-3/Biobran) sensitizes human T cell leukemia cells to death receptor (CD95)-induced apoptosis [J]. Cancer Letters,2003,201: 41-49.
    [35]Ando H, Ohba H, Sakaki T, Takamine K, Kamino Y, Moriwaki S, Bakalova R, Uemura Y, Hatate Y. Hot-compressed-water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells [J]. Toxicology in Vitro,2004,18:765-771
    [36]Cai YZ, Luo Q, Croke H. Antioxidant activity and phenolic compounds of 112 traditional chinese medicinal plants associated with anticancer [J]. Life Sciences,2004,74:2157-2184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700