用户名: 密码: 验证码:
气动力/直接力复合控制拦截弹制导与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代战争中导弹技术的飞速发展,拦截弹作为一种先进的反导武器受到了越来越多的关注。为了提高拦截弹的作战能力,以应对突防能力不断增强的战术弹道导弹,需要增强拦截弹自身的机动能力。气动力/直接力复合控制技术作为增强拦截弹机动能力的有效途径,引起了反导系统研究领域的重视。在这一背景下,本文研究了姿控式气动力/直接力复合控制自旋拦截弹的制导与控制问题。
     首先建立了姿控式气动力/直接力复合控制自旋拦截弹的数学模型。定义了研究姿控式气动力/直接力复合控制自旋拦截弹所需要的坐标系,并且给出了相应的坐标转换关系;在此基础上给出了姿控式气动力/直接力复合控制自旋拦截弹的数学模型,其中包括姿控式气动力/直接力复合控制自旋拦截弹的质心运动方程、绕质心运动方程、空气舵模型和脉冲推力器模型,并使用喷流交感因子描述了脉冲推力器所产生的直接力的喷流交感效应,为后续的研究奠定了基础。
     其次研究了姿控式气动力/直接力复合控制自旋拦截弹的制导方法。在视线坐标系中建立了三维空间内拦截弹与目标之间的相对运动模型,为制导规律的设计奠定了基础;设计了滑模制导规律,给出了拦截弹与目标之间相对距离的估算方法,并给出了滑模制导规律中切换项系数的确定方法和切换项的修正方法,克服了滑模制导方法易产生抖动的缺陷。仿真结果验证了该制导方法的有效性。
     然后研究了姿控式气动力/直接力复合控制自旋拦截弹的控制方法。提出了气动力控制与直接力控制的复合策略,仅在末端对气动力控制和直接力控制进行分配,不仅能够充分发挥空气舵的作用,而且能够保证空气舵、副翼和脉冲推力器的控制能量之和最小;在建立拦截弹控制模型的基础上,给出了姿控式气动力/直接力复合控制自旋拦截弹的动态逆控制方法;并且使用增广状态观测器对系统的未建模特性和未知扰动进行了估计,克服了动态逆控制方法依赖于被控对象精确数学模型的缺陷。仿真结果验证了该控制方法的有效性。
     而后研究了脉冲推力器的点火算法。给出了脉冲推力器在不同点火原理下的点火算法,并分析了不同点火算法的优势和缺陷,在此基础上提出了一种新的脉冲推力器点火算法,考虑了弹体自旋运动对直接力分量的影响,进而补偿了对点火指令的跟踪偏差;并对常规遗传算法的遗传操作进行了适当改进,基于改进后的遗传算法对脉冲推力器的点火数量进行了离线优化,根据优化结果进行在线查找,保证了脉冲推力器的直接力控制精度,并在此基础上给出了脉冲推力器点火算法的操作过程。仿真结果验证了该点火算法的有效性。
     最后研究了姿控式气动力/直接力复合控制自旋拦截弹的制导控制仿真平台。在分析仿真平台需求的基础上,设计了仿真平台的结构,并建立了姿控式气动力/直接力复合控制自旋拦截弹的制导控制仿真平台,针对姿控式气动力/直接力复合控制自旋拦截弹进行了制导控制仿真试验,仿真结果验证了姿控式气动力/直接力复合控制自旋拦截弹的制导方法、控制方法和脉冲推力器点火算法的可行性和有效性。
     本文的研究工作为研究姿控式气动力/直接力复合控制自旋拦截弹的制导与控制问题提供了方案,并且为相关问题的进一步研究奠定了基础。
With the rapid development of missile technology, the interceptor missile as a kind of advanced antimissile weapons got more and more attention during the modern warfare. It was necessary for interceptor missile to enhance maneuverability, which to copewith the threat from tactical ballistic missile. It was a most effective solution to augment the maneuver of endo-atmosphre interceptor missile in antimissile system by using aerodynamics and lateral thrust blended and that is getting more regards. In this paper, the guidance and control problems of interceptor missile with aerodynamics and lateral thrust blended was researched.
     Firstly, the mathematical models of interceptor missile with aerodynamics and lateral thrust blended were constituted. It was definited that requisite reference frame and transform relation of reference frame, on which movement equations were presented based for interceptor missile with aerodynamics and lateral thrust blended. These equations established the groundwork for the successive research, which included the model of aerodynamical rudders, the model of pulse thrusters, the jet interaction effect of pulse thruster using jet interference factor.
     Secondly, the guidance method was presented for the interceptor missile with aerodynamics and lateral thrust blended. The interceptor missile-target relative geometry relation in three-dimensional space was constituted. A sliding mode guidance law was designed including the method to compute relative distance between interceptor missile with aerodynamics and lateral thrust blended and target and the method to count the coefficient of switching function and the method to amend of switching function in order to overcome the chattering of sliding mode guidance method. The simulation results proved the validity of this guidance method.
     Thirdly, the control method was presented for the interceptor missile with aerodynamics and lateral thrust blended. The blended control strategy just only distributed aerodynamics and lateral thrust with the terminal of guidance, not only made use of the fuction of aerodynamical rudders but also ensuured optimal of aerodynamical rudders and flap and pulse thrusts. Basing on the control model of interceptor missile with aerodynamics and lateral thrust blended, the dynamics inverse control method of interceptor missile with aerodynamics and lateral thrust blended was presented, anding an extended state observer to estimate unknown disturbance, which overcome the dynamics inverse method’s defect on precise meth model. The simulation results proved the validity of this control method.
     Fourthly, the fire algorithm of pulse thrusters was presented for spinning interceptor missile with aerodynamics and lateral thrust blended. According to different fire principles, the new fire algorithms of pulse thrusters were presented, and which analyzed the advantage and defects of this fire algorithms.
     Considering the effect of spinning motion of interceptor missile with aerodynamics and lateral thrust blended to lateral thrust, the track error of fire command was compensated and the genetic operation of simple genetic algorithm was improved. Optimizetion of fine quantity of pulse thrusters used the improved genetic algorithm. And then searching online depended on optimize results ensure precise of lateral thrust of pulse thruster. For these bases, the opration progresses of fire algorithm of pulse thrusters were presented. The simulation results proved the validity of this fire algorithm.
     Finally, the guidance and control simulation platform was designed for the interceptor missile with aerodynamics and lateral thrust blended. Analyzed the requirement of guidance and control simulation platform and designed the framework of the guidance and control simulation platform and constituted the guidance and control simulation platform of interceptor missile with aerodynamics and lateral thrust blended. The guidance and control simulation test was realized through the platform for the interceptor missile with aerodynamics and lateral thrust blended. The simulation results demonstrate the feasibility and validity of guidance and control methods of interceptor missile with aerodynamics and lateral thrust blended.
     The research work provided an effective solution for guidance and control problems of interceptor missile with aerodynamics and lateral thrust blended, which estimated the academic base of further research.
引文
1程凤舟.拦截战术弹道导弹末段制导和复合控制研究.西北工业大学博士学位论文, 2002.
    2 R. A. Hess. A Model-Based Analysis of Handing Qualities and Adverse Aircraft-Pilot Coupling in High Angle of Attack Flight. IEEE International Conference on Systems, Man and Cybernetics, 1995, 3: 2663-2669.
    3 M. Xin, S. N. Balakrishnan. Missile Autopilot Design Using a New Suboptimal Nonlinear Control Method. AIAA-2003-0577.
    4沙建科.滚转导弹喷流直接力与气动力复合控制研究.西北工业大学硕士学位论文, 2004.
    5 M. Sharma, N. Richards. Adaptive, Integrated Guidance and Control for Missile Interceptors. AIAA-2004-4880.
    6郑逸峰.拦截导弹直接力控制、制导及其动画仿真.南京航空航天大学硕士学位论文, 2006.
    7张斌.末端直接侧向力/气动力复合控制.西北工业大学硕士学位论文, 2004.
    8 A. K. Killen, D. Tarrant. Performance Needs for Advanced Kinetic Energy Missiles Inertial Measurement Units. IEEE Reqional Conference on Aerospace Control Systems, 1993, 772-776.
    9 P. A. Servidia, P. Sanchez, S. Ricardo. Thruster Design for Position/Attitude Control of Spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1172-1180.
    10董朝阳,石小荣,张明廉.敏捷性导弹的建模与模糊变结构控制.北京航空航天大学学报, 2002, 28(1): 21-24.
    11 J. Alpert. Normalized Analysis of Interceptor Missiles Using the Four-State Optimal Guidance System. Journal of Guidance, Control, and Dynamics, 2003, 26(6): 838-845.
    12周锐.基于模糊逻辑的导弹复合控制系统优化设计.控制与决策, 2006, 21(7): 825-828.
    13 T. L. Vincent, R. G. Cottrell, R. W. Morgan. Minimizing Maneuver Advantage Requirements for a Hit-to-Kill Interceptor. AIAA-2001-4276.
    14沈明辉,陈磊,吴瑞林,等.大气层内动能拦截器的脱靶量分析.宇航学报, 2007, 28(1): 49-52.
    15贾晓洪,凡永华,杨军.气动力/直接力复合控制导弹自动驾驶仪的鲁棒稳定性分析.弹箭与制导学报, 2005, 25(4): 1-2.
    16 S. D. Brierly, R. Longchamp. Application of Sliding Mode Control to Air-Air Interception Problem. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(2): 306-325.
    17刘忠,梁晓庚,曹秉刚.基于动态逆和能量原则的导弹直接力/气动力复合控制.西安交通大学学报, 2006, 40(7): 798-802.
    18刘代军.自动驾驶仪结构对静不稳定弹体的适应性分析.战术导弹技术, 2001, 3: 47-53.
    19 J. Shinar, Y. Osman, V. Turetsky. On the Need Integrated Estimation/Guidance Design for Hit-to-Kill Accuracy. American Control Conference, 2003, 1: 402-407.
    20沈明辉,陈磊,吴瑞林,等.大气层内动能拦截弹的变增益鲁棒姿控系统设计研究.宇航学报, 2007, 28(3): 562-565.
    21郝波.直接侧向力技术的引用研究.西北工业大学硕士研究生学位论文, 2004.
    22 S. A. Hoffman, W. D. Blair. Guidance, Tracking and Radar Resource Management for Self Defence. IEEE Conference on Decision and Control, 1995, 3: 2772-2777.
    23 W. K. Schroeder, K. Liu. An Appropriate Application of Fuzzy Logic: a Missile Autopilot for Dual Control Implementation. IEEE International Symposium on Intelligent Control-Proceedings, 1994, 93-98.
    24吴振辉,董朝阳.直接力/气动力复合控制导弹自适应模糊滑模控制.北京航空航天大学学报, 2007, 33(9): 1051-1055.
    25 Y. Z. Elhalwagy, M. Tarbouchi. Application of Fuzzy Sliding Mode Control to a Command Interceptor. IEEE 2002 28th Annual Conference of the Industrial Electronics Society, 2002: 1836-1841.
    26李玉林,万自明,黄荣度,等.大气层内复合控制拦截弹切换时间的探讨.现代防御技术, 2002, 30(5).
    27 A. Thukral, M Innocenti. A Sliding Mode Missile Pitch Autopilot Synthesis for High Angle of Attack Maneuvering. IEEE Trancations on Control SystemsTechnology, 1998, 6: 359-371.
    28 F. S. Alvi, C. Shih, A. Krothapalli. Active Control of the Feedback Loop in High-Speed Jets. AIAA-2001-0373.
    29 R. D. Weil, K. A. Wise. Blended Aero and Reaction Jet Missile Autopilot Design Using VSS Techniques. IEEE Conference on Decision and Control, 1991, 3: 2828-2829.
    30 H. J. Schafer, E. Augenstein, H. Esch. Exprimental Investigation of Transverse Jet Interaction on a Missile Body Using Laser Velocimetry and Flow Visualization. 19th International Congress on Instrumentation in Aerospace Simulation Facilities, 2001, 295-301.
    31 P. Yuan, S. Hsu. Solutions of Generalized Proportional Navigation with Maneuvering and Nonmaneuvering Targets. IEEE Transactions on Aerospace and Electronic Systems. 1995, 31: 469-474.
    32吴文海,曲建岭,王存仁.飞行器比例导引综述.飞行力学, 2004, 22(2): 1-5.
    33方群,陈武群,袁建平.一种抗干扰修正比例导引律的研究.宇航学报, 2000, 2(3).
    34 G. Hexner, H. Weiss. A Stochastic Approach to Optimal Guidance with Uncertain Time-to-Go. IEEE Conference on Decision and Control, 2006, 1972-1977.
    35 I. Rusnak. Optimal Guidance Laws with Uncertain Time-of-Flight. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36: 721-725.
    36 C. Ryoo, H. Cho, M. Tahk. Time-to-Go Weighted Optimal Guidance with Impact Angle Constraints. IEEE Transactions on Control Systems Technology, 2006, 14: 483-492.
    37 C. Tournes, R. Frederick, T. Carroll, et al. Minature Interceptor Guidance and Control Using Second Order Sliding Mode and Adapative Control. AIAA-2005-6158.
    38 W. Sun, Z. Zheng. 3D Variable Structure Guidance Law Based on Adaptive Model-Following Control with Impact Angular Contraints. Chinese Control Conference, 2007, 61-66.
    39 Y. Zhang, Y. Hu, W. Gu. Lyapunov Stability Based on Three-Dimensinal Guidance for Missiles against Maneuvering Targets. World Congress on Intelligent Control and Automation, 2002, 4: 2836-2840.
    40 F. Yeh, K. Cheng, L. Fu. Variable Structure-Based Nonlinear Missile Guidance/Autopilot Degisn with Highly Maneuverable Actuators. IEEE Transactions on Control Systems Technology, 2004, 12: 944-949.
    41 D. Zhou, C. Mu, Q. Ling, et al. Optimal Sliding-Mode Guidance of a Homing Missile. Proceedings of the IEEE Conference on Decision and Control, 1999, 5: 5131-5136.
    42 M. Bahrami, B. Ebrahimi, J. Roshanian. Optimal Sliding-Mode Guidance Law for Fixed-Interval Propulsive Maneuvers. IEEE Inteenational Conference on Control Applications, 2006, 1014-1018.
    43 S. Deskovski, Z. Gacovski, G. Dimirovsk. Homing Guidance Laws Using Applied Fuzzy Systems. IEEE International Conference on Recent Advances in Space Technologies, 2003: 680-685.
    44 G. M. Dimirovski, S. M. Deskovski, Z. M. Gacovski. Classical and Fuzzy-System Guidance Laws in Homing Missiles Systems. IEEE Aerospace Conference Proceedings, 2004, 5: 3032-3047.
    45 P. K. Menon and V. R. Iragavarapu. Blended Homing Guidance Law Using Fuzzy Logic. 1998 AIAA Guidance, Navigation, and Control Conference, Portland, Oregon, August, 1998: 251-259.
    46 C. Lin, H. Hung, Y. Chen. Development of an Integrated Fuzzy-Logic-Based Missile Guidance Law against High Speed Target. IEEE Transactions on Fuzzy Systems. 2004, 12(2): 157-169.
    47赵振昊,沈毅,刘鹤.基于变结构控制的前向拦截制导方法.宇航学报, 2007, 28(4): 835-839.
    48郝万亮,赵剡.基于角度和红外图像信息的弹目相对距离算法.航空兵器, 2007, 1: 47-50.
    49张晨光,陈大融.拦截机动目标的一种鲁棒末制导律设计.清华大学学报(自然科学版), 2007, 47(8): 1300-1303.
    50佘文学,周凤岐.三维非线性变结构寻的制导律.宇航学报, 2004, 25(6): 681-685.
    51郭建国,周军,周凤岐.直接力/气动力复合控制技术分析.航空兵器, 2004, 5: 12-15.
    52 M. Sarcione, J. Mulcahey, D. Schmidt, et al. The Design, Development and Testing of the THAAD(Theater High Altitude Area Defense) Solid State PhasedArray (Formerly Ground Based Radar). IEEE International Symposium on Phased Array Systems and Technology, 1996, 260-265.
    53 W. R. Chadwick. Augmentation of High-Altitude Maneuver Performance of a Tail-Controlled Missile Using Lateral Thrust. 1995, ADA328973.
    54 R. Hirokawa, K. Sato, S. Manabe. Autopilot design for a missile with reaction-jet using coefficient diagram method. AIAA-2001-4162.
    55 P. K. Menon, E. J. Ohlmeyer. Nonlinear Integrated Guidance-Control Laws for Homing Missiles. AIAA-2001-4160.
    56周荻,邵春涛.大气层内拦截弹直接侧向力/气动力混合控制系统设计.宇航学报, 2007, 28(5): 1205-1209.
    57王宇航,马克茂.直接力与气动力复合控制系统姿态稳定问题研究.宇航学报, 2007, 28(4): 840-844.
    58周锐,王军.导弹气动力/直接力自适应控制分配及优化设计.航空学报, 2007, 28(1): 187-190.
    59程凤舟,万自明,陈士橹,等.防空导弹直接力与气动力复合控制系统设计.飞行力学, 2003, 21(2): 49-52.
    60邹晖,陈万春,殷兴良.具有侧向脉冲推力的旋转导弹建模与控制研究.系统工程与电子技术. 2005, 27(4): 687-691.
    61 C. Orrala, H. Rahai. Expermental Investigations of Two Side-by-Side Jets in a Cross Flow. AIAA-2004-1109.
    62 M. Kurita, T. Okada, Y. Nakamura. The Effects of Attack Angle on Side Jet Aerodynamic Interaction in a Blunted Body at Hypersonic Flow. AIAA-2001-1825.
    63 S. F. Gimelshein, A. A. Alexeenko D. A. Levin. Modelling of Chemically Reacting Flows from a Side Jet at High Altitudes. AIAA-2002-0212.
    64 Z. Manmud, R. Bowersox. Experimental Investigation of Low Blow Ratio Blended Missile Body Supersonic Jet Interaction Flowfields. AIAA-2001-0886.
    65 R. Srinivasan, R. Bowersox. Assessment of RANS and DES Turbulence Models of Supersonic Jet Interaction Flows. AIAA-2005-0499.
    66 G. Ashcroft, J. Schulz. Numerical Modelling of Wake-Jet Interaction with Application to Active Noise Control in Turbomachinery. AIAA-2004-2853.
    67 N. Tetsuya, K. Munetsugu, M. Igor, et al. Numerical Simulation on Aerodynamic Interaction between a Side Jet and Flow around a Blunt Body in HypersonicFlow. AIAA-2003-1135.
    68 Z. Mahmud, R. Bowersox. Supersonic Missile body jet Interaction Flowfields at Low Momentum-Parameter-Ratio. AIAA-2003-1244.
    69赵桂林,彭辉,胡亮,等.超音速流动中侧向喷流交感特性的实验研究.力学学报, 2004, 36(5): 577-582.
    70杨宗刚.导弹直接侧向力控制外流场研究.推进技术, 2004, 21(2): 5-7.
    71徐敏,陈刚,陈志敏,等.侧向脉冲喷流瞬态干扰流场探讨.推进技术, 2005, 26(2): 120-124.
    72徐敏,陈士橹.侧向多喷流流场数值研究.推进技术, 2003, 24(2): 144-147.
    73王婷,周军. PAC-3拦截弹建模与仿真研究.系统仿真学报, 2007, 19(20): 4642-4645.
    74邹晖,陈万春,殷兴良.具有侧向脉冲推力的旋转导弹建模与控制研究.系统工程与电子技术. 2005, 27(4): 687-691.
    75 S. F. Gimelshein, D. A. Levin, G. F. Karabadzhak. Modeling of Jet Interceptions in a Space Environment Using the Direct Simulation Monte Carlo Method. AIAA-2003-1032.
    76 J. Ratzlaff, P. Orkwis. A Numerical Study of 3D Turbulent Cooling Jet Interaction over a Range of Blowing Ratios. AIAA-2004-2351.
    77 R. Srinivasan, R. Bowersox. Characterization of Flow Structures and Turbulence in Hypersonic Jet Interaction Flowfields. AIAA-2005-0895.
    78 P. Gnemmi, H. Schroeder. Experimental and Numerical Investigations of a Transverse Jet Interaction on a Missile Body. AIAA-2005-0052.
    79 S. Josef. On the feasibility of hit-to-kill in the interception of maneuvering targets. American Control Conference, 2001, 5: 3358-3363.
    80张毅,何念念,马清华.防空导弹防御系统中的TBM突防能力研究.飞行力学, 2001, 19(3): 49-55.
    81强胜,易东云,涂先勤.战术弹道导弹拦截的仿真研究.弹道学报, 2007, 19(3): 34-37.
    82张友安,胡石安,苏身榜.一种基于变结构控制的鲁棒制导算法设计.系统工程与电子技术, 2001, 23(4): 61-63.
    83 I. Shkolnikov, Y. Shtesse, D. Lianos. Integrated Guidance-Control System of a Homing Interceptor-Sliding Mode Approach. AIAA-2001-4218.
    84周荻.寻的导弹新型制导规律.国防工业出版社, 2002, 32-36.
    85吴文海,罗德林,沈春林,等.基于滑模控制的非线性追踪制导律仿真设计.系统工程与电子技术, 2004, 26(10): 1444-1448.
    86 T. Shima, M. Idan, O. Golan. Sliding Mode Control for Integrated Missile Autopilot-Guidance. AIAA-2004-4884.
    87王青,毕靖.一种对噪声干扰鲁棒的模糊末制导律设计与仿真.系统仿真学报, 2004, 16(1): 137-139.
    88陈宇,董朝阳,王青,等.直接侧向力控制导弹的自适应模糊变结构末制导律设计.宇航学报, 2006, 27(5): 984-989.
    89林德福,祁载康.比例导引末制导时间的等效时间常数估算法.系统仿真学报, 2006, 18(11): 3026-3029.
    90崔利明.旋转弹头变质心机动控制、制导系统的研究和仿真.西北工业大学博士学位论文, 2000.
    91邹晖,陈万春,王鹏,等.敏捷导弹气动力侧向推力复合控制特性分析研究.北京航空航天大学学报. 2004, 30(3): 192-196.
    92 H. Ebrahimi. Numerical Inverstigation of Jet Interaction in a Supersonic Freestream. AIAA-2005-4866.
    93 J. Fulker, J. Alderman. Three-Dimensional Compliant Flows for Lateral Control Applications. AIAA-2005-0240.
    94 S. F. Gimelshein, A. A. Alexeenko, D. A. Levin. Modeling of the Interaction of a Side Jet with a Rarefied Atmosphere. AIAA-2001-0503.
    95沈明辉,周伯昭,陈磊,等.大气层内滚转角速度稳定动能拦截器姿态控制系统设计.国防科技大学学报, 2006, 28(4): 133-136.
    96沈明辉,陈磊,吴瑞林,等.大气层内动能拦截弹脉冲矢量发动机点火控制算法研究.宇航学报, 2007, 28(2): 278-281.
    97王进,陈万春,殷兴良.大气层内拦截弹脉冲姿控发动机快响应控制.北京航空航天大学学报, 2007, 33(4): 397-400.
    98王宇航,姚郁,马克茂.直接力/气动力拦截弹复合策略与复合控制系统设计.航天控制, 2006, 24(5): 18-22.
    99 M. Smith, S. Sean. Swei, M. Tischler. A Study of the Control of Micro Air Vehicles Using the Linear Dynamic Inverse Approach. AIAA-2004-6218.
    100 J. Steck, K. Rokhsaz, U. Pesonen, et al. Effect of Turbulence on an Adaptive Dynamic Inverse Flight Controller. AIAA-2005-7038.
    101 A. Watts. Control of a High Performance Maneuvering Reentry Vehicle UsingDynamic Inversion. AIAA-2005-6375.
    102李明,李会莹,杨汉生,等.基于一种新动态神经网络的非线性自适应逆控制.系统仿真学报, 2007, 19(17): 4021-4024.
    103朱家强,朱纪洪,郭锁凤,等.基于神经网络的鲁棒自适应逆飞行控制.控制理论与应用, 2005, 22(2): 182-188.
    104陈旿,贾晓洪,李友年,等.基于模糊神经网络的导弹直接力/气动力复合控制系统设计. 2006, 24(4): 423-426.
    105张松波,宋申民,陈兴林.神经网络动态逆补偿方法及应用.哈尔滨工业大学学报, 2004, 36(8): 1125-1127.
    106孙国强,胡寿松.基于神经网络动态逆的歼击机自适应跟踪控制.南京航空航天大学学报, 2004, 36(4): 516-519.
    107陈谋,邹庆元,姜长生,等.基于神经网络干扰观测器的动态逆飞行控制.控制与决策2008, 23(3): 283-287.
    108韩京清.一类不确定对象的增广状态观测器.控制与决策, 1995, 10(1): 85-88.
    109黄一,韩京清.非线性连续二阶增广状态观测器的分析与设计.科学通报, 2000, 45(13): 1373-1379.
    110黄万伟,张瑞,张惠平.大气层内动能拦截弹直接力/气动力复合控制.航天控制, 2007, 25(1): 4-7.
    111 S. Zaidi, T. Smith, R. Murray, et al. Magnetically Guided Laser Ablation for High Spacific Impulse Thrusters. AIAA-2005-0365.
    112徐劲祥,宋锦武,夏群力.弹道修正弹末端脉冲推力控制研究.弹道学报, 2005, 17(2): 19-23.
    113 Y. Wang, Y. Yao, K. Ma. Lateral Thrust and Aerodynamic Blended Control System Design Based on Variable Structure Model Following. The Sixth World Congress on Intelligent Control and Automation, 2006, 8183-8186.
    114杨锐,徐敏,陈士橹.动能拦截弹姿控发动机组合点火算法研究.西北工业大学学报, 2006, 24(1): 15-18.
    115陈明杰,刘胜.改进自适应遗传算法在函数优化中的应用研究.哈尔滨工程大学学报, 2007, 28(8): 875-879.
    116 R. A. Krohling, J. P. Rey. Design of Optimal Disturbance Rejection PID Controllers Using Genetic Algorithms. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 78-82.
    117郭庆,杨明,王松艳.三轴稳定质量矩拦截器的末制导律设计.系统仿真学报, 2007, 19(7): 1531-1534.
    118 H. F. Frank, K. S. Peter, H. K. Lam, et al. Tuning of the Structure and Parameters of a Neural Network Using an Improved Genetic Algorithm. IEEE Transactions on Neural Networks, 2003, 14(1): 79-88.
    119秦莉,杨明,郭庆.遗传算法在质量矩导弹中姿态控制中的应用.北京航空航天大学学报, 2007, 33(7): 769-772.
    120任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究.系统仿真学报, 2006, 18(1): 41-43.
    121吴宝林,曹喜滨,任子武.一种长期稳定的卫星编队队形优化设计方法.航空学报, 2007, 28(1): 167-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700