用户名: 密码: 验证码:
水声通信半物理仿真平台的设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水声通信是进行海洋开发和海洋监测的重要手段之一。由于水声信道本身的各种问题,比如窄带宽、大延迟、高噪声、严重多径衰落的时变、空变等特点,使得水声通信传输数据速率低,传输误码率高,由此水声通信技术成为当今最具挑战的通信领域之一。
     目前对水声通信的研究,主要集中于计算机仿真和水声Modem开发方面。厦门大学研究的《水声信道建模及其仿真平台的实现》利用Matlab建立仿真界面,对水声信道本征路径模型进行了仿真工作;西北工业大学的《水声扩频通信系统仿真研究》主要对扩频技术在水声通信中的应用做了仿真研究。计算机仿真虽然可以大大节省水声实验在人力,物力,才力等方面的开支,但是简化的水声模型无法全面模拟复杂的水声信道,从而造成仿真结果与实际应用难以切合的问题。因此现在很多研究机构也致力于水声Modem的开发,目的是希望在实际的水声通信中检验水声算法,提高水声通信质量。但是水声仪器设备的搬运布放,水声节点的供电耐压以及密封性,海上试验的高成本,低效率都成为水声通信实验不可避免的难题。
     本文针对目前水声通信面临的各种问题,提出了水声通信半物理仿真平台的概念。该平台集水声通信实验,水声数据采集回收及显示处理,水声算法仿真评估,水声算法在应用下载于一体,充分满足水声实验工作者对水声通信各方面研究的需求。课题研究的总体目标是为高可靠、高性能水声通信与组网技术的研究提供一个通用的仿真、验证、实验平台,为水声传感器网络通信算法和编解码技术的研究提供高效、准确、实时、灵活的技术支撑,基本解决水声通信面临的主要难题。
     课题基于水声半物理仿真软件控制平台,WIFI无线通信,水声传感器网络,以及FPGA芯片的串行配置特性实现。通过制定合理的通信协议,保证系统功能的准确实现。
Underwater acoustic communication is one of the main methods for ocean development and marine monitoring. Due to the various problems with underwater acoustic channel itself, such as narrow bandwidth, large delay, high noise, severe multi-path fading because of time-varying and space-varying, underwater acoustic communication has low rate of data transmitting and high error rate. In a word, underwater acoustic communication is one of the most challenging communication field.
     At present, the study of underwater acoustic communication mainly focuses on the computer simulation and acoustic Modem development, etc.“Acoustic channel modeling and implementation of simulation platform”researched by Xiamen university simulated intrinsic path model of acoustic channel with Matlab simulation software“Simulation and Research on acoustic spread spectrum communication system”from Northwestern Polytechnic University studied the application of spread spectrum technology in underwater acoustic communication. Computer simulation can greatly reduce costs on human, material, wit during the acoustic experiment and so on, while simplified acoustic model cannot simulate complex acoustic channel comprehensively, which causing difficulty in suiting simulation results and the practical application. So now a lot of research institutions are also committed to the development of acoustic Modem, in order to inspect acoustic algorithm in actual acoustic communications and to improve the quality of underwater acoustic communication. Transporting and laying of acoustic instruments and equipment, power supply, pressure resistance and tightness of acoustic nodes, high cost and low efficiency of the sea test have become inevitable difficult problems in underwater acoustic communication.
     In order to solve a variety of problems in underwater acoustic communication, this paper proposes a concept of underwater acoustic communication semi-physical simulation platform. This platform brings such functions as underwater acoustic communication experiment, acoustic data acquisition, recovery and display, acoustic algorithm simulation and assessment, acoustic algorithm in application download
     together, which fully satisfy various research needs of experimental workers in acoustic communication. The overall goal is to supply an efficient, accurate, real-time, flexible technical support for the research of acoustic sensor network communication algorithm and decoding technology and to basically solve the main challenges the underwater acoustic communication faced.
     This subject is based on acoustic semi-physical simulation software control platform, WIFI wireless communication, acoustic sensor network and serial configuration characteristic of FPGA chip. Reasonable communication protocol guarantees accurate realization of system function.
引文
[1]杨士莪.研究海洋开发海洋——海洋环境及海洋资源调查、监测技术概述[J].舰船科学技术.2008,30(5):17-19
    [2]陈炷响,蔡勤禹.海洋开发与现代海洋观念[J].合肥学院学报. 2009, 26(1):65-68
    [3]陈树永,林宪生,李新妮.欧洲海洋开发与利用现状研究及对我国的启示[J].海洋开发与管理. 2009, 26(3):22-27
    [4]刘敏,惠力,杨立,杨书凯.水下传感器网络及其在海洋监测中的应用研究[J].山东科学. 2010, 23(2):22-27
    [5]李淑秋,李启虎,张春华.水下声学传感器网络的发展和应用[J].物理. 2006, 35 (11):945-952
    [6]陈建军,张云海.海洋监测技术发展探讨.水雷战与舰船防护. 2009, 17(2):47-50
    [7]李可非.水声无线传感器网络节点的设计与开发(硕士学位论文)[D].青岛.中国海洋大学. 2009
    [8] CAYIRCIE, TEZCAN H, DOGAN Y, COSKUN V. Wireless Sensor Networks for Underwater Surveillance Systems[J]. Ad Hoc Networks, 2006, 4(4):431-446
    [9]欧晓丽.水声信道建模及其仿真平台的实现(硕士学位论文)[D].厦门.厦门大学. 2007
    [10]许肖梅.水声通信与水声网络的发展与应用[J].声学技术. 2009, 28(6):811-816
    [11] Chitre M,Shahabudeen S,Stojanovic M. Underwater Acoustic Communications and Networking: Recent Advances and Future Challenges[J]. Marine Technology Science Journal, 2008, 42(1):103-116
    [12] Dale Green. Underwater acoustic communications and networks[A]. Six International Symposium on Underwater Technology[C]. UT2009, Wuxi, China. 2009
    [13]周三文.水声扩频通信系统仿真研究(硕士学位论文)[D].西安.西北工业大学. 2003
    [14]孙静,黄建国,何成兵. OFDM中程水声通信系统仿真及实验[J].计算机仿真. 2006, 23 (2):18-20
    [15]韩晶,黄建国,冉茂华.基于OPNET的水声通信网络设计与仿真[J].系统仿真学报. 2009, 21(17):5498-5502
    [16]冉茂华,黄建国,韩晶.水声通信中的时变多普勒补偿算法研究与仿真[J].计算机仿真2008, 25(11):328-330
    [17]陈平等.现代通信实验系统的计算机仿真[M].北京:国防工业出版社. 2003
    [18] Iuliu Vasiliscu, Carrick Dwtweiler, Daniela Rus. AquaNodes: An underwater sensor network[Z]. WUWNet07. September 14, 2007.
    [19]郭志强.水声通信算法半物理仿真平台的设计与开发(硕士学位论文)[D].青岛.中国海洋大学. 2010
    [20]杨小平,田野.卫星地面试验系统半物理仿真通信机制研究[J].计算机仿真. 2007, 24 (3):35-38
    [21]常同立,丛大成,叶正茂,韩俊伟.空间对接半物理仿真系统虚拟样机及仿真研究[J].机床与液压. 2008, 36(4):139-141
    [22]吴海彬.基于半物理仿真的海上平台沉浮运动研究(博士学位论文)[D].浙江.浙江大学. 2002
    [23]叶杭冶,李伟,林勇刚,刘宏伟.基于半物理仿真的变速恒频独立变桨距控制[J].机床与液压. 2009, 37(1):90-93
    [24]朱世强,武星军,金波.半物理仿真一种事半功倍的工程设计方法[J].西北大学学报. 1999,29: 244-247
    [25]余飞伟.水声传感器网络试验平台前置机系统的设计与开发(硕士学位论文)[D].青岛.中国海洋大学. 2009
    [26]韩晶,黄建国,钟永信.水声通信网络介质访问控制协议的设计与仿真[J].电声技术. 2010,34(3): 67-71
    [27]孙鑫,余安萍. VC++深入详解[M].北京:电子工业出版社. 2007
    [28]北京博讯科技有限公司. AT+iTM Programmer’s Manua[M/CD].北京:北京市海淀区中关村南大街甲6号铸诚大厦B305. 2008
    [29] Connect One Ltd. Instant Internet Evaluation Board II-EVB-363MW[M/CD].北京:北京市海淀区中关村南大街甲6号铸诚大厦B305. 2008
    [30]李洪彪,廖伶俐,王万胜,隆萍.基于Socket的远程无线监控系统设计及应用[J].自动化与仪器仪表. 2009(3): 19-21
    [31]孟学军,梅仲豪,陈有青.基于WIFI家庭无线互联广播系统的项目研究[J].现代计算机. 2010(9): 154-155
    [32]张勇,刘宇鹏,齐国富.浅谈WIFI无线覆盖技术及其实现[J].信息系统工程. 2010( 6): 60-61
    [33]刘烨.用Socket实现基于TCP和UDP的原理探索[J].电脑学习. 2009(3): 6-7
    [34]李扬. WIFI技术原理及应用研究[J].科技信息. 2010(6): 241
    [35]文峰,石峰,胡洪飞,叶菁.基于FPGA的高速数据采集系统设计[J].国外电子测量技术. 2008,27(7): 32-35
    [36]张晓忠,郝润科.基于FPGA的高精度数据采集卡设计[J].电测与仪表. 2008,4 5( 11): 55-59
    [37]姜凯,楮东升,黎明.基于FPGA的水声信号采样存储系统设计[J].微计算机信息. 2009,25(7-2): 132-139
    [38]邓剑,杨晓非等. FAT文件系统原理及实现[J].计算机与数字工程. 2005(9): 105-108
    [39]范寒柏.大容量SD卡在海洋数据存储中的应用[J].计算机与嵌入式系统应用. 2010(4): 30-32
    [40]李长有.基于C8051F020的SD卡主控制器设计[J].微计算机信息. 200(7 9-2): 120-122
    [41]吉涛,蔡航.应用SD卡实现大容量存储测试系统设计[J].陕西科技大学学报. 2010( 5): 97-101
    [42]彭长青,尚荣艳. Matlab与VC通用接口程序的实现[J].微计算机信息. 2010,2 6( 9-3): 105-107
    [43]王世香.精通MATLAB接口与编程[M].北京:电子工业出版社. 2007
    [44] Altera Corporation. Cyclone II Device Handbook Section VI. Configuration&Tes[t EB/OL]. http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1_06.pdf
    [45]蔡伟纲. NiosII软件架构解析[M].西安:西安电子科技大学出版社. 2007
    [46] carlggz. MOTOROLA S-RECORD文件格式[ EB/OL ] . http://blog.csdn.net/carlggz/archive/2008/08/06/2775195.aspx
    [47]曹智渊,师奕兵,王志刚.基于对EPCS在线编程的FPGA可重构方法[J].电子元器件应用. 2009,11(10): 30-34
    [48]李兰英等. NiosII嵌入式软核SOPC设计原理及应用[M].北京:北京航空航天大学出版社. 2006
    [49] Altera Corporation. NiosII Flash Programmer User Guide [EB/OL]. http://wenku.baidu.com/view/da0c0c5e804d2b160b4ec023.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700