用户名: 密码: 验证码:
PPV和PCV2核酸疫苗及PRV-PPV-PCV2基因工程疫苗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪细小病毒(Porcine Parvovims, PPV)是引起猪繁殖障碍的主要病原之一,猪圆环病毒2型(porcine circovirus type2, PCV2)引起以断奶仔猪多系统衰竭综合征(PMWS)为代表的系列疾病。该两种疾病在世界范围内广泛流行,造成了巨大的经济损失,目前,对这两种疾病的防制主要靠预防接种。然而,目前广泛使用的猪细小病毒灭活疫苗存在灭活不完全的风险,而且由于PPV体外培养较困难,病毒增殖滴度较低,这给灭活疫苗的生产带来一定困难;同时PCV2在细胞上增殖滴度很低,发展传统疫苗都存在一定障碍,因此有必要发展新型疫苗来防制这两种疾病。这两种疾病常发生混合感染,并具有协同性,如果能研发一种可同时预防这两种疾病的疫苗,将具有重要意义。据此,本研究展开了对四川省PPV和PCV2的抗原流行病学调查,以掌握其流行现状;对PPV VP2基因和PCV2 ORF2基因及其串联基因设计核酸疫苗;并以猪伪狂犬病毒(Pseudorabies Virus, PRV)为活病毒载体,构建了PRV-PPV-PCV2三价基因工程疫苗,为进一步预防和控制PRV、PPV和PCV2及其混合感染打下坚实的基础。具体如下:
     1.四川省猪细小病毒、猪圆环病毒2型流行病学调查
     从四川省21个规模化猪场共采集273份样品,通过PCR诊断技术进行了PPV、PCV2病原流行病学调查,结果检出PPV抗原阳性样品47份(17.22%)、PPV阳性猪场8个(38.1%),具有种猪的感染率较高,而在仔猪感染率相对较低的特点:检出PCV2抗原阳性样品143份(52.38%)、PCV2阳性猪场18个(85.7%),具有PCV2感染随猪年龄的增长而升高的趋势;检出PPV和PCV2混合感染样品29份(10.62%)、同时混合感染PPV和PCV2的猪场6个(28.7%),混合感染主要集中在母猪和保育仔猪阶段。
     2.猪细小病毒和猪圆环病毒2型核酸疫苗的构建
     通过PCR方法扩增PPV VP2基因和PCV2 ORF2基因,并分别插入真核表达载体pCI-neo中,成功构建了真核表达质粒pCI-VP2和pCI-ORF2,同时,将PPV VP2基因和PCV2 ORF2基因进行串联,两基因间以高亲水性氨基酸(Gly-Gly-Gly-Ser)编码核苷酸连接,插入到PCI-neo中构建真核表达质粒pCI-VP2-ORF2。将pCI-VP2. pCI-ORF2和pCI-VP2-ORF2转染Vero细胞后,通过RT-PCR法检测目的基因转录、SDS-PAGE电泳、Western blotting分析和间接免疫荧光分析蛋白表达,结果表明,3种真核表达质粒转染哺乳动物细胞后,既可扩增到目的基因,也可检测到特异性蛋白的表达,成功地表达了外源基因。
     3.猪细小病毒和猪圆环病毒2型核酸疫苗对小鼠免疫效果研究
     将84核酸疫苗pCI-VP2、pCI-ORF2和pCI-VP2-ORF2以100μg/只剂量免疫健康昆明小白鼠,2周后相同剂量加强免疫一次,于首免后O d、7 d、14 d、21 d、28 d、42 d、56 d断尾采血并分离血清进行抗体检测,发现首免后14d,可检测到PPV和PCV2特异性抗体的出现,加强免疫后7d,其抗体转化为阳性,但其诱导抗体水平均低于疫苗组所诱导的抗体水平:于首免后0 d、21 d、56 d分离血清进行细胞因子检测,发现其均可诱导较高水平的IL-2、IL-4、IFN-y;于首免后56d,采集抗凝血一份,进行T淋巴细胞亚群检测,发现CD4+/CD8+比例明显下降;首免后56d在每组随机挑选一只小鼠颈椎脱臼处死,取脾脏制备单个脾细胞悬液,用ConA进行刺激并测定刺激指数,发现能够诱导较强的脾细胞增殖;首免后56d采集小鼠的实质器官,进行安全性检测,均未检测到3种核酸疫苗的外源基因与小鼠基因组DNA整合的情况,表明3种核酸疫苗是安全的。这些结果说明,3种核酸疫苗均能够诱导小鼠产生较强的细胞免疫应答和体液免疫应答,并具有良好的安全性。
     4. PPV-PCV2-PRV三价基因工程疫苗PRV SA215(D1)的构建
     将VP2-ORF2融合基因从真核表达载体pCI-VP2-ORF2切下,连接到PRV通用转移载体pPI-2.EGFP中,成功构建了转移载体pPI-2.EGFP-VP2-ORF2。将PRV SA215基因组DNA与转移质粒pPI-2.EGFP-VP2-ORF2共转染Vero细胞,通过同源重组,构建重组病毒。挑斑筛选后,通过绿色荧光检测和PCR检测表明成功构建了PRV-PPV-PCV2三价基因工程疫苗株PRV SA215 (Dl);通过SDS-PAGE电泳、Western blotting分析和间接免疫荧光分析,结果表明,VP2基因和ORF2基因在重组PRV SA215 (D1)获得了成功表达,融合蛋白具有良好的免疫反应原性。
     5. PRV SA215(D1)部分生物学特性研究
     将PRV SA215(D1)接种Vero细胞,观察其致病变效应、重组病毒的形态,测定一步法生长曲线,结果表明,外源PPV VP2和PCV2 ORF2基因的插入不影响重组病毒的增殖和病毒粒子的包装。将PRVSA215(D1)在Vero细胞上连续传6代,未发现PPV VP2和PCV2 ORF2基因丢失,表明PRV SA215(D1)具有遗传稳定性。将PRVSA215(D1)以104PFU剂量免疫健康昆明小鼠,发现其对小鼠有良好的安全性,以104PFU免疫小白鼠可对106 PFU PRV Fa株强毒攻击产生完全保护。将PRVSA215(D1)以105PFU剂量免疫仔猪,可引起仔猪外周血CD4+T淋巴细胞阳性细胞数明显提高,CD8+T淋巴细胞阳性细胞数相对减少;可诱导产生较高水平的细胞因子IL-2、IL-4、IFN-γ,表明能够显著的增强Thl和Th2型免疫应答;可诱导仔猪产生较高水平的PRV、PPV和PCV2的抗体,其中PRV水平抗体与其亲本株PRV SA215相当,PPV和PCV2抗体水平略低于灭活疫苗组;这些结果表明,PRV SA215(D1)可望作为预防控制PRV、PPV和PCV2的三价基因工程疫苗候选株。
Porcine parvovirus (PPV) is the major causative agent in a syndrome of reproductive failure in sows. Porcine circovirus type 2(PCV2) causes Porcine Circovirus type 2-associated diseases (PCVD), and particularly postweaning multisystemic wasting syndrome(PMWS). These two diseases which have caused huge economic losses, are worldwide distribution; At present, vaccination is the major method to prevent them. However, porcine parvovirus inactivated vaccine which has been widely used, has the risk of not incompletely inactivated, as well as porcine parvovirus is difficultly cultivation in vitro which causes low titer proliferation. These above short comings bring many difficulties to product porcine parvovirus inactivated vaccine. Meanwhile, porcine circovirus type 2 also has low titer proliferation in vitro, which lead to hardly develop the traditional vaccines. These two kinds of infectious diseases, which have synergistic effect, often co-infect swine herds. If a vaccine to simultaneously prevent these two diseases could be developed, it will have vital significance. In this work, antigen epidemiology of porcine parvovirus and porcine circovirus type 2 in Sichuan province were investigated; DNA vaccines against porcine parvovirus and porcine circovirus type 2 as well as a recombinant pseudorabies virus that could express PPV VP2 protein and PCV2 ORF2 protein were constructed, and their immunogenicity was further demonstrated. These experiments were aiming to provide a novel vaccine to be used in prevention and control these above diseases in the future. The main research contents are the following:
     1. Antigen Epidemiology Survey of Porcine Parvovirus and Porcine Circovirus Type 2 in Sichuan Province
     Two hundred and seventy-three samples were collected from 21 large pig farms in Sichuan province, and antigen epidemiology of porcine parvovirus and porcine circovirus type 2 were investigated by PCR detecting. The antigen positive rate of porcine parvovirus was 17.22%(47/273), and positive rate of pig farms was 38.1% (8/21), which displaied a feature that infection rate of boar was much higher than that of piglets; The antigen positive rate of porcine circovirus type 2 was 52.38% (143/273), and positive rate of pig farms was 85.7% (18/21), which showed a trend that the infection rate of porcine circovirus type 2 was rising with the piglets growth. The co-infection rate of porcine parvovirus and porcine circovirus type 2 was 10.62% (29/273), and co-infection rate of pig farms was 28.7% (6/21). Co-infection was mainly take place in the sow and nursing piglets.
     2. Construction of DNA Vaccines of Porcine Parvovirus and Porcine Circovirus Type 2
     Porcine parvovirus VP2 gene and porcine circovirus type 2 ORF2 gene were amplified by PCR, then were inserted into eukaryotic expression vector pCI-neo to constructed pCI-VP2 and pCI-ORF2 respectively. Meanwhile, these two genes were linked by high hydrophilia amino acid (Gly-Gly-Gly-Ser) encoding nucleotides, and then were also inserted into pCI-neo to constructed pCI-VP2-ORF2. Plasmids pCI-VP2, pCI-ORF2 and pCI-VP2-ORF2 were transfected to Vero cells, and target gene expression analysis was detected by PCR, Western blotting and IFA assay. The results suggested that the three kinds of DNA vaccines were successfully constructed and expressed.
     3. Immunogenicity of DNA Vaccines in Mice
     Vaccinate healthy Kunming mouse with DNA vaccines pCI-VP2, pCI-ORF2 and pCI-VP2-ORF2 in the dose of 100μg, and booster injection was given with the same dose at 14 days post-vaccination. Collected mouse serum by tail cutting for antibodies detection at 0、7、14、21、28、42 and 56 days post-vaccination. Specific antibodies of PPV and PCV2 could be detected on 14 days post-vaccination. After 7 days of booster immunization, antibodies converted into positive, but the titer of immunized DNA vaccines groups were lower than that of inactivated vaccine groups. Collected mouse serum for cytokine detection at 0,21 and 56 days post-vaccination, and comparative high-level of IL-2, IL-4, IFN-y were induced by these three kinds of DNA vaccines. Collected anti-coagulated blood for T-lymphocyte subsets detection at 56 days post-vaccination, and CD4+/CD8+ was declined evidently. At 56 days post-vaccination, killed a mice by cervical dislocation in a random way to prepare splenic cell suspension which were then stimulated with ConA, and examined the stimulation index. The result showed that ConA had an marked effect on promoting spleen cell proliferation. Collected the murine parenchymal organs for the potential integration detection of DNA between the exogenous gene of the 3 kinds of DNA vaccines and the mice genome at 56 days post-vaccination, and the result indicated that the 3 kinds of DNA vaccines were security for the experimental animals. All the above results demonstrated that three kinds of DNA vaccines had high security, and could induce strong cell mediated immune response as well as humoral immune response.
     4. Construction of the Triple Genetic Engineering Vaccine Strain PRV SA215 (D1)
     Cut off the VP2-ORF2 fusion gene from pCI-VP2-ORF2, and connected into a universal transfer vector pPI-2.EGFP of pseudorabies virus, then eukaryotic expression transfer vector pPI-2.EGFP-VP2-ORF2 was successfully constructed. PRV SA215 genomic DNA and the transferred plasmid pPI-2.EGFP-VP2-ORF2 were co-transfected into Vero cells to construct recombinant virus via homologous recombination. Then the recombinant virus PRV SA215 (D1) was purified by plaque purification using green fluorescent assay and PCR identification, and confirmed by detecting the presence of VP2 gene by PCR, Western blotting analysis and IFA assay. The results suggested the recombinant PRV SA215 (D1) strain could steadily express exogenous protein, and the fusion protein had good Immunogenicity.
     5. Study on the Partial Biological Characteristics of PRV SA215 (D1)
     Vero cells were infected with the recombinant PRV SA215 (D1), then cytopathic effect(CPE) and the morphology of virus were observed, and one step growth curve was determined. The results showed that the insertion of exogenous PPV VP2 and PCV2 ORF2 gene do not affected the proliferation and packaging of recombinant virus. Vero cells inoculated PRV SA215(D1), and then subcultured 6 rounds, which found that PPV VP2 and the PCV2 ORF2 gene did not loss. These results suggested that PRV SA215 (D1) was genetic stability. Healthy Kunming mouse were immunized with 104 PFU PRV SA215 (D1), found that all immunized mouse were alive which suggesting good security. Mouse immunized with the recombinant developed comparable PRV-specific humoral immune responses and provided complete protection against a lethal dose of 106 PFU PRV challenge. Piglets immunized with 105 PFU PRV SA215 (D1) induced significant cell mediated immune response and high levels of PRV, PPV and PCV2 antibodies. CD4+ T lymphocytes in peripheral blood was significantly increased, and CD8+T lymphocytes in peripheral blood was relatively reduced. High levels of cytokines IL-2, IL-4 and IFN-γshowed that PRV SA215 (D1) can significantly enhance Thl and Th2 immune response. The PRV antibody level induced by PRVSA215 gourp was equal to that of their parents strain PRV SA215, as well as PPV and PCV antibody levels were slightly lower than that of inactivated vaccine group, respectively; All above-mentioned results suggested that PRV SA215 (D1) is expected as the candidate strain of trivalent genetic engineering live vaccine to prevent and control PRV, PPV and PCV2.
引文
1. 殷震,刘景华,动物病毒学.1997,北京:科学出版社.
    2. Lyoo, K.S., Y.H. Park, and B.K. Park, Prevalence of porcine reproductive and respiratory syndrome virus, porcine circovirus type 2 and porcine parvovirus from aborted fetuses and pigs with respiratory problems in Korea. Journal of veterinary science,2001.2(3):p.201.
    3. Van Leengoed, L.A., J. Vos, E. Gruys, et al., Porcine Parvovirus infection:review and diagnosis in a sow herd with reproductive failure. The Veterinary quarterly,1983.5(3):p.131.
    4. Hogg, G.G., C. Lenghaus, and A.J. Forman, Experimental porcine parvovirus infection of foetal pigs resulting in abortion, histological lesions and antibody formation. Journal of Comparative Pathology,1977.87(4):p.539-549.
    5. 潘雪珠,严仲烈,唐骐骏,等.猪细小病毒S-1毒株的分离和鉴定(二).上海畜牧兽医通讯,1984.1:p.5-8.
    6. 侯世宽,江曙光,孙恩贵,等.猪细小病毒MU-1株的分离和鉴定.中国兽医学报, 1983.
    7. 邬捷,曹国文,乔代蓉,等.秋季初产母猪死胎病毒病原的分离和鉴定.西南农业学报,1985.
    8. 赵占民,甘孟侯,刘尚高.猪细小病毒感染的流行病学调查.中国兽医科技,1992.22(004):p.14-15.
    9. 明心中,钟细苟,段载金,等.江西省猪细小病毒血清学调查.中国兽药杂志,1998.24(3).
    10. 何启盖,陈焕春,吴斌,等.规模化猪场猪瘟、细小病毒、口蹄疫抗体水平监测和免疫效果分析.中国预防兽医学报,2000.22(1):p.5-9.
    11. 李英霞,李长宏,朱琪,等.黑龙江省猪细小病毒感染的流行病学调查.中国兽药杂志,2001.37(1).
    12. 崔立,姚从斌,芦银华,等.猪圆环病毒2型,猪繁殖与呼吸综合征病毒及猪细小病毒混合感染的流行病学调查.上海交通大学学报:农业科学版,2006.24(004):p.330-334.
    13. 贾赟,芦银华,张素芳,等.猪圆环病毒2型,猪繁殖与呼吸综合征病毒及猪细小病毒混合感染的流行病学调查.中国病毒学,2004.19(005):p.467-470.
    14. 黄夏,陈义祥,何丹,等.广西猪细小病毒与PRRSV CSFV, PCV2, PRV混合感染的检测.广西畜牧兽医,2007.23(2).
    15. 曹洪志,多重PCR诊断猪5种繁殖障碍性疾病的方法研究.2007,四川农业大学.
    16. Mengeling, W.L. and P.S. Paul, The relative importance of swine and contaminated premises as reservoirs of porcine parvovirus. J. Am. Vet. Med. Assoc,1986.188:p.1293-1295.
    17. Cartwright, S.F. and R.A. Huck, Viruses isolated in association with herd infertility, abortions and stillbirths in pigs. Vet. Rec,1967.81(1):p.197.
    18. Cartwright, S.F., M. Lucas, and R.A. Huck, A small haemagglutinating porcine DNA virus::Ⅰ. Isolation and properties. Journal of Comparative Pathology,1969.79(3):p.371-376.
    19. McAdaragh, J.P. and G.A. Anderson. Transmission of viruses through boar semen.1975.
    20. Lucas, M.H., S.F. Cartwright, and A.E. Wrathall, Genital infection of pigs with porcine parvovirus. Journal of Comparative Pathology,1974.84(3):p.347-350.
    21. Johnson, R.H., Isolation of swine parvovirus in Queenland Australian Veterinary Journal, 1973.49(3):p.157-159.
    22. Mengeling, W.L., Prevalence of porcine parvovirus-induced reproductive failure:an abttoir study. Journal of the American Veterinary Medical Association (USA),1978.
    23. Mengeling, W.L., K.M. Lager, J.K. Zimmerman, et al., A current assessment of the role of porcine parvovirus as a cause of fetal porcine death. Journal of veterinary diagnostic investigation,1991.3(1):p.33.
    24. Choi, C.S., T.W. Molitor, and H.S. Joo, Inhibition of porcine parvovirus replication by empty virus particles. Archives of virology,1987.96(1):p.75-87.
    25. Bergeron, J., B. Hebert, and P. Tijssen, Genome organization of the Kresse strain of porcine parvovirus:identification of the allotropic determinant and comparison with those of NADL-2 and field isolates. Journal of virology,1996.70(4):p.2508.
    26. Ranz, A.I., J.J. Manclus, E. Diaz-Aroca, et al., Porcine parvovirus:DNA sequence and genome organization. Journal of general virology,1989.70(10):p.2541.
    27. Vasudevacharya, J., S. Basak, R.V. Srinivas, et al., Nucleotide sequence analysis of the capsid genes and the right-hand terminal palindrome of porcine parvovirus, strain NADL-2. Virology, 1989.173(2):p.368-377.
    28. 张英:细小病毒的分子生物学.中国病毒学,1996.11(3):p.193-200.
    29. Tullis, G.E., L.R. Burger, and D.J. Pintel, The minor capsid protein VP1 of the autonomous parvovirus minute virus of mice is dispensable for encapsidation of progeny single-stranded DNA but is required for infectivity. Journal of virology,1993.67(1):p.131.
    30. Cotmore, S.F. and P. Tattersall, A genome-linked copy of the NS-1 polypeptide is located on the outside of infectious parvovirus particles. Journal of virology,1989.63(9):p.3902.
    31. Madsen, E.S., K.G. Madsen. J. Nielsen, et al., Detection of antibodies against porcine parvovirus nonstructural protein NS1 may distinguish between vaccinated and infected pigs. Veterinary microbiology,1997.54(1):p.1-16.
    32. 吕建强,陈焕春.猪细小病毒疫苗研究进展.动物医学进展,2002.23(001):p.31-34.
    33. 潘雪珠,粟寿初.猪细小病毒灭活疫苗研究(简报).上海畜牧兽医通讯,1987.5.
    34. 潘雪珠,粟寿初,张婉华,等.猪细小病毒灭活疫苗的安全性和免疫力.上海农业学报.1988.4(1):p.1-10.
    35. Joo, H.S. and R.H. Johnson, Serological responses in pigs vaccinated with inactivated porcine parvovirus. Australian Veterinary Journal,1977.53(11):p.550-552.
    36. Molitor, T.W., H.S. Joo, and B.J. Thacker, Potentiating effect of adjuvants on humural immunity to porcine parvovirus vaccines in guinea pigs. Veterinary microbiology,1985.10(3): p.209-218.
    37. 叶向阳,潘雪珠.猪细小病毒(PPV)弱毒株选育及其某些生物学特性.上海农业学报, 1992(A10):p.65-69.
    38. Fujisaki, Y., Y. Murakami, and H. Suzuki. Establishment of an attenuated strain of porcine parvovirus by serial passage at low temperature. National Institute of Animal Health quarterly, 1982.22(1):p.1.
    39. Fujisaki, Y. and Y. Murakami, Immunity to infection with porcine parvovirus in pigs inoculated with the attenuated HT-strain. National Institute of Animal Health Quarterly,1982.22(1):p.36.
    40. 蒋玉雯,黄安国,郑儒标,等.猪细小病毒N株的生物学和免疫学特性研究.畜牧兽医学报,1992.23(1):p.73-79.
    41. 刘杰译,猪细小病毒病疫苗.国外兽医学:畜禽传染病,1990.10(002):p.41-42.
    42. 赵俊龙,陈焕春.猪细小病毒结构蛋白VP1和VP2的基因免疫研究.病毒学报,2003.19(001):p.47-51.
    43. 王印,王新,郭万柱.猪细小病毒VP2基因核酸疫苗的构建及免疫原性.中国兽医学报,2009.29(005):p.533-536.
    44. 魏战勇,王学斌,崔保安,等.猪细小病毒核酸疫苗的构建及其对小鼠免疫原性的研究.中国生物工程杂志,2006.26(012):p.63-67.
    45. 徐宜为,步志高,白侠,等.转基因植物可饲(食)疫苗.中国兽医科学,2000.20(3).
    46. Martinez, C., K. Dalsgaard, J.A. Lopez de Turiso, et al., Production of porcine parvovirus empty capsids with high immunogenic activity. Vaccine,1992.10(10):p.684-690.
    47. Sedlik, C., M.F. Saron, J. Sarraseca, et al., Recombinant parvovirus-like particles as an antigen carrier: a novel nonreplicative exogenous antigen to elicit protective antiviral cytotoxic T cells. Proceedings of the National Academy of Sciences of the United States of America,1997. 94(14):p.7503.
    48. 朱玲,郭万柱,蒋清蓉,等.猪细小病毒VLPs供外源蛋白插入的候选位点发现及其重组PCV2-ORF2的病毒样颗粒构建.农业生物技术学报,2010.18(3):p.431-436.
    49. 罗燕,郭万柱,徐志文,等.含绿色荧光蛋白基因的猪细小病毒病-伪狂犬病重组病毒的构建.畜牧兽医学报,2005.36(010):p.1064-1068.
    50. 吕建强,陈焕春,赵俊龙,等.表达猪细小病毒VP2基因的重组伪狂犬病毒的构建及其生物学特征研究.病毒学报,2004.20(002):p.133-137.
    51. Pan, Q., K. He, and K. Huang, Development of recombinant porcine parvovirus-like particles as an antigen carrier formed by the hybrid VP2 protein carrying immunoreactive epitope of porcine circovirus type 2. Vaccine,2008.26(17):p.2119-2126.
    52. Tischer, I., R. Rasch, and G. Tochtermann, Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie,1974.226(2):p.153.
    53. Clark, E.G. Post-weaning multisystemic wasting syndrome.1997.
    54. 郎洪武,张广川,吴发权.断奶仔猪多系统衰竭综合征血清抗体检测[J].中国兽医科技, 2000.30:p.651-652.
    55. Allan. G.M., F. MC Neilly, B.M. Meehan, et al., Isolation and characterisation of circoviruses from pigs with wasting syndromes in Spain, Denmark and Northern Ireland. Veterinary microbiology,1999.66(2):p.115-123.
    56. Rosell, C., J. Segales, J.A. Ramos-Vara, et al., Identification of porcine circovirus in tissues of pigs with porcine dermatitis and nephropathy syndrome. Veterinary Record,2000.146(2):p. 40.
    57. 曹胜波,陈焕春.猪Ⅱ型圆环病毒豫A株的全基因组克隆与序列分析.病毒学报,2002.18(002):p.137-141.
    58. Allan, G.M., K.V. Phenix, D. Todd, et al., Some Biological and Physico-Chemical Properties of Porcine Circovirus. Journal of Veterinary Medicine, Series B,1994.41(1-10):p.17-26.
    59. Tischer, I., D. Peters, R. Rasch, et al., Replication of porcine circovirus:induction by glucosamine and cell cycle dependence. Archives of virology,1987.96(1):p.39-57.
    60. Allan, G.M. and J.A. Ellis, Porcine circoviruses:a review. Journal of Veterinary Diagnostic Investigation,2000.12(1):p.3.
    61. Hamel, A.L., L.L. Lin, and G.P.S. Nayar, Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. Journal of Virology,1998.72(6):p. 5262.
    62. Meehan, B.M., F. McNeilly, D. Todd, et al., Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. Journal of General Virology,1998.79(9):p.2171.
    63. Mankertz, A., B. Mueller, T. Steinfeldt, et al., New reporter gene-based replication assay reveals exchangeability of replication factors of porcine circovirus types 1 and 2. Journal of virology,2003.77(18):p.9885.
    64. Mankertz, A. and B. Hillenbrand, Replication of porcine circovirus type 1 requires two proteins encoded by the viral rep gene. Virology,2001.279(2):p.429-438.
    65. Mankertz, J., H.J. Buhk, G. Blaess, et al., Transcription analysis of porcine circovirus (PCV). Virus Genes,1998.16(3):p.267-276.
    66. Meerts, P., S.V. Gucht, E. Cox, et al., Correlation between type of adaptive immune response against porcine circovirus type 2 and level of virus replication. Viral Immunology,2005.18(2): p.333-341.
    67. Mankertz, A., J. Mankertz, K. Wolf, et al., Identification of a protein essential for replication of porcine circovirus. Journal of General Virology,1998.79(2):p.381.
    68. Ilyina, T.V. and E.V. Koonin, Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic acids research,1992.20(13):p.3279.
    69. Mankertz, A., R. Caliskan, K. Hattermann, et al., Molecular biology of Porcine circovirus: analyses of gene expression and viral replication. Veterinary microbiology,2004.98(2):p. 81-88.
    70. Cheung, A.K.. Regeneration of the replication-associated proteins tandem direct repeat recognition nucleotide sequence at the origin of DNA replication of porcine circovirus type 1. Virology.2006.346(1):p.32-39.
    71. Cheung, A.K.. Mutational analysis of the direct tandem repeat sequences at the origin of DNA replication of porcine circovirus type 1. Virology.2005.339(2):p.192-199.
    72. Cheung, A.K., The essential and nonessential transcription units for viral protein synthesis and DNA replication of porcine circovirus type 2. Virology,2003.313(2):p.452-459.
    73. Cheung, A.K., Transcriptional analysis of porcine circovirus type 2. Virology,2003.305(1):p. 168-180.
    74. Cheung, A.K., Detection of template strand switching during initiation and termination of DNA replication of porcine circovirus. Journal of virology,2004.78(8):p.4268.
    75. Cheung, A.K., Identification of an octanucleotide motif sequence essential for viral protein, DNA, and progeny virus biosynthesis at the origin of DNA replication of porcine circovirus type 2. Virology,2004.324(1):p.28-36.
    76. Liu, Q., S.K. Tikoo, and L.A. Babiuk. Nuclear localization of the ORF2 protein encoded by porcine circovirus type 2. Virology,2001.285(1):p.91-99.
    77. Lekcharoensuk, P.,1. Morozov, P.S. Paul, et al., Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. Journal of virology, 2004.78(15):p.8135.
    78. Nawagitgul, P.,1. Morozov, S.R. Bolin. et al.. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. Journal of General Virology,2000.81(9):p.2281.
    79. Fenaux, M., T. Opriessnig, P.G. Halbur, et al., Immunogenicity and pathogenicity of chimeric infectious DNA clones of pathogenic porcine circovirus type 2 (PCV2) and nonpathogenic PCV1 in weanling pigs. Journal of virology,2003.77(20):p.11232.
    80. Fenaux, M., T. Opriessnig, P.G. Halbur, et al.. Two amino acid mutations in the capsid protein of type 2 porcine circovirus (PCV2) enhanced PCV2 replication in vitro and attenuated the virus in vivo. Journal of virology,2004.78(24):p.13440.
    81. Rosell, C., J. Segales, J. Plana-Duran. et al., Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. Journal of Comparative Pathology,1999.120(1):p.59-78.
    82. Mandrioli, L., G. Sarli, S. Panarese, et al., Apoptosis and proliferative activity in lymph node reaction in postweaning multisystemic wasting syndrome (PMWS). Veterinary immunology and immunopathology,2004.97(1-2):p.25-37.
    83. Shibahara, T., K. Sato, Y. Ishikawa, et al., Porcine circovirus induces B lymphocyte depletion in pigs with wasting disease syndrome. The Journal of veterinary medical science/the Japanese Society of Veterinary Science,2000.62(11):p.1125.
    84. Segales, J., F. Alonso, C. Rosell. et al., Changes in peripheral blood leukocyte populations in pigs with natural postweaning multisystemic wasting syndrome (PMWS). Veterinary Immunology and Immunopathology,2001.81(1-2):p.37-44.
    85. Sipos, W.. J.C. Duvigneau, M. Willheim, et al., Systemic cytokine profile in feeder pigs suffering from natural postweaning multisystemic wasting syndrome (PMWS) as determined by semiquantitative RT-PCR and flow cytometric intracellular cytokine detection. Veterinary immunology and immunopathology,2004.99(1-2):p.63-71.
    86. Nielsen. J., I.E. Vincent. A. B tner, et al., Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). Veterinary immunology and immunopathology,2003.92(3-4):p.97-111.
    87. Meerts, P., G. Misinzo, D. Lefebvre, et al.. Correlation between the presence of neutralizing antibodies against porcine circovirus 2(PCV 2) and protection against replication of the virus and development of PCV 2-associated disease. BMC Veterinary Research,2006.2(1):p.6.
    88. McKeown, N.E., T. Opriessnig, P. Thomas, et al., Effects of porcine circovirus type 2 (PCV2) maternal antibodies on experimental infection of piglets with PCV2. Clinical and Vaccine Immunology,2005.12(11):p.1347.
    89. Kamstrup. S., A.M. Barfoed, T.H. Frimann, et al., Immunisation against PCV2 structural protein by DNA vaccination of mice. Vaccine,2004.22(11-12):p.1358-1361.
    90. Blanchard, P., D. Mahe, R. Cariolet. et al.. Protection of swine against post-weaning multisystemic wasting syndrome (PMWS) by porcine circovirus type 2 (PCV2) proteins. Vaccine.2003.21(31):p.4565-4575.
    91. 王新,郭万柱,周婷.等.猪圆环病毒2型核酸疫苗的构建及其免疫效果.西北农林科技大学学报,2008.36(008):p.41-45.
    92. 程凯慧,李俊,于周.等.含CpG基序系列猪圆环病毒核酸疫苗的构建.中国兽医科学.2008.38(012):p.1055-1059.
    93. 金宁一,秦晓冰,郑敏.等.猪2型圆环病毒核酸疫苗的接种Balb/c小鼠实验免疫研究.中国生物工程杂志,2005.25(007):p.76-79.
    94. 宋云峰,肖少波,金梅林,等.猪2型圆环病毒核酸疫苗免疫效应研究.畜牧兽医学报,2005.36(010):p.1049-1054.
    95. Ju, C., H. Fan, Y. Tan, et al., lmmunogenicity of a recombinant pseudorabies virus expressing ORF1-ORF2 fusion protein of porcine circovirus type 2. Veterinary microbiology,2005. 109(3-4):p.179-190.
    96. 王印,郭万柱,王新,等.猪Ⅱ型圆环病毒-伪狂犬重组病毒活疫苗SA215(C)株的构建(初报).四川农业大学学报,2006.24(002):p.125-129.
    97. Wang, X., W. Jiang, P. Jiang, et al., Construction and immunogenicity of recombinant adenovirus expressing the capsid protein of porcine circovirus 2 (PCV2) in mice. Vaccine.2006. 24(16):p.3374-3380.
    98. Wang, K., L. Huang. J. Kong, et al., Expression of the capsid protein of porcine circovirus type 2 in Lactococcus lactis for oral vaccination. Journal of virological methods.2008.150(1-2):p. 1-6.
    99. Keeler Jr. C.L., M.E. Whealy, and L.W. Enquist, Construction of an infectious pseudorabies virus recombinant expressing a glycoprotein gll]-[beta]-galactosidase fusion protein. Gene, 1986.50(1-3):p.215-224.
    100. Thomsen. D.R., K.R. Marotti, D.P. Palermo, et al., Pseudorabies virus as a live virus vector for expression of foreign genes. Gene,1987.57(2-3):p.261-265.
    101. Whealy, M.E., K. Baumeister. A.K. Robbins, et al., A herpesvirus vector for expression of glycosylated membrane antigens:fusion proteins of pseudorabies virus gⅢ and human immunodeficiency virus type 1 envelope glycoproteins. Journal of virology,1988.62(11):p. 4185.
    102. Hofft van Iddekinge, B.J.L., N. De Wind, G. Wensvoort, et al., Comparison of the protective efficacy of recombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs; influence of different promoters on gene expression and on protection. Vaccine,1996. 14(1):p.6-12.
    103. 陈陆,郭万柱,殷华平,等.伪狂犬病病毒基因缺失疫苗制苗用毒种特性研究中国病毒学,2005.20(2):p.101-104.
    104. 陈陆,郭万柱,徐志文,等.伪狂犬病基因缺失疫苗株(SA215)生物学特性研究.畜牧兽医学报,2005.36(003):p.278-282.
    105. 郭万柱,徐志文.新型伪狂现病毒基因缺失株的构建.四川农业大学学报,2000.18(001):p.1-3.
    106. 徐志文,郭万柱,朱玲,等.猪瘟伪狂犬病重组病毒SA215(A)株的构建及生物学特性研究.畜牧兽医学报,2005.36(010):p.1033-1037.
    107. 徐静,郭万柱,卫龙兴.表达日本乙型脑炎病毒E蛋白重组伪狂犬病病毒SA215(E)的构建.中国兽医学报,2009.29(002):p.182-186.
    108. 周复春.猪伪狂犬病病毒鄂A株基因缺失突变株的构建.华中农业大学学位论文,1998.
    109. 何启盖.猪伪狂犬病基因缺失疫苗研究.2000,武汉:华中农业大学.
    110. Yuan, Z., S. Zhang, Y. Liu, et al., A recombinant pseudorabies virus expressing rabies virus glycoprotein: safety and immunogenicity in dogs. Vaccine,2008.26(10):p.1314-1321.
    111. Rueda, P., J. Fominaya, J.P.M. Langeveld, et al., Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles. Vaccine, 2000.19(7-8):p.726-734.
    112. Cao, S., H. Chen, J. Zhao, et al., Detection of porcine circovirus type 2, porcine parvovirus and porcine pseudorabies virus from pigs with postweaning multisystemic wasting syndrome by multiplex PCR. Veterinary research communications,2005.29(3):p.263-269.
    113. Soares, R.M., E.L. Durigon, J.G. Bersano, et al., Detection of porcine parvovirus DNA by the polymerase chain reaction assay using primers to the highly conserved nonstructural protein gene, NS-1. Journal of virological methods,1999.78(1-2):p.191-198.
    114. Wilhelm, S., P. Zimmermann, H.J. Selbitz, et al., Real-time PCR protocol for the detection of porcine parvovirus in field samples. Journal of virological methods,2006.134(1-2):p. 257-260.
    115. Wolf, V.H.G., M. Menossi, G.B. Mour o, et al., Molecular basis for porcine parvovirus detection in dead fetuses. Genetics and Molecular Research,2008.7(2):p.509-517.
    116. Zee, Y.C. and N.J. MacLachlan, Parvoviridae and circoviridae. Veterinary Microbiology.2nd ed. Blackwell, Ames, Iowa.536p,2004:p.305-314.
    117. Drolet, R., M. Ribotta, R. Higgins, et al., Infectious agents identified in pigs with multifocal interstitial nephritis at slaughter. The Veterinary Record,2002.150(5):p.139.
    118. Segales, J., G.M. Allan, and M. Domingo, Porcine circovirus diseases. Animal Health Research Reviews,2005.6(02):p.119-142.
    119. Whitaker, H.K., S.M. Neu, and L.W. Pace, Parvovirus infection in pigs with exudative skin disease. Journal of Veterinary Diagnostic Investigation.1990.2(3):p.244.
    120. Allan, G.M., S. Kennedy, F. McNeilly, et al., Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. Journal of Comparative Pathology,1999.121(1):p.1-11.
    121. Krakowka, S., J.A. Ellis, B. Meehan, et al., Viral wasting syndrome of swine:experimental reproduction of postweaning multisystemic wasting syndrome in gnotobiotic swine by coinfection with porcine circovirus 2 and porcine parvovirus. Veterinary Pathology Online, 2000.37(3):p.254.
    122. 邬捷,曹国文,乔代蓉,等.四川猪细小病毒流行情况的调查.中国兽医杂志,1986.11.
    123. 黄旭雯,肖驰.四川省猪JEV和PPV疾病普查检测报告.畜禽业,1997.7.
    124. 姜永厚,徐辉,商晗武,等.多重PCR同时检测猪圆环病毒2型,猪细小病毒.猪繁殖与呼吸综合征病毒和猪瘟病毒.中国兽医学报,2009(010):p.1237-1241.
    125. Mengeling, W.L., T.T. Brown, P.S. Paul, et al., Efficacy of an inactivated virus vaccine for prevention of porcine parvovirus-induced reproductive failure. American journal of veterinary research,1979.40(2):p.204.
    126. 郎洪武,吴发权.断奶猪多系统衰弱综合征血清抗体检测.中国兽医科技,2000.30(003):p.3-5.
    127. 吴俊,朱玲,易悦,等.四川省部分猪场PCV-2感染的血清学调查.2010.9:p.107-109.
    128. Pogranichniy, R.M., K.J. Yoon, P.A. Harms, et al., Case-control study on the association of porcine circovirus type 2 and other swine viral pathogens with postweaning multisystemic wasting syndrome. Journal of veterinary diagnostic investigation,2002.14(6):p.449.
    129. Choi, C. and C. Chae, In-situ hybridization for the detection of porcine circovirus in pigs with postweaning multisystemic wasting syndrome. Journal of comparative pathology,1999.121(3): p.265-270.
    130. Allan, G.M., F. McNeilly, J. Ellis, et al., Experimental infection of colostrum deprived piglets with porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) potentiates PCV2 replication. Archives of virology,2000.145(11):p.2421-2429.
    131. 杨汉春.猪免疫抑制性疾病的流行特点与控制对策.中国畜牧兽医,2004.31(005):p.4]-43.
    132. 董德祥.疫苗技术基础与应用.2002:化学工业出版社.
    133. Sambrook, J. and D.W. Russell,分子克隆实验指南.2002:科学出版社.
    134. 朱立平,陈学清,免疫学常用实验方法.2000:人民军医出版社.
    135. Yigang, X.U. and L.I. Yijing, Construction of recombinant Lactobacillus casei efficiently surface displayed and secreted porcine parvovirus VP2 protein and comparison of the immune responses induced by oral immunization. Immunology,2008.124(1):p.68-75.
    136. Kamstrup, S., J. Langeveld, A. Botner, et al., Mapping the antigenic structure of porcine parvovirus at the level of peptides. Virus Res.1998.53(2): p.163-73.
    137. Antonis, A.F.G., C.J.M. Bruschke, P. Rueda, et al., A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure. Vaccine,2006. 24(26):p.5481-5490.
    138. Mahe, D., P. Blanchard, C. Truong, et al., Differential recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and identification of immunorelevant epitopes. Journal of General Virology,2000.81(7):p.1815.
    139. Crasto, C.J. and J. Feng, LINKER: a program to generate linker sequences for fusion proteins. Protein Engineering,2000.13(5):p.309.
    140. 刘岩,于涟.基因融合技术及其应用.农业生物技术学报.2006.14(002):p.273-278.
    141. 刘苗,沈立新,段康民.基因融合技术及其应用.现代检验医学杂志,2009.24(002):p.94-96.
    142. Janitz, M., Assigning functions to genes—the main challenge of the post-genomics era. Reviews of Physiology, Biochemistry and Pharmacology.2007:p.115-129.
    143. Robinson, H.L., Nucleic acid vaccines:an overview. Vaccine,1997.15(8):p.785.
    144. Ganges, L., M. Barrera, J.I. Nunez, et al., A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine,2005.23(28):p.3741-3752.
    145. Ma, K., W. Xu, and X. Shao, Coimmunization with RANTES plasmid polarized Th1 immune response against hepatitis B virus envelope via recruitment of dendritic cells. Antiviral research, 2007.76(2):p.140-149.
    146. Whitton, J.L., F. Rodriguez, J. Zhang, et al., DNA immunization:mechanistic studies. Vaccine, 1999.17(13-14):p.1612-1619.
    147. Boyle, J.S., A. Silva, J.L. Brady, et al., DNA immunization:induction of higher avidity antibody and effect of route on T cell cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America.1997.94(26):p.14626.
    148. Shedlock, D.J. and D.B. Weiner, DNA vaccination:antigen presentation and the induction of immunity. Journal of leukocyte biology,2000.68(6):p.793.
    149. Cohen, J., Naked DNA points way to vaccines. Science,1993.259(5102):p.1691.
    150. Fynan. E.F., R.G. Webster. D.H. Fuller, et al., DNA vaccines:protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proceedings of the National Academy of Sciences of the United States of America,1993.90(24):p.11478.
    151. Barry, M.A. and S.A. Johnston, Biological features of genetic immunization. Vaccine,1997. 15(8):p.788-791.
    152. 林学颜,张玲.现代细胞与分子免疫学.1999,北京:科学出版社.
    153. 孙亚萍,王英明,乔守怡.干扰素及其最新研究进展.中国免疫学杂志,2006.22(007):p.676-679.
    154. Paul, P.S., W.L. Mengeling, and T.T. Brown Jr, Effect of vaccinal and passive immunity on experimental infection of pigs with porcine parvovirus. American Journal of Veterinary Research,1980.41(9):p.1368-1371.
    155. Okamura. H., J. Zachwieja. S. Raguet, et al., Characterization and applications of monoclonal antibodies to the prolactin receptor. Endocrinology,1989.124(5):p.2499.
    156. Hong, Q., P. Qian, X.M. Li. et al., A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus:a trivalent vaccine candidate. Biotechnology letters,2007.29(11):p.1677-1683.
    157. 赵武,肖少波,方六荣,等.融合表达牛疱疹病毒1型VP22及猪繁殖与呼吸综合征病毒GP5重组伪狂犬病毒TK-/gE-/VP22GP5+的构建.病毒学报,2006.22(001):p.62-65.
    158. Jiang, Y., L. Fang, S. Xiao, et al., Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus. Vaccine,2007.25(3):p.547-560.
    159. 徐高原,王祥,陈焕春,等.乙型脑炎病毒NS1基因重组伪狂犬病毒的构建.畜牧兽医学报,2004.35(2):p.192-197.
    160. 郭万柱.兽医病毒学.2003:四川科学技术出版社.
    161. Klupp, B.G. and T.C. Mettenleiter, Glycoprotein gL-independent infectivity of pseudorabies virus is mediated by a gD-gH fusion protein. Journal of virology,1999.73(4):p.3014.
    162. Mulder, W.A.M., M.C.M. De Jong, J. Priem, et al., Experimental quantification of transmission of genetically engineered pseudorabies virus. Vaccine,1995.13(18):p.1763-1769.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700