用户名: 密码: 验证码:
大型风电叶片结构设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能作为绿色可再生能源,已受到世界各国的广泛重视。叶片作为风电机组的核心部件,其设计理论和制造技术被视为风电机组研发的关键。目前,国内有关叶片结构设计研究仍然面临巨大挑战,深入开展相关基础理论与技术研究,对尽快掌握风电机组核心技术,提高自主创新能力具有重要意义。在此背景下,论文针对风电叶片结构设计方法及其关键技术展开研究。
     基于现有风电叶片设计基础理论,论文分析了叶片气动参数、结构参数的构成,探讨了相关坐标系的定义以及气动设计的常用方法。通过风电叶片构造分析,比较了强主梁叶片和弱主梁叶片的构造特点,分析了不同叶片承载结构的设计区别。研究了复合材料经典层合板强度理论、基于梁理论的等代设计方法在叶片承载结构设计中的应用。
     论文基于风特性的分析,给出了一种用于小尺度条件下风速、风向和湍流强度计算的脉动风工程计算模型,该模型可用于随机气动载荷的计算分析。对主要载荷计算方法、风况描述模型和机组运行状态进行探讨,分析了机组运行状态与外部风况的组合条件,确定了载荷计算所需最少设计工况。研究了风电叶片载荷时序仿真计算方法,采用统计外推法及Gumbel分布模型对含有随机成分的最大载荷进行统计分析,给出了叶片极限载荷计算方法。
     综合运用复合材料经典层合板理论、基于梁理论的等代设计方法,建立了叶片主要承载结构设计方法,并编制验证程序,进行实例计算,验证了方法的有效性。计算结果表明,采用复合材料经典层合板理论设计叶片结构铺层和采用基于梁理论的等代方法计算叶片层合板厚度都是可行的。通过对比分析,基于梁理论的等代设计方法更为简便,可为复合材料铺层计算提供依据,其中采用刚度条件的设计结果更为接近实际叶片,说明刚度在大型风电叶片结构设计中是关键约束。
     针对以往叶片气动与结构独立设计的问题,论文分析了厚度、实度和扭角等参数对叶片气动和结构性能的综合影响,给出了翼型沿叶片展向合理分布的气动结构平衡设计方法。该方法提出结构系数κ的概念,将大型风电叶片分为侧重结构强度的内圈与侧重气动性能的外圈,内圈采用钝后缘翼型以提高叶片结构强度和刚度,外圈采用薄翼型以提高气动性能,合理解决了气动性能与结构强度的矛盾。研究了叶片变桨中心位置设计方法,通过对扭矩载荷的分析,给出了叶片截面变桨中心与重心重合的设计方案,有利于减小叶片运行过程中的扭矩载荷。
As an important part of green energy, wind power has been getting more and more attention in the world. Wind turbine blades are the main components of wind turbines, and their design and manufacturing technology are regarded as the key to wind turbine research and development. The researches on blade structure design are still faced with big challenges in China; therefore, a thorough study on relevant basic theories and techniques is of great significance to commanding the core techniques of wind turbines and improving our capacity for independent innovation. In the above context, a study featuring the design of wind turbine blade structure and relevant techniques is carried out in this dissertation.
     With theoretical analysis on the design of wind turbine blades, the author probes into the aerodynamic coefficients, structural parameters, definitions of relevant coordinates and the common aerodynamic design methods involved in wind turbine blade design. On the basis of analyzing the structure of wind turbine blades, the features of different blades are compared and the differences in bearing structure design between blades of strong spar and those of weak ones are studied. Besides, the author also conducts a strength analysis for laminated classic composite plates and applies the replacement methods of Beam theory into blade bearing structure design.
     Load calculation lays a foundation for wind turbine blade design. With a research on wind features, this dissertation offers an engineering calculation model involving wind turbulence such characteristic quantities as wind speeds, directions and intensity of a short period. This model can also be used for calculating random aerodynamic loads. Analyzing the main load calculating methods, description model of wind conditions, and system operating state, the author studies the combination conditions for wind system operating state and the external wind regime, and determines the minimum load design that may cover all the conditions for wind system operation. In addition, the author researches the timing simulation method, and conducts an analysis over the random components-contained maximum load with statistical extrapolation methods and the Gumbel distribution model, and finally generates the method for calculating the ultimate load of blade.
     With a comprehensive application of the classic laminated plate theory, the replacement design methods of Beam theory and some empirical formulas, a design method for the main load structure of blade is established, a testifying procedure is produced, a case analysis calculation is conducted, and the validity of design methods is justified. The calculation results show that both the way to design the blade structure layering with the theory of laminated classic composite plates and the method to calculate the thickness of blade laminated plates are feasible, the design method of Beam theory is more convenient and it can also lay a foundation for calculating composite layers, and the results obtained from rigidity design of replacement methods of Beam theory are closer to the real situation, which shows that the rigidity condition is one of the key constrained conditions in large-scale wind turbine blade structure design. As for the issue of blade structure optimization, the author builds a spar structure optimization model which takes into account of the curve and shear stress.
     As for the problem that the aerodynamic design and the structure design were conducted separately in the past, this dissertation offers an analysis of the overall influence of blade thickness, solidity and the torsion angle on aerodynamic and structure functions, and provides a balance design of aerodynamic and structure with reasonable distribution of extending airfoil shape of blade. This method initiates the concept of the structure coefficient ofк, and divides the large-scale blades into inner circles featuring structure requirements and out circles catering for aerodynamic requirements. The inner circles adopt the blunt trailing edge airfoil type to improve the structure strength and stiffness of the blade, while the out circles take the thin airfoil type with sound aerodynamic functions, to properly resolve the conflict between blade aerodynamic and structure. For the location design of the pitch center, this dissertation studies the blade torque load and produces a design scheme of coinciding the pitch center and the center of gravity in the cross section of blade. It can help reduce the blade torque load in operation.
引文
[1]方函.风能产业发展方兴未艾中国为全球第四大市场.经济视角[J],2009,(5):51-52
    [2]Xia Changliang,Song Zhanfeng.Wind energy in China:Current scenario and future perspectives[J].Renewable and Sustainable Energy Reviews,2009,139(8):1966-1974
    [3]沈德昌.2009年全球风电产业发展概况[J].太阳能,2010,(07):6-7
    [4]北极星电力网.2009-2010年国内外风电产业发展报告[EB/OL].(2011-1-26). [2011-03-28].http://www.china5e.com/show.php?contentid=155607
    [5]C.Ender.Wind Energy Use in Germany[R].Wilhelmshaven:DEWI,2008
    [6]国际新能源网.2010年美国风电装机容量下降[EB/OL].(2011-1-26).[2011-03-28]. http://www.in-en.com/newenergy/html/newenergy-0838083852915902.html
    [7]祝贺,徐建源,等.风力发电技术发展现状及关键问题[J].华东电力,2009,37(2):314-316
    [8]屈伟平.从我国电源装机容量变化看电力设备投资机会[J].电器工业,2008,(10):20-27
    [9]Xu Jianzhong,He Dexin,Zhao Xiaolu.Status and prospects of Chinese wind energy [J].Energy,2010,35(11):4440-4445
    [10]夏阳.战略性新兴产业绿色能源光明前景[EB/OL]. (2010-10-28).[2011-03-28].http://finance.eastday.com/economic/ml/20101028/ula5516175.html
    [11]中国风能协会.2010年中国风电装机容量统计[R].北京:中国风能协会,2011
    [12]中国风能协会.2009年中国风电整机制造业市场格局及发展态势[R].北京:中国风能协会,2010
    [13]中国能源报.我国确定7个千万千瓦级风电基地[EB/OL].(2010-05-24).[2011-03-28].http://www.chinaequip.gov.cn/2010-05/24/c_13311981.htm
    [14]叶勇,陈其珏.风电结构性过剩掌握核心技术是根本[EB/OL]:(2009-09-21). [2011-03-28].http://finance.sina.com.cn/stock/t/20090921/07216772913.shtml
    [15]GWEC.Global Wind energy Outlook 2010[R].2010,10
    [16]张明锋,邓凯,等.中国风电产业现状与发展[J].机电工程,2010,27(1):1-4
    [17]陈永祥,方征.中国风电发展现状趋势及建议[J].装备机械,2010,(4):14-19
    [18]贺德馨.风工程与空气动力学[M].北京:国防工业出版社,2006
    [19]Gourieres DLE.Wind Power Plants theory and design[M].NewYork:Pergamon Press,1982
    [20]王超,张怀宇,等.风力发电技术及其发展方向[J].电站系统工程,2006,22(3):11-13
    [21]董锋岩.复合材料风机叶片发展现状及成型工艺进展[A].第十七届玻璃钢/复合材料学术年会论文集[C].广州:中国硅酸盐学会玻璃钢分会,2008:343-345
    [22]戴春晖,刘钧,等.复合材料风电叶片的发展现状及若干问题的对策[J].玻璃钢/复合材料.2008,(1):53-56
    [23]陈余岳,姚辉,等.1MW变速恒频风力机复合材料叶片设计[J].玻璃钢,2004,(4):1-6
    [24]陈余岳,姚辉.1.5MW变速恒频风力机玻璃钢叶片结构设计[A].玻璃钢学会第十 六届全国玻璃钢/复合材料学术年会论文集[C].黄山:中国硅酸盐学会玻璃钢分会,2005:7-10
    [25]M.Jureczko,M.Pawlak,et al.Optimisation of wind turbine blades[J].Materials Processing Technology.2005,167(2-3):463-471
    [26]Richard.Eppler,Dan M.Somers.A Computer Program for the Design and Analysis of Low-Speed Airfoils [R].Hhampton,Virginia:NASA,1980
    [27]J.L.Tangler,D.M.Somers.NREL Airfoil Families for HAWTS[R]. WashingtonD.C: NASA,1995
    [28]Peter Fuglsang,Christian Bak.Development of the Risφ Wind Turbine Airfoils [J].Wind Energy,2004,7(2):145-162
    [29]W.A.Timmer,R.P.J.O.M.van Rooij.Summary of the Delft university wind turbine dedicated airfoils[J].Solar Energy Engineering,2003,125(4):488-496
    [30]BJORK A.Coordinates and calculations for the FFA-Wl-xxx,FFA-W2-xxx,FFA-W3-xxx series of airfoils for HAWTS[R].Stockholm:The Aeronautical Research Institute of Sweden,1990
    [31]李德顺.水平轴风力机专用翼型的空气动力学性能研究[D].兰州:兰州理工大学.2008
    [32]苏明军.水平轴风力机叶片翼型的气动特性研究[D].阜新:辽宁工程技术大学.2007
    [33]李德顺,李仁年,等.一种风力机专用翼型气动特性的非定常数值模拟[J].西华大学学报(自然科学版),2008,27(5):21-25
    [34]琚亚平,张楚华.基于人工神经网络与遗传算法的风力机翼型优化设计方法[J].中国电机工程学报,2009,29(20):106-111
    [35]陈进,陆群峰,等.基于自适应遗传算法的风力机通用翼型的优化设计研究[J].中国机械工程,2009,20(20):2448-2452
    [36]叶正寅,谢萌.翼型厚度对气动弹性特性的影响[J].力学与实践,2009,31(3):27-31.
    [37]李常,梁武科,等.型厚度对风力机翼型气动特性的影响[J].流体机械,2010,38(2):31-34
    [38]申振华,于国亮.翼型弯度对风力机性能的影响[J].动力工程,2007,27(1):136-139
    [39]包能胜,霍福鹏,等.表面粗糙度对风力机翼型性能的影响[J].太阳能学报,2005,26(4):458-462
    [40]杨瑞,李仁年,等.钝尾缘风力机翼型气动性能计算分析[J].机械工程学报,2010,46(2):106-110
    [41]李宏利.水平轴风力机专用翼型族的设计及其气动性能研究[D].北京:中国科学院,2009
    [42]Betz,A.Schraubenpropeller mit geringstem energieverlust[R].Gottinger Nachr Germany,1919
    [43]A.Cuerva,A.Sanz-Andres.The extended Betz-Lanchester limit[J]. Renewable Energy,2005,30(5):783-794
    [44]Tony Burton,David Sharpe,et al.Wind energy handbook[M].England:John wiley & Sons LTD,2001
    [45]王承煦,张源.风力发电[M].北京:中国电力出版社,2003
    [46]Glauert H.The analysis of experimental results in the windmill brake and vortex ring states of an aircrews[R].Reports and Memoranda,1926
    [47]Wilson R E,Lissaman P B S,et al.Aerodynamic Performance of Wind Turbine[M]. Oregon:Oregon State University,1976
    [48]Jeppe Johansen,Niels N.S0φrensen.Numerical Investigation of Three Wind Turbine Blade Tips[M]. Roskilde:Risφ National Laboratory,2002
    [49]Kamoun Badreddinne, Afungchui David,et al.Optimum project for horizontal axis wind turbines'OPHWT'[J].Renewable Energy,2005,30(13):2019-2043
    [50]尹左明.水平轴风力机叶片气动特性分析及外形设计[D].北京:华北电力大学,2009
    [51]Jones,C N.Blade element performance in horizontal-axis wind turbine rotors [J].Wind Engineering,1983,7(3):129-137
    [52]Rijs A P P,Smulders P L.Blade element theory for performance of slow running wind turbine[J].Wind Engineering,1990,14(2):142-150
    [53]Kotb M A,Soliman H A.Performance analysis of a horizontal-axis wind turbine under Non-Uniform flow with swirl[J].Wind Engineering and Industrial Aerodynamics,1991,37(1):103-111
    [54]刘小卡.水平轴风力机气动设计与实体建模[D].上海:上海交通大学,2010
    [55]黄知龙,刘沛清,等.某兆瓦级水平轴风力机叶片气动设计和性能评估[J].电网与清洁能源,2010,26(1):68-72
    [56]Md Quamrul ISLAM,A.K.M.Sadrul ISLAM.The aerodynamic performance of a horizontal axis wind turbine calculated by strip theory and casade theory[J].Fluids and Thermal Engineering.1994,37(4):871-877
    [57]D.H.Wood.Dual propose design of small wind turbine blades[J].Wind Engineering,2004,28(5):511-528
    [58]N.S.Cetin,M.A.Yurdusev,et al.Assessment of optimum tip speed ratio of wind turbines[J].Mathematical and Computational Applications,2005,10(1):147-154
    [59]G.R.Collecutt,R.GJ.Flay.The economic optimization of horizontal axis wind turbine design[J].Wind Engineering and Industrial Aerodynamics,1996,61(1):87-97
    [60]刘雄,陈严,等.水平轴风力机风轮叶片优化设计模型研究[J].汕头大学学报,2006,21(1):44-49
    [61]刘雄,陈严,等.风力机桨叶总体优化设计的复合形法[J].太阳能学报,2001,2(22):157-161
    [62]屈圭.风电机叶片设计参数的整体优化[J].机电产品开发与创新.2009,22(2):68-71
    [63]包耳,邵晓荣,等.风力机叶片设计的新方法[J].机械设计,2005,22(2):24-26
    [64]熊礼俭.风力发电新技术与发电工程设计、运行、维护及标准规范实用手册[M].北京:中国科技文化出版社2005
    [65]Leishman,J.G.Challenges in modeling the unsteady aerodynamics of wind turbines[J].Wind Energy,2002,(5):86-132
    [66]宋聚众,赵萍,等.水平轴风力机载荷工况设计方法研究[J].东方电气评论,2009,23(2):60-63
    [67]黄华.风力机风轮叶片设计计算方法研究[D].成都:西华大学,2008
    [68]Lisa N.Freeman.Stochastic loads on horizontal axis wind turbine blades[D]. Oregon:Oregon State University,1996
    [69]Korn Saranyasoontorn,Lance Manue.A comparison of wind turbine design loads in different environments using inverse reliability techniques[J].Solar Energy Engineering,2004,126(4):1060-1068
    [70]P.W.Cheng,W.A.A.M.Bierbooms.Distribution of extreme gust loads of wind turbines[J].Wind Engineering and Industrial Aerodynamics,2001,89(3):309-324
    [71]Peter Hauge Madsen,Kirk Pierce,et al.Predicting ultimate loads for wind turbine design[R]. Reno,Nevada:AIAA/ASME Wind Energy Symposium,1999
    [72]Fitzwater,L.M,et al.Predicting design wind turbine loads from limited data[R]:Comparing Random Process and Random Peak Models.A collection of the 2001 ASME Wind Energy Symp.Reno,Nevada:the AIAA Aerospace Sciences Mtg,2001
    [73]Selvam K, Kanev S, et al.Feedback-feedforward individual pitch control for wind turbine load reduction[J].Robust and Nonlinear Control,2008,19(1):72-91
    [74]D.L.White,W.D.Musial.The effect of load phase angle on wind turbine blade fatigue damage[J]. Solar Energy Engineering,2004,126(4):1050-1059
    [75]Lance Manuel,Paul S.Veers,et al.Parametric models for estimating wind turbine fatigue loads for design[J].Solar Energy Engineering,2001,123(4):346-355
    [76]Steven R.Winterstein,Tina Kashef.Moment-based load and response models with wind engineering applications[J].Solar Energy Engineering,2000,122(3):122-128
    [77]Vasilis A.Riziotis,Spyros G. Voutsinas.Fatigue loads on wind turbines of different control strategies operating in complex terrain[J].Wind Engineering and Industrial Aerodynamics,2000,85(3):211-240
    [78]郭健.风力发电机整机性能评估与载荷计算的研究[D].大连:大连理工大学,2003
    [79]曾杰.大型水平轴风力机载荷计算和强度分析的方法研究[D].乌鲁木齐:新疆农业大学,2001
    [80]贾军利.风力发电机组载荷测试系统的设计与软件实现[D].乌鲁木齐:新疆农业大学,2009
    [81]郭亮.风力发电机组疲劳载荷测试系统的研究与设计[D].乌鲁木齐:新疆大学,2006
    [82]赵春平.风力发电机组变桨速率与载荷关系的研究[D].乌鲁木齐:新疆大学,2008
    [83]王楠.水平轴风力机CAD软件中风场模型及极限载荷预测方法研究[D].汕头:汕头大学,2005
    [84]刘吉辉.风力机全系统载荷分析及优化设计软件的集成开发[D].汕头:汕头大学,2006
    [85]许明.风力发电机组轮毂和塔架的载荷分析研究[D].呼和浩特:内蒙古农业大学,2009
    [86]赵丹平.风力发电机组叶片模型气动载荷研究[D].呼和浩特:内蒙古农业大学,2009
    [87]孙磊.大型风力发电机组风轮载荷的仿真计算与控制[D].沈阳:沈阳工业大学,2009
    [88]梁晶晶.兆瓦级风力发电机组独立变桨距载荷分布优化控制策略[D].沈阳:沈阳工业大学,2009
    [89]齐沛玉.大型风力机复合材料叶片的气动外形和载荷设计[J].玻璃钢,2009,(4):1-9
    [90]刘磊,石可重,等.风切变对风力机气动载荷的影响[J].工程热物理学报,2010,31(10):1667-1670
    [91]宗楠楠.小型水平轴风力机叶片设计与有限元分析[D].上海:上海交通大学,2009
    [92]R.V.Rodenburg.Focus-a design tool for structural optimization of rotor blades [A]. European Wind Energy Assiociation Conference and Exhibition. Thessaloniki:1994
    [93]C.Linderburg.Results of the PHATA-III development[R].Ennery Research Center of Netherlands,1997
    [94]Jason M.Jonkman,Marshall L.Buhl Jr.FAST user's guide[R].Golden,Colorado: National Renewable Energy Laboratory,2005
    [95]M.L.Buhl,Jr.,et al.FAST_AD code verification:a comparison to ADAMS[R].Reno, Nevada:the 20th American Society of Mechanical Engineers (ASME) Wind Energy Symposium,2001
    [96]E.A.Bossanyi.GH bladed theory manual[R].Garrad Hassan and Partners Ltd.2005
    [97]IEC61400-1,Wind turbines-1:design requirements[S]. Switzerland:IEC,2005
    [98]Rules and regulations,IV-Non-marine technology, Part 1- wind energy,regulation for the certification of the wind energy conversion systems[S].Germanischer Lloyd,2003
    [99]全国风电机组机械标准化技术委员会.风电机组机械标准汇编[Z].北京:中国标准出版社,2006
    [100]中国船级社.风力发电机组规范[Z].北京:人民交通出版社,2008
    [101]宾西开发区.首泉风能第一支风电叶片成功下线[EB/OL].(2008-9-25). [2011-03-28].http://www.bxkfq.com/xwzx-01.asp?id=2043
    [102]靳交通,周鹏展.大型水平轴式风电叶片的结构设计[J].可再生能源.2009,27(2):65-68
    [103]Dayton A.Griffin,Thomas D.Ashwill.Alternative composite materials for megawatt-scale wind turbine blades:design considerations and recommended testing[J].Solar Energy Engineering.2003,125(4):515-521
    [104]Joosse,P.A.,et al.Fatigue prosperties of low-cost carbon fiber material[A]. Copenhagen:the 2001 European Wind Energy Conference and Exhibition,2001
    [105]屈圭,吴运新.大功率风力发电机叶片设计研究[J].广东技术师范学院学报.2007,(12):72-76
    [106]李成良,陈淳.风力机叶片的结构分析与铺层优化设计[J].玻璃钢/复合材料.2009,(6):49-52
    [107]陈余岳.大型风力机玻璃钢叶片设计[J].玻璃钢/复合材料.1998,(4):17-20
    [108]何东晓,黄力刚,等.我国复合材料风机叶片的几种制造工艺与发展前景[J].纤维复合材料.2007,6(2):12-14
    [109]Derek Berry.Wind turbine blades manufacturing improvemens and issues[R].TPI Composites Inc,2004
    [110]F.M.Jensen, B.G. Falzon,et al.Structural testing and numerical simulation of a 34m. Composite wind turbine blade[A].ICCM15 Conference.2005
    [111]Bent F. Sφrensen,Erik Jφrgensen,et al.Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1)-Summary Report[R]. Denmark:Risφ National Laboratory,2004
    [112]Bent F.Sφrensen, K. Branner,et al.Improved design of large wind turbine blades of fibre composites (Phase2)-Summary report[R]. Risφ National Laboratory. Denmark, 2005
    [113]D.J.Malcolm.WindPACT turbine rotor design study[R].Kirkland,Washington: Global Energy Concepts LLC,2006
    [114]Dayton A.Griffin.WindPACT turbine design scaling studies technical area 1-composite blades for 80- to 120- meter rotor[R].Kirkland, Washington:Global Energy Concepts LLC,2001
    [115]Dayton A.Griffin.Blade system design studies volume I:composite technologies for large wind turbine blades[R].Kirkland,Washington:Sandia National Laboratories, 2002
    [116]Dayton A.Griffin.Blade system design studies volume II:preliminary blade designs and recommended test matrix[R].Kirkland,Washington:Sandia National Laboratories,2004
    [117]Derek S.Berry.Blade system design studies phase II:final project report[R].TPI Composites Inc,2008
    [118]Chahande A I, Arora J S. Optimization of large structures subjected to dynamic loads with the multiplier method[J].Numerical Methods in Engineering,1994, 37(3):413-430
    [119]Karam Y,Malawi,Hani M.Negm.Optimal frequency design of wind turbine blades[J].Wind Engineering and Industrial Aerodynamics.2002,90(8):961-986
    [120]A.Maheri,Siamak Noroozi,et al.WTAB,a computer program for predicting the performance of horizontal axis wind turbines with adaptive blades[J].Renewable Energy,2006,31 (11):1673-1685
    [121]A.Maheri,Siamak Noroozi,et al.Efficient meshing of a wind turbine blade using force adaptive mesh sizing functions[J].Renewable Energy,2007,32 (2):95-104
    [122]L.C.T.Overgaard,E.Lund,et al.Structural collapse of a wind turbine blade.Part A:Static test and equivalent single layered models[J].Composites,2010,41(2):257-270
    [123]L.C.T.Overgaard,E.Lund,et al. Structural collapse of a wind turbine blade.Part B: Progressive interlaminar failure models[J].Composites,2010,41(2):271-283
    [124]李军向.大型风机叶片气动性能计算与结构设计研究[D].武汉:武汉理工大学,2008
    [125]李成良.风机叶片结构分析与优化设计[D].武汉:武汉理工大学,2009
    [126]信伟平.风力机旋转叶片动力特性及响应分析[D].汕头:汕头大学,2005
    [127]刘虎平,风力机叶片设计和颤振分析[D].西安:西北工业大学,2005
    [128]Reaz,A. Chaudhuri.A nonlinear zigzag theory for finite element analysis of highly shear-deformable laminated anisotropic shells[J].Composite Structures,2008,85(4): 350-359
    [129]Peyman Khosravi,Rajamohan Ganesan,et al.An efficient facet shell element for corotational nonlinear analysis of thin and moderately thick laminated composite structures.Computers and Structures,2008,86(9):850-858
    [130]C. Kong,J.Bang,Y.Sugiyama.Structural investigation of composite wind turbine blade considering various load cases and fatigue life[J].Energy,2005,30 (11-12):2101-2114
    [131]F.M.Jensen,B.G. Falzon,et al.Structural testing and numerical simulation of a 34 m composite wind turbine blade[J].Composite Structures,2006,76(1-2):52-61
    [132]张春丽.复合材料风力机叶片结构设计[D].上海:同济大学,2007
    [133]任腊春.风力机风轮叶片结构设计与分析[D].成都:西华大学.2008
    [134]C Kong,Kim J.A study on structural and aerodynamic design of composite blade for large scale HAWT system final report[R].Hankuk Fiber Ltd,2000
    [135]芮晓明,柳亦兵,等.风力发电机组设计[M].北京:机械工业出版社,2010
    [136]MichaelS.Selig.PROPID user manual (BetaVersion 3.0)[R].Illinois:UIUC Applied Aerodynamics Group,1998
    [137]Selig M.S.,Tangler J.L.Development and application of a multipoint inverse design method for horizontal axis wind turbines[J].Wind Engineering,1995,19(2): 91-10
    [138]张礼达,任腊春,等.风力机叶片材料特性分析与评价[J].现代零部件.2008,(6):61-63
    [139]沈观林胡更开.复合材料力学[M].北京:清华大学出版社,2006
    [140]王震鸣.复合材料力学和复合材料结构力学[M].北京:机械工业出版社,1990
    [141]李顺林,王兴业.复合材料结构设计基础[M].武汉:武汉理工大学出版社,1993
    [142]Martin O L Hansen. Aerodynamics of Wind Turbines[M].Second Edition. London: Earthscan Publications Ltd,2008
    [143]单辉祖.材料力学[M].北京:国防工业出版社,1986
    [144]Van der Hoven.Power Spectrum of Horizontal Wind Speed in the Frequency Tange from 0.007 to 900 Cycles Per Hour[J].Meteorology,1957,14(7):160-163
    [145]庞加斌,宋丽莉,等.风的湍流特性两种分析方法的比较及其应用[J].同济大学学报(自然科学版).2006,34(1):27-32
    [146]姜香梅,曾杰.风力机及其零部件载荷的确定方法[J].新疆农业大学学报,2002,25(2):74-77
    [147]J.Gordon,Leishman.Challenges in modeling the unsteady aerodynamics of wind turbines[J].Wind Energy,2002,5(2-3):85-132
    [148]D.勒古里雷斯.风力机的理论与设计[M].施鹏飞译.北京:机械工业出版社,1987.
    [149]李德源,叶枝全,等.风力及叶片载荷谱及疲劳寿命分析[J].工程力学,2004,21(6):118-123
    [150]Schwartz M,Elliott D.Wind shear characteristics at central plains tall towers[R]. Pittsburgh:National Renewable Energy Laboratory,2006
    [151]F Manwell J,McGowan,et al.Wind Energy Explained:Theory,Design and Application[M].John Wiley and Sons Ltd,2002
    [152]Winther Jesen Martin,Erik R.JoGensen.When real life wind speed exceeds wind assumptions[A].1999 European Wind Energy Conference.UK:Antony Rowe Ltd,1999:220-223
    [153]DS472,Load and Safety of wind turbine construction[S].Danish Standard,1992
    [154]邓建中.外推法及其应用[M].上海:上海科学技术出版社,1984
    [155]成平,陈希孺,等.参数估计[M].上海:上海科学技术出版社,1985
    [156]JB/T 10194,风力发电机组风轮叶片[S].北京:全国风力机械标准化技术委员会,2000
    [157]矫桂琼,贾普荣.复合材料力学[M].西安:西北工业大学出版社,2008
    [158]Bryan Harris工程复合材料.第二版.陈祥宝,张宝艳译.北京:化学工业出版社.2004
    [159]益小苏,杜善义,等.复合材料手册[M].北京:化学工业出版社,2009
    [160]张世禄,陈豫眉编.计算方法[M].北京:电子工业出版社.2006
    [161]G.Bir,P.Migliore.Preliminary Structural Design of Composite Blades for Two- and Three-Blade Rotors[R]. Colorado:National Renewable Energy Laboratory.2004
    [162]钱颂迪.运筹学[M].北京:清华大学出版社,2005
    [163]林成森.数值计算方法[M].北京:科学出版社,1998
    [164]Jim Platts,齐海宁.风机叶片的结构优先设计方法[DB/OL]. (2008-9-25). [2011-03-28].http://wenku.baidu.com/view/8031c67e5acfalc7aa00cc84.html
    [165]Robert E Wilson,Peter B SLissaman,et al.Aerodynamic performance of wind turbines[R].Oregon:Oregon State University,1976
    [166]Jackson K, Zuteck M, et al. Innovative design approaches for large wind turbine blades[J].Wind Energy,2005,8(2):141-171
    [167]C.P. van Dam,Daniel L.Kahn,et al.Trailing Edge Modifications for Flatback Airfoils[R].California:Sandia National Laboratories,2008
    [168]K.J.Standish,C.P.van Dam.Aerodynamic analysis of blunt trailing edge airfoils [J].Solar Energy Engineering.2003,125 (4):4479-4487
    [169]D.M.Somers.The S830,S831,and S832 Airfoils[R].Colorado:National Renewable Energy Laboratory.2005
    [170]D.M. Somers.The S816,S817,and S818 Airfoils[R].Colorado:National Renewable Energy Laboratory.2004
    [171]李强,姚兴佳,等.兆瓦级风电机组变桨距机构分析[J].沈阳工业大学学报.2004,26(2):146-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700