用户名: 密码: 验证码:
浙江省主要鸡种肉品质分析及Leptin receptor基因对鸡脂肪代谢影响分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浙江省拥有丰富的地方鸡种资源,如何利用这些优秀的地方品种培育出适合消费者需求的优质肉鸡是优质鸡养殖业亟需解决的问题。本试验对浙江省主要鸡种的体尺、屠宰性能、肌内脂肪含量、肌苷酸含量、脂肪酸组成和氨基酸组成进行了分析。利用实时荧光定量PCR等技术,研究了leptin receptor(LEPR)在鸡胸肌中表达量及其与肌内脂肪的相关性,通过建立鸡前脂肪细胞培养模型,利用RNA干扰(RNAi)技术研究了LEPR基因在脂肪细胞分化和增殖过程中的表达规律,同时研究了与脂肪细胞分化相关的其他基因,如PPARγ等7个基因的表达规律,探讨了LEPR基因对脂肪代谢关键功能基因表达的影响及其调控脂肪代谢的机理。主要研究结果如下:
     1.体尺和屠宰性能测定结果
     结果表明,萧山鸡×广西黄鸡×仙居鸡(浙南黄鸡2号,ZNY2)配套系综合屠宰性能均优于其亲本,说明杂交优势明显。体尺和屠宰性能表型间呈中等或强的相关。
     2.肉质测定结果
     肌内脂肪:文昌鸡×哈伯特鸡(WHC)的肌内脂肪含量最高,仙居鸡(XJC)的最低,日龄对萧山鸡×仙居鸡(浙南黄鸡1号,ZNY1)胸肌肌内脂肪含量影响显著(P<0.05);
     肌苷酸:萧山鸡×仙居鸡(浙南黄鸡1号,ZNY1)胸肌肌苷酸含量最高、萧山鸡(XSC)含量最低,80日龄和120日龄ZNY1肌苷酸含量差异不显著(P>0.05);
     脂肪酸组成:各测定品种的肌肉脂肪酸组成之间存在一定的差异。不饱和脂肪酸相对含量文昌鸡(WCC)、萧山鸡×广西黄鸡×仙居鸡(浙南黄鸡2号,ZNY2)最高,多不饱和脂肪酸相对含量仙居鸡(XJC)的最高。日龄对ZNY1的脂肪酸组成影响差异不显著(P>0.05);
     氨基酸组成:氨基酸及必需氨基酸总量ZNY2的最高,随着日龄的增加ZNY1氨基酸的总量有下降的趋势。
     3.胸肌中LEPR和UCP基因表达量与肌内脂肪含量的关系
     胸肌中LEPR基因表达量与肌内脂肪的含量呈中等程度的正相关;UCP基因含量与肌内脂肪含量呈弱的负相关。
     4.脂肪细胞中LEPR等基因的表达规律
     LEPR、UCP、PPARy、FAS、ATGL和Adiponectin基因的表达量随着脂肪细胞的分化逐渐升高,分别在第6、4、10、6、6、10天达到高峰;IGF-Ⅰ基因的表达量随着脂肪细胞的分化逐渐升高。
     5.LEPR基因干扰后PPARγ等基因的表达量
     LEPR基因干扰后UCP、PPARy、FAS、LPL和ATGL基因的表达量均显著下降(P<0.05),IGF-Ⅰ和Adiponectin含量均显著升高(P<0.05)。
     6.油酸对脂肪细胞中LEPR等基因的影响
     油酸诱导后LEPR、UCP、PPARy、LPL和Adiponectin的表达量上升,而ATGL和IGF-Ⅰ的表达量则降低。LEPR基因干扰后,油酸对脂肪细胞分化调控因子的诱导作用减弱,表明LEPR基因可能在这个过程中发挥了重要作用。
In this experiment, we investigated the body size, slaughter traits and the chemical composition including intramuscular fat (IMF), inosinic acid, fatty acid and amino acid of chicken breast muscle, in order to make better use of the excellent genetic resources. The correlation of body size and slaughter traits was analyzed. The relationship between intramuscular fat contents and mRNA expressions of leptin receptor (LEPR) and uncoupling protein (UCP) genes expression were analysed. The effects of LEPR gene on the expression of fat metabolism related genes and the regulation mechanism of LEPR on the fat metabolism were studied by using real-time PCR, and RNA interference (RNAi). Results are as bellow:
     1. Body size and slaughter traits measurement
     The body size and slaughter traits of five different chicken breeds and four hybrid breeds were measured. The crossbreeding improved the body size and slaughter traits of chicken.
     2. Analysis of chemical compostion of chicken meat
     The Wenchang X Habote chicken (WHC) has the highest intramusculat fat content, and Xianju chicken (XJC) has the lowest; the Xiaoshan×Xianju chicken (ZNY1,120d) has the highest inosinic acid contents and Xiaoshan chicken (XSC) has the lowest. The relative contents of unsaturated fatty acid in chicken breast muscle of Wenchang chicken (WCC) and Xiaoshan X Guangxi yellow X Xianju chicken (ZNY2) are the highest. XJC has the highest relative contents of poly-unsaturated fatty acid (PUFA) contents. ZNY2 has the highest contents of amino acid and essential amino acid (EAA). The age of chicken can influence the contents of intramuscular fat in breast muscle of Xiaoshan X Xianju chicken significantly (P<0.05), while has no significant influence on inosinic acid content, fatty acid (P>0.05). The total amino acid contents tend to decrease with the age.
     3. Relationship between intramuscular fat contents and mRNA expressions of LEPR and UCP genes.
     The IMF content has middle correlation with LEPR gene and low negative correlation with UCP gene in the four detected chicken breeds.
     4. The expression characteristic of LEPR and other fat metabolism related genes in chicken adipocytes
     The expression levels of LEPR, UCP, peroxisome proliferation-activated receptor y (PPARy), fatty acid sythase (FAS), adipose triglyceride lipase (ATGL) and Adiponectin genes increased with the adipocyte differentiation and reach the peak at 6,4,10,6,6,10 day respectively. And the abundance of IGF-I gene increased gradually with the differentiation of chicken adipocytes.
     5. Effects of LEPR gene knockdown on expression of UCP, PPARy, FAS, ATGL, Adiponectin and IGF-I genes in chicken adipocytes
     The expressions of UCP, PPARy, FAS, LPL, ATGL genes decreased significantly after the silenceing of LEPR gene (P<0.05), while the expressions of IGF-I and Adiponectin increased significantly (P<0.05)
     6. Effects of oleic acid on expression of LEPR and other fat metabolism related genes in chicken adipocytes
     Oleic acid can induce the expression of LEPR, UCP, PPARy, LPL, Adiponectin and suppress the expression of ATGL and IGF-I genes in chicken adipocytes. LEPR gene knockdown can weaken oleic acid's effects on inducement of adipocyte differentiation related genes'expression. The results suggest that LEPR gene may play an important role in regulation of adipocytes differentiation induced by oleic acid.
引文
1. Becker, T., Consumer perception of fresh meat quality:a framework for analysis. British Food Journal,2000.102(3):p.158-176.
    2.张伟力.猪文化与猪肉品质改进理念.猪业科学,2006.4:p.30.
    3. Suzuki, A., et al., Effects of high pressure treatment on the flavour-related components in meat. Meat Science,1994.37(3):p.369-379.
    4. DuBois, G.E. and J.F. Lee, A simple technique for the evaluation of temporal taste properties. Chemical Senses,1983.7(3-4):p.237.
    5. Fujimura, S., Identification of taste-active components in the meat of japanese native chicken, Hinai-dori and broiler, and effect of feeding treatments on taste-active components. Bulletin of the Faculty of Agriculture-Niigata University (Japan),1998.
    6.陈继兰等.快速与慢速肉鸡脂肪生长与肌苷酸含量比较.中国家禽,2002.24(8):p.16-18.
    7.徐琪.等,部分鸡品种胸肌肌苷酸含量的比较研究.河南畜牧兽医,2003.24(12):p.7-8.
    8.陈国宏.中国部分地方鸡种肌肉的肌苷酸含量比较研究.中国畜产与食品,1997.4(5,增刊):p.75-77.
    9.李建凡.不同品种鸡胸肉中肌苷酸含量比较.中国农业科学院畜牧研究酸科学研究年报,1989:p.266-268.
    10.刘望夷等.肉用鸡肌肉中肌苷酸含量的比较.中国农业科学,1980(4):p.79-83.
    11.陈国宏.,et al.,泰和乌骨鸡肌肉肌苷酸含量变化规律及其遗传力估测.扬州大学学报,2002.23(2):p.29-31.
    12.张小玲等.优质鸡肌内脂肪(IMF)和肌苷酸(IMP)含量与屠宰及肉质性状的相关分析.中国家禽,2006.28(5):p.14-16.
    13.陈国宏和侯水生.中国部分地方鸡种肌肉肌苷酸含量研究.畜牧兽医学报,2000.31(3):p.211-215.
    14.朱汉炎等.鹌鹁肌肉中肌苷酸含量的分析.河北农业大学学报,1988.11(4):p.90-93.
    15.陈继兰等.鸡肉肌苷酸和肌内脂肪沉积规律研究.畜牧兽医学报,2005.36(8):p.843-845.
    16. Harper, G., Trends in skeletal muscle biology and the understanding of toughness in beef. Australian Journal of Agricultural Research.50(7):p.1105-1129.
    17. Hocquette., J.F., et al., Intramuscular fat content in meat-producing animals:Development genetic and nutritional control and identification of putative markers. Animal,2010.4(2): p.303-319.
    18. Glitsch, K., Consumer perceptions of fresh meat quality:cross-national comparison. British Food Journal,2000.102(3):p.177-194.
    19. Patrica., A., Quality of pork in Danmark pig. Fanning (supplement),1995(10):p.56-57.
    20. Mottram., D., Meat flavour. Meat Focus International June,1992(07):p.81-92.
    21. Bejerholm, C. and P. Barton-Gade. Effect of intramuscular fat level on eating quality of pig meat.1986.
    22. Mas, G., et al., Carcass and meat quality characteristics and fatty acid composition of tissues from Pietrain-crossed barrows and gilts fed an elevated monounsaturated fat diet. Meat Science,2010.85(4):p.707-714.
    23.陈代文和刘宗慧.营养水平及性别对生长育肥猪肉质性状发育规律的影响.四川农业大学学报,2002.20(1):p.7-11.
    24. Di Luccia, A., et al., Effect of dietary energy content on the intramuscular fat depots and triglyceride composition of river buffalo meat. Meat Science,2003.65(4):p.1379-1389.
    25. Smet, S., et al., Effect of dietary energy and protein levels on fatty acid composition of intramuscular fat in double-muscled Belgian Blue bulls. Meat Science,2000.56(1):p. 73-79.
    26. Wood, J.D., et al., Effects of fatty acids on meat quality:a review. Meat Science,2004. 66(1):p.21-32.
    27. Warner, R.D., et al., Genetic and environmental effects on meat quality. Meat Science, 2010.86(1):p.171-183.
    28. Suzuki, K., et al., Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. Journal of animal science,2005.83(9):p.2058.
    29.陈继兰等.鸡肉肌苷酸和肌内脂肪等肉品风味性状遗传参数的估计.遗传,2005.27(6):p.898-902.
    30. Cameron, N. and M. Enser, Fatty acid composition of lipid in longissimus dorsi muscle of Duroc and British Landrace pigs and its relationship with eating quality. Meat Science, 1991.29(4):p.295-307.
    31. Cameron, N., et al., Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Science,2000.55(2): p.187-195.
    32.吴妹英.不同品种猪肌肉脂肪酸和氨基酸含量.福建农林大学学报(自然科学版),2009.38(2):p.166-170.
    33. Enser, M., The chemistry, biochemistry and nutritional importance of animal fats. Fats in animal nutrition,1984:p.23-52.
    34. Cameron, N., et al., Meat quality of Large White pig genotypes selected for components of efficient lean growth rate. Animal Science (United Kingdom),1999.
    35. HMSO, U., Nutritional aspects of cardiovascular disease (report on health and social subjects no.46). HMSO, London,1994.
    36.李璇和郑建仙,脂肪与心血管疾病相互关系最新进展及对食品工业的指导意义.食品与发酵工业,1998.24(1):p.74-79.
    37.郭红卫和席静.膳食脂肪对高血压人群血脂水平的影响.中华预防医学杂志,2002.36(4):p.250-252.
    38.肖颖等.富含单不饱和脂肪酸的坚果对高血脂血症患者血脂水平的影响.中国公共卫生,2002.18(8):p.931-932.
    39.施万英等.高单不饱和脂肪酸型肠内营养剂用于2型糖尿病.中国临床营养杂志,2004.12(1):p.39-42.
    40. Sami, A., C. Augustini, and F. Schwarz, Effect of feeding intensity and time on feed on intramuscular fatty acid composition of Simmental bulls. Journal of animal physiology and animal nutrition,2004.88(5(?)\6):p.179-187.
    41. Daza, A., et al., Effect of dietary vitamin E and partial replacement of poly(?)\with monounsaturated fat on fatty acid patterns of backfat and intramuscular fat in heavy pigs (Iberian(?)A Duroc). Journal of animal physiology and animal nutrition,2005.89(1(?)\2):p. 20-28.
    42.杨烨等.性别和营养水平对附件河田鸡风味前体物质含量的影响.2006,2006.37(3):p.242-249.
    43. NSAL, M., A. Muhammet rfan, and K. Mkerrem, Effect of Vitamin E Supplementation to the Diet of Morkaraman Lambs on Intramuscular and Intermuscular Fatty Acid Composition. Turk. J. Vet. Anim. Sci,2004.28:p.563-568.
    44.王俊东等.不同时期添加甜菜碱对肉鸡生产性能和脂肪代谢的影响.中国兽医学报,2004.24(1):p.87-91.
    45. Dannenberger, D., et al., Carcass-and meat quality of pasture vs concentrate fed Gennan Simmental and German Holstein bulls. ARCHIV FUR TIERZUCHT,2006.49(4):p.315.
    46. Sarries, M., et al., Intramuscular and subcutaneous lipid fatty acid profile composition in male and female foals. Meat Science,2006.72(3):p.475-485.
    47. Okeudo, N.J. and B.W. Moss., Serum cortisol concentration in different sex-tapes and slaughter weighs, and its relationship with meat quality and intramuscular fatty acid profile. Pakistan Journal of Nutrition,2005.4(2):p.64-68.
    48.江新业和宋焕禄.部分家禽肉肌内脂肪及脂肪酸含量的测定与分析.无锡轻工业大学学报,2004.23(5):p.26-28.
    49.徐廷生,雷雪芹和史学艺.斗鸡及其杂交后代肌肉脂肪酸的组成.中国家禽,1999.21(10):p.9-10.
    50.张文生等.黄羽肉鸡胴体化学成分研究.中国家禽,2000.22(5):p.14-1 6.
    51.李建军等.品种和日龄对鸡肉滋味呈味物及香味前体物含量的研究.畜牧兽医学报,2003.34(6):p.548-553.
    52.林树茂,李海华和钟赛意.不同禽类肌肉脂肪酸组成的比较研究.中国畜牧杂志,2004.40(12):p.18-20.
    53.张学余.5个地方鸡种肌肉脂肪酸相对含量比较及因子分析.湖南农业大学学报,2010.36(1):p.53-56.
    54.舒希凡等.江西地方鸡种肌肉脂肪酸组成的测定与分析.动物科学与动物医学,2001.18(6):p.22-24.
    55.王建辉等.杜仲提取物对猪胴体品质及肌肉氨基酸含量的影响.动物营养学报,2007.19(3):p.269-276.
    56.王晓明,王家圣和李翔.复合添加剂对肥育猪肌肉氨基酸组成影响的研究.中国饲料,2006(24):p.13-15.
    57.周庆华和李思光.泰和乌骨鸡肌肉氨基酸营养价值的研究.氨基酸和生物资源,1999.21(3):p.41-43.
    58.王克华和陈国宏.中国部分地方鸡种肌肉氨基酸含量比较.西北农业学报,1999.8(3):p.16-20.
    59.林树茂,李海华和谭杰强.,不同鸡种肌肉氨基酸含量的比较研究.黑龙江畜牧兽医,2003(11):p.30-31.
    60.舒希凡和林树茂.江西地方鸡种肌肉氨基酸含量的测定与分析.动物科学与动物医学,2001.18(1):p.19-21.
    61.黄治国和谢庄.,畜禽脂肪性状相关基因研究进展.畜牧与兽医,2004.36(4):p.41-43.
    62.潘爱銮等.6个品种鸡LPL基因的PCR-RFLP分析.中国家禽,2004.8(1):p.152-158.
    63.杨恒东等.兴义矮脚鸡屠宰性能、肌肉品质及LPL基因表达的研究.中国畜牧杂志,2009(13):p.12-15.
    64.邹晓庭和卢建军.,甜菜碱调控蛋鸡脂肪代谢的机理研究.中国农业科学,2002.35(3):p.325-330.
    65.许梓荣,占秀安和毛红霞.L-肉碱对肉鸡脂肪代谢的影响.中国畜牧杂志,2002.38(5):p.22-26.
    66.单体中,汪以真和李民.猪脂蛋白脂酶基因片段的克隆及不同体重的表达差异.农业生物技术学报,2006.14(2):p.151-155.
    67.王刚等.猪肌肉组织LPL基因表达的发育性变化及其与肌内脂肪沉积关系的研究.畜牧兽医学报,2007.38(3):p.253-257.
    68.廉红霞,卢德勋和高民.饲粮营养水平对猪血液生化指标、背最长肌IMF含量及LPLmRNA表达量的影响.中国饲料,2008(5):p.12-15.
    69. Hocquette, J.F. and B.I. Graulet, Lipoprotein lipase activity and mRNA levels in bovine tissues. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1998.121(2):p.201-212.
    70.乔永等.绵羊肌肉LPL基因表达的发育性变化及其对肌内脂肪含量的影响.中国农 业科学,2007.40(10):p.2323-2330.
    71. Waylan, A., et al., Effect of flax supplementation and growth promotants on lipoprotein lipase and glycogenin messenger RNA concentrations in finishing cattle. Journal of animal science,2004.82(6):p.1868.
    72. Zhang, Y., et al., Positional cloning of the mouse obese gene and its human homologue. Nature,1994.372(6505):p.425.
    73. Campfield, L.A., et al., Recombinant mouse OB protein:evidence for a peripheral signal linking adiposity and central neural networks. Science,1995.269(5223):p.546.
    74. Friedman, J.M. and J.L. Halaas, Leptin and the regulation of body weight in mammals. Nature,1998.395(6704):p.763-770.
    75. Halaas, J.L., et al., Weight-reducing effects of the plasma protein encoded by the obese gene. Science,1995.269(5223):p.543.
    76. Pelleymounter, M.A., et al., Effects of the obese gene product on body weight regulation in ob/ob mice. Science,1995.269(5223):p.540.
    77. Leininger, M., et al., Physiological response to acute endotoxemia in swine:effect of genotype on energy metabolites and leptin* 1. Domestic Animal Endocrinology,2000. 18(1):p.71-82.
    78.徐淑静,徐明彤和傅祖植.肥胖基因和瘦素.中华内分泌代谢杂志,1999.15(2):p.111-115.
    79. Williams, G., J.A. Harrold, and D.J. Cutler, The hypothalamus and the regulation of energy homeostasis:lifting the lid on a black box. Proceedings of the Nutrition Society, 2000.59(03):p.385-396.
    80. Frederich, R.C., et al., Leptin levels reflect body lipid content in mice:evidence for diet-induced resistance to leptin action. Nature Medicine,1995.1(12):p.1311-1314.
    81. Maffei, M., et al., Leptin levels in human and rodent:measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Medicine,1995.1(11):p.1155.
    82. Ioffe, E., et al., Abnormal regulation of the leptin gene in the pathogenesis of obesity. Proceedings of the National Academy of Sciences of the United States of America,1998. 95(20):p.11852.
    83. Tartaglia, L.A., et al., Identification and expression cloning of a leptin receptor, LEPR. Cell,1995.83(7):p.1263-1271.
    84. Dunn, I.C., et al., Mapping of the leptin receptor gene (LEPR) to chicken chromosome 8. Anim Genet,2000.31(4):p.290.
    85. Richards, M.P. and S.M. Poch, Molecular cloning and expression of the turkey leptin receptor gene. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2003.136(4):p.833-847.
    86. Chen, X., et al., Regulation of dietary energy level and oil source on leptin and its long form receptor mRNA expression of the adipose tissues in growing pigs. Domest Anim Endocrinol,2006.31(3):p.269-83.
    87. Gura, T., Uncoupling proteins provide new clue to obesity's causes. Science,1998. 280(5368):p.1369.
    88. Ricquier, D., et al., Contribution to the identification and analysis of the mitochondrial uncoupling proteins. Journal of Bioenergetics and Biomembranes,1999.31(5):p. 407-418.
    89. Fleury, C., et al., Uncoupling protein-2:a novel gene linked to obesity and hyperinsulinemia. Nature genetics,1997.15(3):p.269-272.
    90. Ricquier, D. and F. Bouillaud, The uncoupling protein homologues:UCP1, UCP2, UCP3, StUCP and AtUCP. Biochemical Journal,2000.345(Pt 2):p.161.
    91. Marti, A., et al., UCP2 muscle gene transfer modifies mitochondrial membrane potential. International journal of obesity and related metabolic disorders:journal of the International Association for the Study of Obesity,2001.25(1):p.68.
    92. Zhang, C.-Y., et al., Uncoupling Protein-2 Negatively Regulates Insulin Secretion and Is a Major Link between Obesity, [beta] Cell Dysfunction, and Type 2 Diabetes. Cell,2001. 105(6):p.745-755.
    93. Boivin, M., et al., Uncoupling protein-2 and-3 messenger ribonucleic acids in adipose tissue and skeletal muscle of healthy males:variability, factors affecting expression, and relation to measures of metabolic rate. Journal of Clinical Endocrinology & Metabolism, 2000.85(5):p.1975.
    94. Cortez-Pinto, H., et al., Lipids up-regulate uncoupling protein 2 expression in rat hepatocytes. Gastroenterology,1999.116(5):p.1184-1193.
    95. Schrauwen, P., et al., Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes,2001.50(12):p.2870.
    96. Samec, S., J. Seydoux, and A. Dulloo, Skeletal muscle heterogeneity in fasting-induced upregulation of genes encoding UCP2, UCPs and key regulators of lipid oxidation. International Journal of Obesity,2001.25(2):p. S49.
    97. Khalfallah, Y., et al., Regulation of uncoupling protein-2 and uncoupling protein-3 mRNA expression during lipid infusion in human skeletal muscle and subcutaneous adipose tissue. Diabetes,2000.49(1):p.25-31.
    98. Takahashi, Y., et al., Dietary conjugated linoleic acid reduces body fat mass and affects gene expression of proteins regulating energy metabolism in mice. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2002.133(3): p.395-404.
    99. Raimbault, S., et al., An uncoupling protein homologue putatively involved in facultative muscle thermogenesis in birds. Biochemical Journal,2001.353(Pt 3):p.441.
    100. Collin, A., et al., Effects of dietary macronutrient content on energy metabolism and uncoupling protein mRNA expression in broiler chickens. British Journal of Nutrition, 2003.90(02):p.261-269.
    101. Damon, M., et al., First evidence of uncoupling protein-2 (UCP-2) and-3 (UCP-3) gene expression in piglet skeletal muscle and adipose tissue. Gene,2000.246(1-2):p.133-141.
    102. Jia, J., M. Jois, and G. McDowell, Tissue expression of uncoupling proteins in piglets given a low protein diet:a r le for UCP2 and UCP3 in diet-induced thermogenesis. Animal Science,2005.81(02):p.283-287.
    103.熊文中,杨凤和周安国,猪重组生长激素对不同杂交肥育猪.畜牧兽医学报,2001.32(1):p.1-4.
    104.刘作华等.日粮能量水平对猪脂肪酸合成酶和激素敏感酯酶的影响.营养饲料,2009.45(5):p.31-34.
    105. Douaire, M., et al., Identifying genes involved in the variability of genetic fatness in the growing chicken. Poultry Science,1992.71(11):p.1911.
    106. Sourdioux, M., et al., Association of fatty acid synthase gene and malic enzyme gene polymorphisms with fatness in turkeys. Poultry Science,1999.78(12):p.1651.
    107. Marrube, G., et al., New polymorphism of FASN gene in chicken. J. Appl. Genet,2004. 45(4):p.453-455.
    108.欧阳建华等.鸡FASN基因2个位点的多样性及其与体重、脂肪沉积性状的相关性.畜牧兽医学报,2007.38(1):p.25-30.
    109.陈强等.猪脂肪组织代谢及其调控.云南农业大学学报,2006.21(5):p.635-640.
    110. Hutley, L. and J.B. Prins, Fat as an endocrine organ:relationship to the metabolic syndrome. The American journal of the medical sciences,2005.330(6):p.280.
    111. Rosen, E.D., et al., Transcriptional regulation of adipogenesis. Genes & development, 2000.14(11):p.1293.
    112. Ntambi, J.M. and K. Young-Cheul, Adipocyte differentiation and gene expression. The Journal of Nutrition,2000.130(12):p.3122S.
    113. MacDougald, O.A. and M.D. Lane, Transcriptional regulation of gene expression during adipocyte differentiation. Annual review of biochemistry,1995.64(1):p.345-373.
    114. Ferre, P., The biology of peroxisome proliferator-activated receptors. Diabetes,2004. 53(suppl 1):p. S43.
    115. Grimaldi, P.A., The roles of PPARs in adipocyte differentiation. Progress in Lipid Research,2001.40(4):p.269-281.
    116. Deng, T., et al., Peroxisome proliferator-activated receptor-{gamma} transcriptionally up-regulates hormone-sensitive lipase via the involvement of specificity protein-1. Endocrinology,2006.147(2):p.875.
    117. Kim, J.Y., et al., The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-α in 3T3-L1 adipocytes and is a target for transactivation by PPARy. American Journal of Physiology-Endocrinology And Metabolism,2006.291(1):p. E115.
    118. Festuccia, W., et al., PPARy agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control. Diabetologia,2006. 49(10):p.2427-2436.
    119. Kershaw, E.E., et al., PPARy regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. American Journal of Physiology-Endocrinology And Metabolism,2007. 293(6):p. E1736.
    120. Lekstrom-Himes, J. and K.G. Xanthopoulos, Biological role of the CCAAT/enhancer-binding protein family of transcription factors. Journal of Biological Chemistry,1998.273(44):p.28545.
    121. Choe, S.S., et al., Chronic activation of liver X receptor induces (?)A-cell apoptosis through hyperactivation of lipogenesis. Diabetes,2007.56(6):p.1534.
    122. Zimmermann, R., et al., Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science,2004.306(5700):p.1383.
    123. Jenkins, C.M., et al., Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. Journal of Biological Chemistry,2004.279(47):p.48968.
    124. Villena, J.A., et al., Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids. Journal of Biological Chemistry,2004.279(45):p.47066.
    125. Lake, A.C., et al., Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. Journal of Lipid Research,2005.46(11):p.2477.
    126. Haemmerle, G., et al., Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science,2006.312(5774):p.734.
    127.聂庆华,et al.,鸡pATGL基因的电子克隆及比较基因组分析.华南农业大学学报,2008.29(2):p.94-98.
    128. Kershaw, E.E., et al., Adipose Triglyceride Lipase. Diabetes,2006.55(1):p.148.
    129.张立杰,陈粉粉和杨公社,启动脂肪细胞动员过程的新成员ATGL.中国生物化学与分子生物学报,2007.23(1):p.14-19.
    130. Haemmerle, G., R. Zimmermann, and R. Zechner, Letting lipids go:hormone-sensitive lipase. Current opinion in lipidology,2003.14(3):p.289.
    131. Kazala, E.C., et al., Hormone-sensitive lipase activity in relation to fat content of muscle in Wagyu hybrid cattle. Livestock Production Science,2003.79(1):p.87-96.
    132. Grober, J., et al., Characterization of the promoter of human adipocyte hormone-sensitive lipase. Biochemical Journal,1997.328(Pt 2):p.453.
    133. Egan, J.J., et al., Mechanism of hormone-stimulated lipolysis in adipocytes:translocation of hormone-sensitive lipase to the lipid storage droplet. Proceedings of the National Academy of Sciences of the United States of America,1992.89(18):p.8537.
    134. Mellink, C., et al., Localization of four new markers to pig chromosomes 1,6, and 14 by radioactive in situ hybridization. Cytogenetic and Genome Research,1993.64(3-4):p. 256-260.
    135.刘作华等.日粮能量水平对生长育肥猪肌内脂肪含量以及脂肪酸合成酶和激素敏感脂酶mRNA表达的影响.畜牧兽医学报,2007.38(9):p.934-941.
    136. LARSEN, T.S., N. NILSSON, and P. BELFRAGE, Seasonal changes in hormone(?)\sensitive lipase activity in adipose tissue from Norwegian and Svalbard reindeer. Acta Physiologica Scandinavica,1985.125(4):p.735-738.
    137. McNamara, J.P. and J.K. Hillers, Regulation of Bovine Adipose Tissue Metabolism During Lactation.2. Lipolysis Response to Milk Production and Energy Intakel. Journal of Dairy Science,1986.69(12):p.3042-3050.
    138. Soni, K.G., et al., Carboxylesterase 3 (EC 3.1.1.1) is a major adipocyte lipase. Journal of Biological Chemistry,2004.279(39):p.40683.
    139. Combs, T.P., et al., Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. Journal of Clinical Investigation,2001.108(12):p.1875-1881.
    140. Fruebis, J., et al., Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proceedings of the National Academy of Sciences of the United States of America,2001. 98(4):p.2005.
    141. Yamauchi, T., et al., Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine,2002.8(11):p.1288-1295.
    142. Qi, Y., et al., Adiponectin acts in the brain to decrease body weight. Nature Medicine, 2004.10(5):p.524-529.
    143. Maddineni, S., et al., Adiponectin gene is expressed in multiple tissues in the chicken: food deprivation influences adiponectin messenger ribonucleic acid expression. Endocrinology,2005.146(10):p.4250.
    144. Fire, A., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998.391(6669):p.806-811.
    145. Downward, J., RNA interference. BMJ,2004.328(7450):p.1245.
    146. Szulc, J., et al., A versatile tool for conditional gene expression and knockdown. Nature methods,2006.3(2):p.109-116.
    147. Hannon, G.J., RNA interference. Nature,2002.418(6894):p.244-251.
    148. Hu, W.Y., et al., Inhibition of retroviral pathogenesis by RNA interference. Current biology,2002.12(15):p.1301-1311.
    149. Das, R.M., et al., A robust system for RNA interference in the chicken using a modified microRNA operon. Developmental Biology,2006.294(2):p.554-563.
    150. Huang, J., et al., Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MAR.C-145 cells. Veterinary microbiology,2006. 115(4):p.302-310.
    151. He, Y., et al., Interference of porcine reproductive and respiratory syndrome virus replication on MARC-145 cells using DNA-based short interfering RNAs. Antiviral Research,2007.74(2):p.83-91.
    152. Lu, L., Y. Ho, and J. Kwang, Suppression of porcine arterivirus replication by baculovirus-delivered shRNA targeting nucleoprotein. Biochemical and Biophysical Research Communications,2006.340(4):p.1178-1183.
    153. Liu, M., et al., Cross-inhibition to heterologous foot-and-mouth disease virus infection induced by RNA interference targeting the conserved regions of viral genome. Virology, 2005.336(1):p.51-59.
    154. Karlas, A., R. Kurth, and J. Denner, Inhibition of porcine endogenous retroviruses by RNA interference:increasing the safety of xenotransplantation. Virology,2004.325(1):p. 18-23.
    155. Chen, W., et al., RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and suckling mice. Journal of virology,2004.78(13):p. 6900.
    156.冶贵生,张彦明和徐浩.载体介导的shRNA抑制猪瘟病毒在PK-15细胞中增殖特性的研究.畜牧兽医学报,2007.38(5):p.500-505.
    157.周俊芳等.shRNA表达质粒体外防治猪传染性胃肠炎病毒感染.上海交通大学学报(农业科学版),2009.27(1):p.24-27.
    158.刘惠莉.陆承平和朱伟云.鸡传染性支气管炎病毒的RNA干扰.中国病毒学,2005. 20(3):p.272-276.
    159. Chen, M., et al., Inhibition of Marek's disease virus replication by retroviral vector-based RNA interference. Virology,2008.377(2):p.265-272.
    160.秦红刚等.靶向新城疫病毒L基因(功能区)的siRNA抑制新城疫病毒的复制.中国预防兽医学报,2008.30(8):p.579-583.
    161.孟和,陈学辉和潘玉春.RNA干扰用siRNA的体外转录合成.上海交通大学学报(农业科学版),2004.22(1):p.64-68.
    162.陈学辉等.siRNA对鸡胚成纤维细胞中GAPDH基因表达的抑制作用.东北农业大学学报,2005.36(2):p.199-203.
    163.张红等.溧阳鸡屠宰性能研究.中国家禽,2004.26(19):p.31-32.
    164.李俊英等.优质鸡肌内脂肪含量与屠体及肉质性状间的关系.中国畜牧杂志,2004.40(12):p.12-15.
    165. Wood, J.D., et al., Effects of breed, diet and muscle on fat deposition and eating quality in pigs. Meat Science,2004.67(4):p.651-667.
    166.陈国宏等.中国部分地方鸡肌肉脂肪酸相对含量比较研究.中国畜牧杂志,1999.35(3):p.27-28.
    167. Janss, L., J. Van-Arendonk, and E. Brascamp, Bayesian statistical analyses for presence of single genes affecting meat quality traits in a crossed pig population. Genetics,1997. 145(2):p.395.
    168. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CTmethod. Methods,2001.25(4):p.402-408.
    169.赵建国等.解偶联蛋白基因(UCP)作为影响鸡脂肪性状候选基因的研究.遗传学报,2002.29(6):p.481-486.
    170. Gondret, F., P. Ferr, and I. Dugail, ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. Journal of Lipid Research, 2001.42(1):p.106.
    171.张金玲等.大鼠前脂肪细胞的原代培养分化.中国医药生物技术,2007.2(3):p.180-182.
    172.王竹晨和刘建中,人前脂肪细胞的原代培养.中山医科大学学报,2001.22(6):p.443-446.
    173.夏成等.犊牛前脂肪细胞的培养及其增殖与分化模型的建立.中国兽医科技,2004.34(5):p.26-30.
    174.宋文华等.犊牛前脂肪细胞的传代培养.中国兽医学报,2008.28(6):p.715-718.
    175.张国华等.猪前体脂肪细胞的分离培养.细胞生物学杂志,2005(27):p.693-696.
    176.屈长青等.猪前体脂肪细胞的原代培养.农业生物技术学报,2005.13(5):p.649-653.
    177.张艳芳等.猪肌内前体脂肪细胞的体外培养.农业生物技术学报,2011.19(1):p.116-121.
    178.王颖等.鸡前脂肪细胞的分离培养及鉴定.中国家禽研究,2005:p.576-580.
    179. Matsubara, Y., T. Endo, and K. Kano, Fatty acids but not dexamethasone are essential inducers for chick adipocyte differentiation in vitro. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2008.151(4):p.511-518.
    180. Ramirez-Zacarias, J., F. Castro-Munozledo, and W. Kuri-Harcuch, Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry and Cell Biology,1992.97(6):p.493-497.
    181. Mukherjee, R., et al., Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPAR(?)A2 versus PPAR(?)A1 and activation with retinoid X receptor agonists and antagonists. Journal of Biological Chemistry,1997.272(12):p.8071.
    182. Rosen, E.D., et al., PPAR [gamma] is required for the differentiation of adipose tissue in vivo and in vitro. Molecular Cell,1999.4(4):p.611-617.
    183. Matsubara, Y., et al., Changes in mRNA expression of regulatory factors involved in adipocyte differentiation during fatty acid induced adipogenesis in chicken. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2005.141(1): p.108-115.
    184. Yakar, S., et al., The role of circulating IGF-I. Endocrine,2002.19(3):p.239-248.
    185. LeRoith, D., Clinical relevance of systemic and local IGF-I:lessons from animal models. Pediatric endocrinology reviews:PER,2008.5:p.739.
    186. Hausman, G., et al., Board-invited review:the biology and regulation of preadipocytes and adipocytes in meat animals. Journal of animal science,2009.87(4):p.1218.
    187. Reul, B.A., et al., Insulin and insulin-like growth factor 1 antagonize the stimulation of ob gene expression by dexamethasone in cultured rat adipose tissue. Biochemical Journal, 1997.324(Pt2):p.605.
    188. K rner, A., et al., Adiponectin expression in humans is dependent on differentiation of adipocytes and down-regulated by humoral serum components of high molecular weight. Biochemical and Biophysical Research Communications,2005.337(2):p.540-550.
    189. Elbashir, S.M., et al., Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. The EMBO journal,2001.20(23):p.6877-6888.
    190. Elbashir, S.M., et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001.411(6836):p.494-498.
    191.缪德年等.马立克氏病病毒VP22基因siRNA筛选体系的构建.南京农业大学学报,2006.29(4):p.143-145.
    192.习杨,et al.,特异性抑制伪狂犬病毒EPO基因表达的siRNA分子的合成与筛选.中国病毒学,2006.21(6):p.565-570.
    193. Weber, M., et al., Short technical reports. Effects of lipopolysaccharide on transfection efficiency in eukaryotic cells. BioTechniques,1995.19(6):p.930.
    194.李扬,et al.,脂质体介导外源基因体外转染牛胎儿成纤维细胞条件的优化.遗传,2002.24(6):p.653-655.
    195. Jaaskelainen, I., J. Monkkonen, and A. Urtti, Oligonucleotide-cationic liposome interactions. A physicochemical study. Biochimica et Biophysica Acta (BBA)-Biomembranes,1994.1195(1):p.115-123.
    196. Kitagawa, T., et al., Advantages and limitations of particle(?)\mediated transfection (gene gun) in cancer immuno(?)\gene therapy using IL(?)\10, IL(?)\12 or B7(?)\1 in murine tumor models. The Journal of Gene Medicine,2003.5(11):p.958-965.
    197. Hogset, A., et al., Light directed gene transfer by photochemical internalisation. Current Gene Therapy,2003.3(2):p.89-112.
    198. Simberg, D., et al., DOTAP (and other cationic lipids):chemistry, biophysics, and transfection. Critical reviews in therapeutic drug carrier systems,2004.21(4):p.257-317.
    199. Martin. B., et al., The design of cationic lipids for gene delivery. Current pharmaceutical design,2005.11(3):p.375-394.
    200. Murray, K., et al., Cationic liposome-mediated DNA transfection in organotypic explant cultures of the ventral mesencephalon. Gene therapy,1999.6(2):p.190.
    201. Duzgunes, N., et al., Liposome-mediated delivery of antiviral agents to human immunodeficiency virus-infected cells. Molecular membrane biology,1999.16(1):p. 111-118.
    202. Cornelius, P., O.A. MacDougald, and M.D. Lane, Regulation of adipocyte development. Annual review of nutrition,1994.14(1):p.99-129.
    203. Goldberg, I.J., Lipoprotein lipase and lipolysis:central roles in lipoprotein metabolism and atherogenesis. Journal of Lipid Research,1996.37(4):p.693.
    204. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J.1996. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J.15(19):5336-5348.
    205.刘爽.2008.鸡脂肪细胞分化转录因子诱导成纤维细胞转分化的研究.东北农业大学博士学位论文.
    206. Schoenborn, V, et al., The ATGL gene is associated with free fatty acids, triglycerides, and type 2 diabetes. Diabetes,2006.55(5):p.1270.
    207. Rentsch, J. and M. Chiesi, Regulation of ob gene mRNA levels in cultured adipocytes. FEBS Letters,1996.379(1):p.55-59.
    208 Aprath-Husmann, I., et al., Effects of leptin on the differentiation and metabolism of human adipocytes. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity,2001.25(10):p.1465.
    209. Thomas, T., et al., Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology,1999.140(4):p. 1630.
    210. Scarpace. P., et al., Leptin increases uncoupling protein expression and energy expenditure. American Journal of Physiology-Endocrinology And Metabolism,1997. 273(1):p. E226.
    211. B ni-Schnetzler, M., et al., Reduced ob mRNA in hypophysectomised rats is not restored by growth hormone (GH), but further suppressed by exogenously administered insulin-like growth factor (IGF) Ⅰ. Biochemical and Biophysical Research Communications,1996.225(1):p.296-301.
    212. Amri, E., et al., Regulation of adipose cell differentiation. Ⅰ. Fatty acids are inducers of the aP2 gene expression. Journal of Lipid Research,1991.32(9):p.1449.
    213. Mersmann, H.J. and S.T. Ding, Fatty acids modulate porcine adipocyte differentiation and transcripts for transcription factors and adipocyte-characteristic proteins. The Journal of Nutritional Biochemistry,2001.12(2):p.101-108.
    214. Matsubara, Y., et al., Changes in mRNA expression of regulatory factors involved in adipocyte differentiation during fatty acid induced adipogenesis in chicken. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2005.141(1): p.108-115.
    215. Hotta, K., et al., Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arteriosclerosis, Thrombosis, and Vascular Biology,2000. 20(6):p.1595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700