用户名: 密码: 验证码:
调控小鼠肾脏功能的相关中枢核团神经解剖学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着有生物活性的能够进行多突触传递的嗜神经示踪病毒的发现、改造与应用,有关调控内脏功能的中枢核团定位和功能认识得以深化,相关中枢核团之间的神经解剖学通路变得更加明晰。本研究运用伪狂犬病毒(pseudorabies virus, PRV)转突触示踪技术和荧光标记技术试图确定中枢神经系统参与调控小鼠肾脏功能的相关神经核团,以及这些核团之间的神经解剖学投射通路。研究方法与结果方法:将嗜神经示踪病毒PRV-614注入19只成年雄性C57BL/6J小鼠的左侧肾脏上极,按照动物的不同生存期限无痛处死后制备冰冻切片,用荧光免疫组织化学技术检测脊髓、脑干(延髓和中脑)中PRV-614感染神经元、色氨酸羟化酶(TPH)和酪氨酸羟化酶(TH)阳性神经元的表达。结果:1.PRV-614经小鼠肾脏注射后第3d,少量的PRV-614感染神经元逆行示踪标记在脊髓T9的IML区。2.注射PRV-614后第4d,少量的PRV-614感染神经元发现在脊髓T8-10的IML区、IC区和CAN区,以及延髓头端腹外侧核。3.注射PRV-614后第5d,较多的PRV-614感染神经元发现在脊髓T7-12的IML区、IC区和CAN区等,延髓头端腹内侧核、延髓头端腹外侧核、延髓中缝核、孤束核、A5区域、蓝斑核及亚蓝斑核等;较少的PRV-614感染神经元发现在中脑PPTg和LDTg区等。4.注射PRV-614后第6d,在脊髓几乎未发现PRV-614感染神经元。较多的PRV-614感染神经元发现在延髓头端腹内侧核、延髓头端腹外侧核、延髓中缝核、A5区域、蓝斑核及亚蓝斑核等,以及中脑PPTg和LDTg区。其中PRV-614感染神经元主要发现在LDTg头端和中间部位,以及PPTg中部和尾部。PRV-614/TPH双重标记神经元主要分布在LDTg头端,而PRV-614/TH神经元分散在LDTg中在3个部位。PRV-614/TPH和PRV-614/TH神经元主要位于PPTg (cPPTg)尾侧。研究总结1.从小鼠肾脏注射的PRV-614经突触逆行传递到达中枢核团具有时空表达特异性。2.主要调节肾脏交感神经活性的脊髓节段范围可能是T8-10,其中T9尤为重要。3.延髓头端腹外侧核是主要调节肾脏TH阳性交感神经活性的中枢核团,而延髓中缝核是主要调节肾脏TPH阳性交感神经活性的中枢核团。4.脑桥中A5区域、蓝斑核及亚蓝斑核是主要调节肾脏TH阳性交感神经活性的中枢核团。5. LDTg头部和PPTg尾部均参与肾脏TH/TPH阳性交感神经活性的调节。
PARTⅠRole of Spinal Cord in Regulation Mouse Kidney:A Virally Mediated Trans-synaptic Tracing StudyTo determine the spinal innervation and neuronal connections is important for studying renal metabolic responses. In this study, the spinal cords of 13 adult male C57BL/6J strain mice were retrogradely mapped using injections of pseudorabies virus (PRV)-614. The virus injected into the kidney was specifically transported to the spinal cord. At 5d after injection of the PRV-614, PRV-614 positive cells were found in the intermediolateral cell column, the intercalates nucleus or the central autonomic nucleus of spinal cord segments T4 to L1, and most PRV-614 labeled cells were found in the T9 segment. Our results revealed neuroanatomic circuits between kidney and the spinal intermediolateral cell column (IML) neurons. PARTⅡTransneuronal Labeling of Brainstem Neuronal Populations by Injection of Pseudorabies Virus into Mice KidneysThe autonomic nervous system is the primary neural mediator of renal catabolic and anabolic responses to internal stimuli. Our understanding of the brainstem neuronal populations that project to kidney is important for studying renal metabolic responses. In this study, the spinal cords and brainstem of 19 adult male C57BL/6J strain mice were retrogradely mapped using injections of pseudorabies virus-614. The virus injected into the kidney was specifically transported to the spinal cord and brainstem through the renal nerve. The rostral ventromedial medulla, rostral ventrolateral medulla, medullary raphe nuclei, A5 region, Locus coeruleus and nucleus subcoeruleus all contributed to the regulation of innervating sympathetic activity within the kidney. Sympathetic outflow to the kidney was regulated by different types of neural populations, including serotonin-, tryptophan hydroxylase-, and tyrosine hydroxylase-positive neurons in the brainstem. Neural circuit tracing could reliably identify medullary neurons that received synaptic inputs originating from renal autonomic afferents. Our results reveal neuroanatomical substrates of the descending serotonergic and catecholaminergic neuronal circuits in the brainstem for the regulation of renal functions. PartⅢLaterodorsal Tegmentum and Pedunculopontine Tegmental Nucleus Circuits Regulate Renal Functions: Neuroanatomical Evidence in Mice ModelsNeurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers pseudorabies virus (PRV)-614 and fluorescence immunohistochemistry to characterize the neuroanatomic substrate of PPTg and LDTg innervating the kidney in the mouse. PRV-614-infected neurons were retrogradely labeled in the rostral and middle parts of LDTg, and the middle and caudal parts of PPTg after tracer injection in the kidney. PRV-614/TPH double-labeled neurons were mainly localized in the rostral of LDTg, whereas PRV-614/TH neurons were scattered within the three parts of LDTg. PRV-614/TPH and PRV-614/TH neurons were located predominantly in the caudal of PPTg (cPPTg). These data provided direct neuroanatomical foundation for the identification of serotonergic and catecholaminergic projections from the mid-brain tegmentum to the kidney.
引文
1. Huang J, Chowhdury SI and Weiss ML. Distribution of sympathetic preganglionic neurons innervating the kidney in the rat:PRV transneuronal tracing and serial reconstruction. Auton Neurosci.2002;10;95(1-2):57-70.
    2. DiBona GF. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension. 2000;36(6):1083-8.
    3. Cano G, Card JP and Sved AF. Dual viral transneuronal tracing of central autonomic circuits involved in the innervation of the two kidneys in rat. J Comp Neurol. 2004;471(4):462-81.
    4. Zermann DH, Ishigooka M, Doggweiler-Wiygul R, et al. Central autonomic innervation of the kidney. What can we learn from a transneuronal tracing study in an animal model? J Urol.2005;173(3):1033-8.
    5. Aston-Jones G and Card JP. Use of pseudorabies virus to delineate multisynaptic circuits in brain:opportunities and limitations. J Neurosci Methods.2000;103(1):51-61.
    6. Ugolini G. Use of rabies virus as a transneuronal tracer of neuronal connections: implications for the understanding of rabies pathogenesis. Dev Biol (Basel). 2008;131:493-506.
    7. Card JP, Kobiler O, McCambridge J, et al. Microdissection of neural networks by conditional reporter expression from a Brainbow herpesvirus. Proc Natl Acad Sci U S A. 2011;108(8):3377-82.
    8. Glatzer NR, Derbenev AV, Banfield BW, et al. Endomorphin-1 modulates intrinsic
    inhibition in the dorsal vagal complex. J Neurophysiol.2007;98(3):1591-9.
    9. Willhite DC, Nguyen KT, Masurkar AV, et al. Viral tracing identifies distributed columnar organization in the olfactory bulb. Proc Natl Acad Sci U S A. 2006;103(33):12592-7.
    10. Zhang Y, Kerman IA, Laque A, et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci.2011;31(5):1873-84.
    11. Badoer E. Role of the hypothalamic PVN in the regulation of renal sympathetic nerve activity and blood flow during hyperthermia and in heart failure. Am J Physiol Renal Physiol.2010;298(4):F839-46.
    12. Schramm LP, Strack AM, Platt KB, et al. Peripheral and central pathways regulating the kidney:a study using pseudorabies virus. Brain Res.1993;616(1-2):251-62.
    13. Card JP, Kobiler O, Ludmir EB, et al. A dual infection pseudorabies virus conditional reporter approach to identify projections to collateralized neurons in complex neural circuits. PLoS One.2011;6(6):e21141.
    14. DiBona GF. Neural control of the kidney:functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol.2000;279(5):R1517-24.
    15. Salman IM, Ameer OZ, Sattar MA, et al. Renal sympathetic nervous system hyperactivity in early streptozotocin-induced diabetic kidney disease. Neurourol Urodyn.2011;30(3):438-46.
    1. Luan FL, Stuckey LJ, Ojo AO. Abnormal glucose metabolism and metabolic syndrome in non-diabetic kidney transplant recipients early after transplantation. Transplantation. 2010;89(8):1034-9.
    2. Marsenic O. Glucose control by the kidney:an emerging target in diabetes. Am J Kidney Dis.2009;53(5):875-83.
    3. Coote JH. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp Physiol 2005;90(2):169-73.
    4. Pichel JG, Shen L, Sheng HZ, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature.1996;382(6586):73-6.
    5. Wright JW, Sullivan MJ, Harding JW. Dysfunction of central angiotensinergic aminopeptidase activity in spontaneously hypertensive rats. Neurosci Lett. 1985;61(3):351-6.
    6. Badoer E. Role of the hypothalamic PVN in the regulation of renal sympathetic nerve activity and blood flow during hyperthermia and in heart failure. Am J Physiol Renal Physiol.2010;298(4):F839-46.
    7. Teff KL. Visceral nerves:vagal and sympathetic innervation. JPEN J Parenter Enteral Nutr.2008;32(5):569-71.
    8. Schramm LP, Strack AM, Platt KB, et al. Peripheral and central pathways regulating the kidney:a study using pseudorabies virus. Brain Res.1993;616(1-2):251-62.
    9. Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A.2007;104(9):3432-7.
    10. Zermann DH, Ishigooka M, Doggweiler-Wiygul R, et al. Central autonomic innervation of the kidney. What can we learn from a transneuronal tracing study in an animal model? J Urol.2005;173(3):1033-8.
    11. Cano G, Card JP, Sved AF. Dual viral transneuronal tracing of central autonomic circuits involved in the innervation of the two kidneys in rat. J Comp Neurol. 2004;471(4):462-81.
    12. Card JP, Kobiler O, McCambridge J, et al. Microdissection of neural networks by conditional reporter expression from a Brainbow herpesvirus. Proc Natl Acad Sci U S A. 2011;108(8):3377-82.
    13. Kaufman S, Deng Y. Renal response to atrial stretch during pregnancy in conscious rats. Am J Physiol.1993;265(4 Pt 2):R902-6.
    14. Huang J, Weiss ML. Characterization of the central cell groups regulating the kidney in the rat.1999;845(1):77-91.
    15. Liu Z, Li Y, Zhang X, et al. Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment. 2008;39(9):2571-7.
    16. Song CK, Enquist LW, Bartness TJ. New developments in tracing neural circuits with herpesviruses.2005;111(2):235-49.
    17. Willhite DC, Nguyen KT, Masurkar AV, et al. Viral tracing identifies distributed columnar organization in the olfactory bulb. Proc Natl Acad Sci U S A. 2006;103(33):12592-7.
    18.Ugolini G. Use of rabies virus as a transneuronal tracer of neuronal connections: implications for the understanding of rabies pathogenesis. Dev Biol (Basel). 2008;131:493-506.
    19. Jansen AS, Nguyen XV, Karpitskiy V, et al. Central command neurons of the
    sympathetic nervous system:basis of the fight-or-flight response. Science. 1995;270(5236):644-6.
    20. Stanley S, Pinto S, Segal J, et al. Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc Natl Acad Sci U S A.2010;107(15):7024-9.
    21. Kreier F, Kap YS, Mettenleiter TC, et al. Tracing from fat tissue, liver, and pancreas:a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology. 2006;147(3):1140-7.
    22. Buijs RM, Chun SJ, Niijima A, et al. Parasympathetic and sympathetic control of the pancreas:a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake.2001;431(4):405-23.
    23. Jansen AS, Hoffman JL, Loewy AD. CNS sites involved in sympathetic and parasympathetic control of the pancreas:a viral tracing study. Brain Res. 1997;766(1-2):29-38.
    24. Cano G, Sved AF, Rinaman L, et al. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol. 2001;439(1):1-18.
    25. Kerman IA, Akil H, Watson SJ. Rostral elements of sympatho-motor circuitry:a virally mediated transsynaptic tracing study.2006;26(13):3423-33.
    26. Kerman IA, Enquist LW, Watson SJ, et al. Brainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants. 2003;23(11):4657-66.
    27. Daniels D, Miselis RR, Flanagan-Cato LM. Transneuronal tracing from sympathectomized lumbar epaxial muscle in female rats. J Neurobiol. 2001;48(4):278-90.
    28. Glatzer NR, Derbenev AV, Banfield BW, et al. Endomorphin-1 modulates intrinsic inhibition in the dorsal vagal complex. J Neurophysiol.2007;98(3):1591-9.
    29. Zhang Y, Kerman IA, Laque A, et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci.2011;31(5):1873-84.
    30. Voss-Andreae A, Murphy JG, Ellacott KL, et al. Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. Endocrinology. 2007;148(4):1550-60.
    31. Fan W, Dinulescu DM, Butler AA, et al. The central melanocortin system can directly regulate serum insulin levels. Endocrinology.2000;141(9):3072-9.
    32. Fan W, Ellacott KL, Halatchev IG, et al. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci.2004;7(4):335-6.
    33. Franklin KB, Paxinos G. The mouse Brain in Stereotaxic Coordinates. Third Edition. San Diego, CA:Academic Press.2007.
    34. Amann K, Veelken R. Mechanisms and consequences of sympathetic hyperactivity in renal disease. Clin Nephrol.2003;60 Suppl 1:S81-92.
    35. Meyer C, Schueller P, Balzer J, et al. Sympathetic hyperactivity influences chemosensor function in patients with end-stage renal disease, ur J Med Res.2009;14 Suppl 4:151-5.
    36. Salman IM, Ameer OZ, Sattar MA, et al. Renal sympathetic nervous system hyperactivity in early streptozotocin-induced diabetic kidney disease. Neurourol Urodyn.2011;30(3):438-46.
    37. Lee TK, Lois JH, Troupe JH, et al. Transneuronal tracing of neural pathways that regulate hindlimb muscle blood flow. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1532-41.
    38. Madden CJ, Sved AF. Cardiovascular regulation after destruction of the C1 cell group of the rostral ventrolateral medulla in rats. Am J Physiol Heart Circ Physiol. 2003;285(6):H2734-48.
    39. Sved AF, Cano G, Card JP. Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clin Exp Pharmacol Physiol. 2001;28(1-2):115-9.
    40. Scislo TJ, O'Leary DS. Mechanisms mediating regional sympathoactivatory responses to stimulation of NTS A(1) adenosine receptors. Am J Physiol Heart Circ Physiol. 2002;283(4):H1588-99.
    41.Krout KE, Mettenleiter TC, Karpitskiy V, et al. CNS neurons with links to both mood-related cortex and sympathetic nervous system. Brain Res.
    2005;1050(1-2):199-202.
    42. Jansen AS, Wessendorf MW, Loewy AD. Transneuronal labeling of CNS neuropeptide and monoamine neurons after pseudorabies virus injections into the stellate ganglion. Brain Res.1995;683(1):1-24.
    43. Giordano A, Song CK, Bowers RR, et al. White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am J Physiol Regul Integr Comp Physiol.2006;291(5):R1243-55.
    44. Kim ER, Mizuno TM. Xenin delays gastric emptying rate and activates the brainstem in mice. Neurosci Lett.2010;481(1):59-63.
    45. Kim JS, Enquist LW, Card JP. Circuit-specific coinfection of neurons in the rat central nervous system with two pseudorabies virus recombinants.1999;73(11):9521-31.
    46. Travagli RA, Hermann GE, Browning KN, et al. Brainstem circuits regulating gastric function. Annu Rev Physiol.2006;68:279-305.
    47. Wan S, Browning KN, Coleman FH, et al. Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons. J Neurosci.2008;28(19):4957-66.
    48. Paterson DS, Thompson EG, Belliveau RA, et al. Serotonin transporter abnormality in the dorsal motor nucleus of the vagus in Rett syndrome:potential implications for clinical autonomic dysfunction. J Neuropathol Exp Neurol.2005;64(11):1018-27.
    49. Zhou L, Williams T, Lachey JL, et al. Serotonergic pathways converge upon central melanocortin systems to regulate energy balance. Peptides.2005;26(10):1728-32.
    50. Kinney HC, Belliveau RA, Trachtenberg FL, et al. The development of the medullary serotonergic system in early human life. Auton Neurosci.2007;132(1-2):81-102.
    51. Wei F, Dubner R, Zou S, et al. Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J Neurosci. 2010;30(25):8624-36.
    52. Millan MJ. Descending control of pain. Prog Neurobiol.2002;66(6):355-474.
    53. Boldrini M, Underwood MD, Mann JJ, et al. More tryptophan hydroxylase in the brainstem dorsal raphe nucleus in depressed suicides. Brain Res.2005;1041(1):19-28.
    54. Invernizzi RW. Role of TPH-2 in brain function:news from behavioral and
    pharmacologic studies. J Neurosci Res.2007;85(14):3030-5.
    55. Bouryi VA, Lewis DI. The modulation by 5-HT of glutamatergic inputs from the raphe pallidus to rat hypoglossal motoneurones, in vitro. J Physiol.2003;553(Pt 3):1019-31.
    56. Nicholas AP, Pieribone VA, Arvidsson U. et al. Serotonin-, substance P- and glutamate/aspartate-like immunoreactivities in medullo-spinal pathways of rat and primate. Neuroscience.1992;48(3):545-59.
    57. Manaker S, Tischler LJ, Morrison AR. Raphespinal and reticulospinal axon collaterals to the hypoglossal nucleus in the rat. J Comp Neurol.1992;322(1):68-78.
    58. Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev.1992;72(1):165-229.
    59. Tao YX. The melanocortin-4 receptor:physiology, pharmacology, and pathophysiology. Endocr Rev.2010;31(4):506-43.
    60. Paton JF, Li YW, Deuchars J, et al. Properties of solitary tract neurons receiving inputs from the sub-diaphragmatic vagus nerve. Neuroscience.2000;95(1):141-53.
    61. Deuchars J, Li YW, Kasparov S, et al. Morphological and electrophysiological properties of neurones in the dorsal vagal complex of the rat activated by arterial baroreceptors. J Comp Neurol.2000;417(2):233-49.
    62. Scherrer G, Imamachi N, Cao YQ, et al. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell.2009; 137(6):1148-59.
    63. Oskutyte D, Jordan D, Ramage AG. Evidence that 5-hydroxytryptamine(7) receptors play a role in the mediation of afferent transmission within the nucleus tractus solitarius in anaesthetized rats. Br J Pharmacol.2009;158(5):1387-94.
    64. Steinbusch HW. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience.1981;6(4):557-618.
    65. Nosjean A, Compoint C, Buisseret-Delmas C, et al. Serotonergic projections from the nodose ganglia to the nucleus tractus solitarius:an immunohistochemical and double labeling study in the rat. Neurosci Lett.1990;114(1):22-6.
    66. Sykes RM, Spyer KM, Izzo PN. Central distribution of substance P, calcitonin gene-related peptide and 5-hydroxytryptamine in vagal sensory afferents in the rat dorsal medulla. Neuroscience.1994;59(1):195-210.
    67. Sim LJ, Joseph SA. Efferent projections of the nucleus raphe magnus. Brain Res Bull. 1992;28(5):679-82.
    68. Schaffar N, Kessler JP, Bosler O, et al. Central serotonergic projections to the nucleus tractus solitarii:evidence from a double labeling study in the rat. Neuroscience. 1988;26(3):951-8.
    69. Baptista V, Zheng ZL, Coleman FH, et al. Characterization of neurons of the nucleus tractus solitarius pars centralis. Brain Res.2005;1052(2):139-46.
    70. Huang J, Spier AD, Pickel VM.5-HT3A receptor subunits in the rat medial nucleus of the solitary tract:subcellular distribution and relation to the serotonin transporter. Brain Res.2004; 1028(2):156-69.
    71. Jeggo RD, Kellett DO, Wang Y, et al. The role of central 5-HT3 receptors in vagal reflex inputs to neurones in the nucleus tractus solitarius of anaesthetized rats. J Physiol. 2005;566(Pt 3):939-53.
    1. Holmstrand EC, Sesack SR. Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons. Brain Struct Funct.2011;216(4):331-345.
    2. Garcia-Rill E, Skinner RD. The mesencephalic locomotor region I. Activation of a medullary projection site. Brain Res.1987;411(1):1-12.
    3. Leonard CS, Kerman I, Blaha G, et al. Interdigitation of nitric oxide synthase-, tyrosine hydroxylase-, and serotonin-containing neurons in and around the laterodorsal and pedunculopontine tegmental nuclei of the guinea pig. J Comp Neurol. 1995;362(3):411-32.
    4. Geisler S, Derst C, Veh RW, et al. Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci.2007;27(21):5730-43.
    5. Martinez-Gonzalez C, Bolam JP, Mena-Segovia J. Topographical organization of the pedunculopontine nucleus. Front Neuroanat.2011;5:22.
    6. Insola A, Padua L, Scarnati E, et al. Where are the somatosensory evoked potentials
    recorded from DBS leads implanted in the human pedunculopontine tegmental nucleus generated? Mov Disord.2011;26(8):1573-74.
    7. Spann BM, Grofova I. Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat. J Comp Neurol.1989;283(1):13-27.
    8. Wang HL, Morales M. Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci.2009;29(2):340-58.
    9. Datta S, Desarnaud F. Protein kinase A in the pedunculopontine tegmental nucleus of rat contributes to regulation of rapid eye movement sleep. J Neurosci. 2010;30(37):12263-73.
    10. Motts SD, Schofield BR. Cholinergic and non-cholinergic projections from the pedunculopontine and laterodorsal tegmental nuclei to the medial geniculate body in guinea pigs. Front Neuroanat.2010;4:137.
    11. Cano G, Card JP, Sved AF. Dual viral transneuronal tracing of central autonomic circuits involved in the innervation of the two kidneys in rat. J Comp Neurol. 2004;471(4):462-81.
    12. Card JP, Kobiler O, McCambridge J, et al. Microdissection of neural networks by conditional reporter expression from a Brainbow herpesvirus. Proc Natl Acad Sci USA. 2011;108(8):3377-82.
    13. Zermann DH, Ishigooka M, Doggweiler-Wiygul R, et al. Central autonomic innervation of the kidney. What can we learn from a transneuronal tracing study in an animal model? J Urol.2005;173(3):1033-38.
    14. Glatzer NR, Derbenev AV, Banfield BW, et al. Endomorphin-1 modulates intrinsic inhibition in the dorsal vagal complex. J Neurophysiol.2007;98(3):1591-99.
    15. Willhite DC, Nguyen KT, Masurkar AV, et al. Viral tracing identifies distributed columnar organization in the olfactory bulb. Proc Natl Acad Sci USA.2006;103(33): 12592-97.
    16. Zhang Y, Kerman IA, Laque A, et al. Leptin-receptor- expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci.2011;31(5):1873-84.
    17. Ye DW, Li RC, Wu W, et al. Role of spinal cord in regulating mouse kidney:a virally mediated transsynaptic tracing study. Urology.2012;79(3):745.e1-4.
    18. Xiang HB, Liu C, Guo QQ, et al. Deep brain stimulation of the pedunculopontine tegmental nucleus may influence renal function. Med Hypotheses.2011;77(6):1135-8.
    19. Voss-Andreae A, Murphy JG, Ellacott KL, et al. Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. Endocrinology. 2007;148(4):1550-60
    20. Fan W, Dinulescu DM, Butler AA, et al. The central melanocortin system can directly regulate serum insulin levels. Endocrinology.2000;141(9):3072-9.
    21. Fan W, Ellacott KL, Halatchev IG, et al. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci.2004;7(4):335-6.
    22. Franklin KB, Paxinos G. The mouse Brain in Stereotaxic Coordinates.3rd ed. San Diego, CA:Academic Press.2007
    1. Sakamoto H. Gastrin-releasing peptide system in the spinal cord mediates masculine sexual function. Anat Sci Int.2011;86(1):19-29.
    2. McDonald TJ, Jornvall H, Nilsson G, et al. Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun. 1979;90(1):227-33.
    3. Patel O, Shulkes A, Baldwin GS. Gastrin-releasing peptide and cancer. Biochim Biophys Acta.2006;1766(1):23-41.
    4. Sun YG, Chen ZF. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature.2007;448(7154):700-3.
    5. Sun YG, Zhao ZQ, Meng XL, et al. Cellular basis of itch sensation. Science.2009; 325(5947):1531-4.
    6. Battey JF, Way JM, Corjay MH, et al. Molecular cloning of the
    bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells. Proc Natl Acad Sci USA.1991;88(2):395-9.
    7. Sakamoto H. The neurobiology of psychogenic erectile dysfunction in the spinal cord. JAndrol.2010;31(6):519-26.
    8. Sakamoto H, Matsuda K-I, Zuloaga DG, et al. Sexually dimorphic gastrin releasing peptide system in the spinal cord controls male reproductive functions. Nat Neurosci 2008;11(6):634-6.
    9. Battey J, Wada E. Two distinct receptor subtypes for mammalian bombesin-like peptides. Trends Neurosci.1991;14(12):524-8.
    10. Sakamoto H, Matsuda K, Zuloaga DG et al. Stress affects a gastrin-releasing peptide system in the spinal cord that mediates sexual function:implications for psychogenic erectile dysfunction. PLoS One.2009;4(1):e4276.
    11. Morris JA, Jordan CL, Breedlove SM. Sexual differentiation of the vertebrate nervous system. Nat Neurosci.2004;7(10):1034-9.
    12. Sakamoto H, Takanami K, Zuloaga DG, et al. Androgen regulates the sexually dimorphic gastrin-releasing peptide system in the lumbar spinal cord that mediates male sexual function. Endocrinology.2009;150 (8):3672-9.
    13. Sakamoto H, Kawata M. Gastrin-releasing peptide system in the spinal cord controls male sexual behaviour. J Neuroendocrinol.2009;21(4):432-5.
    14. Sakamoto H, Arii T, Kawata M. High-voltage electron microscopy reveals direct synaptic inputs from a spinal gastrin-releasing peptide system to neurons of the spinal nucleus of bulbocavernosus. Endocrinology.2010;151(1):417-21.
    15. Zuloaga DG, Puts DA, Jordan CL, et al. The role of androgen receptors in the masculinization of brain and behavior:what we've learned from the testicular feminization mutation. Horm Behav.2008;53(5):613-26.
    16. Giuliano F, Rampin O. Central neural regulation of penile erection. Neurosci Biobehav Rev.2000;24(5):517-33.
    17. Sun XQ, Xu C, Leclerc P, et al. Spinal neurons involved in the control of the seminal vesicles:a transsynaptic labeling study using pseudorabies virus in rats. Neuroscience. 2009;158(2):786-97.
    18. Mulchahey JJ, Ekhator NN, Zhang H, et al. Cerebrospinal fluid and plasma testosterone levels in post-traumatic stress disorder and tobacco dependence. Psychoneuroendocrinology.2001;26(3):273-85.
    19. Liberzon I, Krstov M, Young EA. Stress-restress:effects on ACTH and fast feedback. Psychoneuroendocrinology.1997;22(6):443-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700