用户名: 密码: 验证码:
渤海海效应暴雪的多尺度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渤海海效应降雪是指冷空气流经渤海暖海面后产生的降雪,包括海面上的和陆上的,以山东半岛最为显著。因其产生在对流层低层西北冷平流条件下,所以地方预报员通常称之为冷流降雪,相应的暴雪称为冷流暴雪。渤海海效应降雪的产生条件和发展机制与其它降雪有明显区别,而且山东半岛的海效应暴雪水平尺度接近于中-γ尺度,通常局限于1~2个县级观测站范围内,这种特征给降雪精细化预报带来巨大挑战,当前准确预报窄降雪带的开始、落区、强度、移动和持续时间是很困难的。为深入认识渤海海效应暴雪的发生发展机制,本文选取了2005年12月山东半岛罕见持续性海效应暴雪(共有7个暴雪日)和2008年12月4~6日(1个暴雪日)的异常强海效应暴雪天气过程,利用测站降雪量、常规天气图、自动气象站、多普勒天气雷达资料、MODIS可见光云图、NCEP/NCAR逐日6h再分析资料等综合资料,通过天气学分析、诊断分析、数值模拟、雷达风场反演等手段,进行了较为系统的研究,着重研究了渤海海效应暴雪的多尺度作用,取得了一些对预报业务有意义的结果:
     1.渤海海效应暴雪的环流背景特点:8个暴雪日的环流形势分析表明:(1)渤海海效应暴雪发生在对流层低层为西北冷平流形势下。500hPa在贝加尔湖以东的中纬度地区为低压区,一般存在低槽;850hPa及其以下层次渤海及山东半岛上空为低槽后西北气流,等温线呈东北-西南向,等高线与等温线近乎垂直,存在强冷平流。在这种形势有利的高空形势下,强冷空气入侵渤海和山东半岛区域。地面气压场上,低压中心位于日本海,冷锋已经越过山东半岛,渤海和山东半岛处在庞大的冷高压控制之下。高空低槽处在地面冷锋之后,槽后倾明显。(2)渤海海效应暴雪的持续性取决于环流形势是否有利于强冷空气在短时间内频繁出现。2005年12月的持续性暴雪出现了阻塞形势,使得贝加尔湖以东的中纬度地区长时间维持低压区,造成了多次强冷空气从不同路径影响渤海和山东半岛,从而在数日内产生持续性海效应暴雪。而2008年12月的暴雪过程仅有一次冷空气影响造成1个暴雪日。
     2.海效应暴雪的热力特征:(1)本文研究表明12月暴雪发生时山东半岛成山头站850hPa的温度均低于-12℃。(2)渤海海效应暴雪发生在边界层内,浅层对流是其重要热力特征,当强冷空气流经渤海时,暖海面通过湍流交换作用向冷空气底层输送热量和水汽,使得低层增温增湿,产生对流层中上层干冷低层暖湿的对流性不稳定层结,其不稳定能量主要集中于850hPa以下。(3)冷空气的强弱影响渤海及山东半岛地区的垂直热力结构,导致降雪强度在不同时段存在显著差异。海气温差与热通量成正比,初期冷空气弱,海面上空的暖湿层浅薄,不稳定能量弱;中后期冷空气强盛,对流层中低层的垂直温差大,暖湿层较为深厚,不稳定能量增强,导致降雪强度和降雪量大。(4)强降雪发生在对流层低层相当位温脊线附近,以850~950hPa之间的相当位温表现最为显著。
     3.海效应暴雪的动力特征:(1)物理量场诊断分析表明,海效应暴雪产生时,对流层低层辐合上升、中高层辐散,上升运动一般局限于850hPa以下,最高不超过700hPa,这与大范围暴雪和夏季暴雨深厚的上升运动有明显区别。(2)由于陆地的摩擦和低山丘陵的抬升作用,山东半岛北部沿海存在风向风速的辐合,上升运动增强,从而导致降雪云登陆后增强,暴雪发生在北部沿海地区。(3)海效应暴雪发生过程中,还存在天气尺度的动力强迫上升运动与低层地形产生的辐合上升运动相叠加,表现为500hPa低槽过境时,槽前正涡度平流增强使得低空产生质量补偿辐合上升,从而使得降雪增强,最强降雪就出现在低槽过境前后。(4)海效应降雪的水汽来源于渤海,低层西北气流将渤海的水汽输送到山东半岛,强水汽辐合位于超低层(925hPa高度以下),这与其它降雪是由高空西南气流输送来自于孟加拉湾、印度洋或由东南气流输送来自黄海和东海的水汽有显著区别。
     4.海效应暴雪的中尺度特征:采用烟台多普勒天气雷达反射率因子和径向速度定性分析、EVAP雷达风场反演和RAMS数值模拟获得的资料,揭示了海效应暴雪的中尺度特征。(1)海效应暴雪发生时,对流层低层水平风场存在东北风和西北风之间的切变线,切变线的位置决定了暴雪的落区。(2)雷达径向速度上长生命史的逆风区存在时,有中尺度垂直环流存在,同时水平风场上还有东北风与西北风、西北风和西南风之间的中尺度切变线。(3)暴雪落区分布形态有显著差异,在雷达径向速度上显示出四种暴雪空间分布型:L型,单线型,双线型和宽广型,分别对应于不同的水平流场。
     5.海效应暴雪的微物理过程:中尺度数值模拟结果表明,渤海海效应暴雪存在微物理作用。降雪的微物理过程表现在两方面:西风槽前产生的中云和冷空气流经渤海暖海面时形成的海效应低云在垂直叠置时发生“播撒-反馈”作用,前者从上层播撒冰晶和雪晶到下层的低云中,使得海效应降雪增强,“播撒-反馈”发生在500hPa过境之前;另一个有利因素是环境温度,由于冷空气强,云中温度低于-10℃,有利于树枝状冰晶的增长。
     6.地形对渤海海效应降雪的影响。利用实测降雪量、自动气象站风场、数值模拟结果初步分析了山东半岛东西向的低山丘陵地形对降雪的影响,发现近地面西北风从渤海吹向山东半岛北部沿海时,风向转为西西北风,风速减小,从而造成风向风速在低山丘陵北部的辐合上升运动;而山南则相反。这正是造成降雪量的分布以低山丘陵为分水岭(山北沿海降雪量大,山南显著减少)的重要原因。
     7.海效应暴雪的多尺度作用概念模型:以上分析表明,在有利的大尺度和天气尺度环流背景下,强冷空气从西北方向流经渤海时,暖海面向上输送热量和水汽,使得对流层低层增温增湿,从而产生上干冷下暖湿的不稳定大气层结。在地形影响下,对流层低层产生中尺度切变线,触发不稳定能量释放,在渤海中东部和山东半岛产生海效应降雪。当高空低槽发展加深过境时,一方面,低槽东移过程中引导冷空气向南爆发,气温进一步下降,造成海面上空温湿场垂直差异更大,形成更强的不稳定大气层结;另一方面,槽前正涡度平流增强使得低空产生质量补偿辐合上升,为降雪提供了有利的动力条件;同时,槽前形成的中云与海效应低云产生“播撒-反馈”的微物理机制,使得海效应低云中冰晶和雪晶增多,这三种作用相叠加,可产生强海效应降雪,最强降雪时段就出现在高空槽过境前后。可见,渤海海效应暴雪实际上存在大尺度、天气尺度、中尺度、云尺度微物理过程和海洋效应的共同作用,是动力、热力和微物理过程相结合的产物。
     8.海效应暴雪的预报着眼点:基于以上研究成果,凝炼出渤海海效应暴雪的预报着眼点:
     (1)从气候角度来看,渤海海效应暴雪集中出现于11月中下旬和12月中上旬,尤以12月份居多,因此在此期间,只要有强冷空气影响,就应考虑山东半岛有出现海效应暴雪的可能性。
     (2)对于一次冷空气过程,首先看环流形势是否有利强冷空气入侵且产生强海效应降雪。渤海海效应暴雪产生的典型环流形势特征为:500hPa上我国东北至日本海有低涡存在,各层有冷平流,地面图上强大的冷高压控制我国中东部地区,预示着将有强冷空气入侵渤海。如果850hPa以下层次渤海和山东半岛地区为西北冷平流,地面图上日本海附近有低压中心,冷锋已过山东半岛移至朝鲜半岛和东海,可能产生强海效应降雪。
     (3)冷空气强度:山东半岛东部850hPa的温度低于-12℃是12月份产生渤海海效应暴雪的必要条件。
     (4)对流层低层水平风场:是否存在东北风与西北风之间的切变线,切变线影响降雪强度和落区。可通过多普勒天气雷达的径向速度、自动气象站风场及中尺度模式的风场产品进行分析。
     (5)500hPa低槽:强降雪时段发生在500hPa低槽过境前后。低槽发展越深、后倾越明显,对产生强降雪越有利。可用位涡的演变分析低槽的发展和移动,从而间接分析冷空气加强和天气尺度产生强迫上升运动的影响时间。
     (6)是否出现持续性暴雪:从大尺度背景场分析是否有阻塞形势出现,阻塞高压在建立、维持和崩溃的演变过程中,会有强冷空气频繁影响渤海和山东半岛地区,如果满足条件(2)和(3),则会在短时间内多次出现海效应暴雪。
Ocean-effect snow occurs when cold air flows over a relatively warm water surface of Bohai, generating snow bands over and downwind of the sea and land, which is the most distinct in Shandong peninsula. It is called cold air snow or cold air snowstorm by local forecasters since it occurs under the settings of North-west cold advection in low troposphere.Basic ingredients and development mechanism is remarkable between Ocean-effect snow and other typological snow. Except this, theγ-scale narrow snowstorm band associate with these events, ranging from a few observation station, presents a difficult forecast challenge. The forecast of onset, location, intensity, movement, and persistence of these relatively shallow snow bands is difficult given the limitation of conventional observing system.
     To make an intensive study of Bohai Ocean-effect snowstorm (short for BOES), two BOES events including the unusual long snowstorms in December, 2005 and exceptional heavy snowfall in December,2008 are investigated with the data of synoptic analysis, diagnostic analysis, numerical simulation, radar wind retrieval. Multiscale analysis is laid heavy stress.The results are as following:
     1. Synoptic settings character of BOES
     It shows that BOES occurs under the settings of North-west cold advection in low troposphere from eight snowstorm examples. In 500hPa chart, trough of low pressure is located east of Lake Baikal in middle latitude area. North-west wind blows under the layer of 850hPa in Bohai and Shandong peninsula. The isotherm is towards north-east and south-west, which is hardly vertical with isoheight, so extremely cold advection exists. In surface pressure field, huge cold high pressure controls Bohai sea and Shandong peninsula, and low pressure lies in Japan sea. Snows come about the cold front. If the cold front is secondary, snowfall can rise as the front is passing. The trough is trim by stern from surface to high layer.
     Snowstorms can last for several days if strong cold air affects Bohai frequently. In December, 2005, weather situation underwent double blocking anticyclone development, so low pressure maintained continuously in east of Lake Baikal in middle latitude area. The situation is favorable for cold air time after time to invade Bohai and more snowstorms. In contrast, once cold air only produce a snowstorm-day such as the example for December, 2008.
     2. Thermal character of BOES
     There are several thermal characters for BOES as following:
     (1)Temperature near Chengshantou station at 850hPa is≤-12℃when BOES occurs.
     (2) BOES occurs in boundary layer. Thin convection is the important feature. cold air is heated and moistened as it passes over the warm Bohai , creating an unstable lapse rate. The vertical extent of the convection is limited by 850hPa.
     (3)Vertical thermal structure in Bohai and Shandong peninsula depends on intensity of cold air, which leads to the difference of snowfall in different phase. At the beginning, weak cold air only produce small unstable lapse rate and light snow. Snowfall can strength with cold air deepens.
     (4)Heavy snow falls near the ridge of equivalent potential temperature in low troposphere, remarkablely from 850hPa to 950hPa.
     3. Dynamic character of BOES
     Firstly, diagnostic analysis shows that it is convergent in low troposphere and divergent in high troposphere. Ascending motion is limited under 850hPa, no more than 700hPa.The feature is obvious different with rainstorm in summer and large range snowstorms. Secondly, as the air travels from the water surface over land, orographic lift and frictional convergence are involved. It can be the dominant factor in creating a snowstorm band near the north shore. Thirdly, the strongest snowfall occurs when the low pressure trough passes Bohai and Shandong peninsula.In this situation, a combination of ocean-effect and synoptic-scale processes contributes to snowstorm development.Fourthly, north-westerly blows vapour from Bohai sea to the land. Large moisture convergence is limited in 925hPa, which is different from other snow that south-westerly in high troposphere transfers vapour from Indian Ocean or the Bay of Bengal.
     4. Mesoscale character of BOES
     By original radial velocity, reflectivity , EVAP retrieved wind fields based on Yantai Doppler weather radar data and simulation data of RAMS model, mesoscale character of BOES is revealed.(1)There is shear between north-east and north-west wind in low troposphere. Position of the shear affects the location of snowstorm. (2)Long term adverse wind region in Doppler radial velocity images is observed during the snowstorm. It means that mesoscale vertical circulation occurs at the same time.(3)There are four spatial types for BOES bands by radar radial velocity, including L snow bands, single snow bands, double snow bands and widespread snow bands.Types of snow bands tend to develop parallel to the prevailing wind flow in the low troposphere.
     5. Microphysics of BOES
     The results of simulation data show precipitation microphysics in BOES. There are two kinds of microphysics at the course of BOES. One is called“seed-feed”mechanism.Middle-level clouds can produce ice crystals that“seed”the lower ocean effect clouds below. In this process, ice crystals generate in the higher clouds fall into the lower ocean-effect clouds, allowing further snowflake growth by deposition and aggregation. This can enhance the precipitation production and ocean-effect snowfall. This process occurs before the low pressure trough at 500hPa passes Bohai sea. The other favorable factor is temperature. Temperature within the cloud layer plays an important role in enhancing the precipitation production process and determining ice crystal structure in ocean-effect snow events. Temperature is lower than -10°C in the process, so it is favorable for growth of dendrites.
     6. Terrain lift on BOES
     Terrain plays a major role on BOES. In this paper, initial analysis on the eastwestly hills in Shandong peninsula is conducted with the observational snowfall, automatic observation wind field and data of simulation. It is found that northwest wind converts to west-northwest wind and wind speed decreases when the wind blows from Bohai to north shores in Shandong peninsula. It leads to convergence and aloft motion in the north of the hills, while the opposite situation in the south of the hills. That is the main reason why snowfall is much heavier in the north of hills.
     7. Multiscale conceptual model of BOES
     Multiscale conceptual model of BOES can be summarized by the results in this paper. The favorable synoptic setting is critically important for extremely cold air. When cold air flows Bohai sea from northwest land, warm sea surface transfer heat and moisture to the upper cold air so that unstable lapse rate forms in low troposphere. Orographic Lift and frictional Convergence produces mesoscale shear, which triggers to release the unstable energy. Thus Bohai ocean-effect snow occurs. The heaviest snowfall produces while the low pressure trough passes Bohai. In the process, there are three actions combine. Firstly, low pressure trough leads strong cold air to burst southwards to strengthen the BOES. Secondly, positive vorticity advection enhances upward motion. Thirdly, microphysics mechanism“seed-feed”allows further snowflake growth. In this situation, the combination of ocean-effect , microphysics and synoptic-scale processes contributes to snow cloud development. As a result, large scale, mesoscale, cloud scale and ocean-effect combine action on BOES.
     8. Forecast indexes of BOES
     Based on the results, several indexes of BOES for the forecast operation are suggested.
     (1) BOES occurs mainly in the middle and late November, early and middle December, especially in December. In the climate background, forecasters are suggested to consider the probability of BOES when forecasting strong cold air can pass Bohai.
     (2)It is the primary problem that if synoptic setting is favorable to strong cold air to burst southwards. Here is the representative synoptic setting of BOES. Vortex is found from North-east China to Japan sea in 500hPa.And there is cold advection in troposphere. At surface synoptic chart, strong cold anticyclone controls the mid and east China. These clues mean strong cold air can come to Bohai. If north-west cold advection is forecasted in Bohai and Shandong peninsula under the layer of 850hPa and cold front has passed Shandong peninsula to the east sea, heavy ocean-effect snow may produce.
     (3)Temperature is lower than -12℃in the east of Shandong peninsula at 850 is the necessary factor for BOES in December.
     (4)The next attention is horizontal wind in low troposphere. Shear of north-east and north-west wind affects the location of BOES. In the forecast operation, forecasters can analyze Doppler radar radial velocity, automatic station wind and products of mesoscale models.
     (5)Phase of heavy snowfall can be estimated by the low pressure trough at 500hPa.Snowfall increases when the trough passes Bohai and Shandong peninsula. Deep and resupinate trough is more favorable to heavy BOES. Development of potential vorticity is a good index.
     (6)Persistent BOES depends on the block anticyclone. In the course of formation, maintenance, development and reduction of block anticyclone, strong cold air can invade Bohai and Shandong peninsula frequently to produce BOES many times.
引文
1.曹钢锋,张善君,朱官忠,等.山东天气分析与预报.北京:气象出版社.1988,292-298
    2.崔宜少,张丰启,李建华,等.2005年山东半岛连续三次海效应暴雪过程的分析.气象科学,2008,28(4):395-401
    3.白洁,陶祖钰.多普勒雷达风场反演VAP方法的资料预处理.应用气象学报,2000,11(1):21-26
    4.陈列,寿绍文,林开平,等.应用单多普勒雷达资料反演风场作暴雨中尺度分析.南京气象学院学报,2003,26(3):358-363
    5.陈敏,陶祖钰,郑永光,等.华南前汛期锋面垂直环流及其与中尺度对流系统的相互作用.气象学报,2007,65(5):785-792
    6.陈敏,郑永光,王洪庆,等.一次强降水过程的中尺度对流系统模拟研究.气象学报, 2005,63(3):313-325
    7.范可,琚建华.位涡诊断在云南夏季强降水预报中的应用.高原气象,2004,23(3):387-393
    8.方德贤,刘国庆,董新宁,等.单多普勒雷达二维风场反演-Extended VPP方法.气象学报, 2007,65(2):231-240
    9.洪延超,周非非.“催化-供给”云降水形成机理的数值模拟研究.大气科学,2005,29(6):885-896
    10.胡明宝,高太长,汤达章.多普勒天气雷达资料分析与应用.北京:解放军出版社,2000,60
    11.胡中明,周伟灿.我国东北地区暴雪形成机理的个例研究.南京气象学院学报,2005,28(5):679-684
    12.李刚,党英娜,袁海豹.烟台冷流强降雪天气预报指标统计分析.山东气象,2007,27(3):24-26
    13.李宏业,徐旭然.冷流低云降雪成因的分析.气象,1990,21(12):21-24
    14.李鹏远,傅刚,郭敬天,等.2005年12月上旬山东半岛暴雪的观测与数值模拟研究.中国海洋大学学报(自然科学版),2009,39(2):173-180
    15.李志南,李廷福.北京地区一次强对流大暴雨的环境条件及动力触发机制分析.应用气象学报,2000,11(3):304-311
    16.梁旭东,王斌.多普勒雷达积分VAP反演技术.气象学报,2007,65(2):261-271
    17.林曲凤.山东半岛中尺度强降雪过程的动力学特征分析.中国海洋大学硕士论文,2004
    18.林曲凤,吴增茂,梁玉海,等.山东半岛一次强海效应降雪过程的中尺度特征分析.中国海洋大学学报(自然科学版),2006,36(6):908-914
    19.林曲凤,梁玉海.一次山东半岛强降雪过程的天气学分析.山东气象,2004,24(3):9-11
    20.刘环珠,张绍晴.湿位涡与锋面强降水天气的三维结构.应用气象学报,1996,7(3):275-284
    21.刘宁微.2003年春季江淮一次暴雪过程的模拟研究.南京气象学院学报,2006,24(1):225-231
    22.刘黎平,莫月琴,沙雪松,等.C波段双多基地多普勒雷达资料处理和三维变分风场反演方法研究.大气科学,2005,29(6):986-996
    23.刘淑媛,刘黎平,郑永光,等.单多普勒雷达VAP方法反演水平风场的检验.北京大学学报(自然科学版),2005,41(2):163-171
    24.刘淑媛,王洪庆,陶祖钰.一种简易的多普勒雷达速度模糊纠正技术.应用气象学报, 2004,15(1):111-116
    25.刘淑媛,孙健,王洪庆,等.香港特大暴雨β中尺度线状对流三维结构研究.大气科学,2007,31(2):353-363
    26.刘淑媛,孙健,杨引明.上海2004年7月12日飑线系统中尺度分析研究.气象学报,2007,65(1):84-93
    27.刘淑媛,闫丽凤,孙健.登陆台风的多普勒雷达资料质量控制和水平风场反演.热带气象学报,2008,24(2):105-110
    28.刘舜,邱崇践.双Doppler雷达非同时性资料反演三维风场的改进方案.高原气象,2003,22(4):329-336
    29.陆尔,丁一汇,李月洪.1991年江淮特大暴雨的位涡分析与冷空气活动.应用气象学报,1994,5(3):266-274
    30.马学谦,董万胜,楚荣忠,等.X波段双偏振多普勒天气雷达降雨估算试验.高原气象,2008,27(2):382-391
    31.迈克尔.阿拉贝[英]/著,戴东新/译.雪暴Blizzards.上海:上海科学技术文献出版社. 2006,147-152
    32.梅珏,梁旭东,吕环宇.单Doppler雷达IVAP风场反演试验.北京大学学报(自然科学版),2007,43(1):48-54
    33.乔林,林建.干冷空气侵入在2005年12月山东半岛持续性降雪中的作用.气象,2008,34(7):27-33.
    34.寿绍文,励申申,姚秀萍.中尺度气象学.北京:气象出版社,2003:277-299
    35.孙晶,王鹏云,李想,等.北方两次不同类型降雪过程的微物理模拟研究.气象学报,2007,65(1):29-44
    36.孙兴池,王文毅,闫丽凤,等.2005年山东半岛特大暴风雪分析.中国海洋大学学报(自然科学版).2007, 37(6):879-884
    37.陶祖钰.从单Doppler速度场反演风矢量场的VAP方法.气象学报,1992,50(1):81-90
    38.陶祖钰,黄伟.大暴雨过程中与急流相关气块的三维运动分析.气象学报, 1994,52(3):359-367
    39.陶祖钰.以单多普勒雷达观测资料反演冷锋流场的试验.热带气象学报,1995,11(2):142-149
    40.谢显全.渤海冬季的冷流低云.气象,1980,2
    41.郑丽娜,石少英,侯淑梅.渤海的特殊地形对冬季海效应降雪的贡献.气象,2003,29(1):49-52
    42.周海光,张沛源.多种单多普勒雷达风场反演方法对比试验.气象,2000,26(5):13-16
    43.周海光,张沛源.笛卡儿坐标系的双多普勒天气雷达三维风场反演技术.气象学报,2002,60(5):585-593
    44.周淑玲,阎淑莲.威海市冬季暴雪的天气气候特征.气象科技,2003,31(3):183-189
    45.周淑玲,王京太.山东半岛地方性海效应降雪的一种预报方法.山东气象,1995,61(4):22-24
    46.张黎红.大连地方性海效应降雪成因分析.辽宁气象,2004,4:12-13
    47.阎淑莲,周淑玲,李建华.海陆热力差异对威海冬季暴雪的贡献.科技导报,2006,24(11):15-18
    48.王长匍,陈文玉,何丹华.山东半岛东部、北部地区冬季冷流低云的探讨.海洋预报,1996,13(4)
    49.王洪庆,张焱,陶祖钰.黄海气旋数值模拟的可视化.应用气象学报, 2000,11(3):282-289
    50.王俊.单多普勒天气雷达反演二维风场的方法研究.中国海洋大学硕士论文,2004
    51.王俊,朱君鉴,任钟冬.利用双多普勒雷达研究强飑线过程的三维风场结构.气象学报,2007,65(2):241-251
    52.王文,程麟生.“96.1”高原暴雪过程三维条件性对称不稳定的数值研究.高原气象,2002,21(3):225-232
    53.徐建芳,陶健红,夏建平.青藏高原切变线暴雪中尺度分析及其涡源研究.高原气象,2000,19(2):187-197
    54.杨成芳,周雪松,王业宏.山东半岛海效应降雪的气候特征及其前兆海温信号.气象,2007,33(8):25-30
    55.杨成芳,李泽椿,周兵,等.渤海南部沿海海效应暴雪的中尺度特征.南京气象学院学报,2007,36(6):857-865
    56.杨成芳,李泽椿,李静,等.山东半岛一次持续性强海效应降雪过程的成因分析.高原气象,2008,27(2):442-451
    57.杨成芳,车军辉,吕庆利,等.位涡在海效应暴雪短时预报中的应用.中国海洋大学学报(自然科学版),2009,39(3):361-368
    58.杨柳,苗春生,寿绍文,等.“2003.3”辽宁暴雪及其中尺度系统发展和演变.南京气象学院学报,2006,26(3):151-157
    59.杨毅,邱崇践,龚建东,等.同化多普勒雷达风资料的两种方法比较.高原气象,2007,26(3):247-256
    60.杨毅,邱崇践.利用多普勒雷达资料分析一次强降水的中尺度流场.高原气象,2006,25(5):925-931
    61.游来光,马培民,胡志进.北方层状云人工降水试验研究.气象科技.2002,30(增刊):19-56
    62.于华英,牛生杰,梁明珠,等.一次强对流风暴含水量的雷达反演和数值模拟结果的对比分析.高原气象,2007,26(5):1112-1119
    63.俞小鼎,王迎春,陈明轩,等.新一代天气雷达与强对流天气预警.高原气象,2005,24(3):753-761.
    64.俞小鼎,姚秀萍,熊廷南,等.多普勒天气雷达原理与业务应用.北京:气象出版社, 2006,54
    65.于志良.胶东半岛海效应降雪与海气湍流感热输送的关系.气象学报,1998,56(1):120-127
    66.于志良.海-气感热输送在海效应降雪形成中的作用.海洋预报,1997,14(1):17-24
    67.吴国雄,蔡雅萍,唐晓菁.湿位涡和倾斜涡度发展.气象学报,1995,53(4):387-405
    68.夏文梅,张亚萍,汤达章,等.暴雨多普勒天气雷达资料的分析.南京气象学院学报,2002,25(6):787-793
    69.张沛源,陈荣林.多普勒速度图上的暴雨判据研究.应用气象学报,1995,6(3):373-378
    70.张迎新,张守保.华北平原回流天气的结构特征.南京气象学院学报, 2006,29(1):107-113
    71.赵桂香,程麟生,李新生.“04. 12”华北大到暴雪过程切变线的动力诊断.高原气象,2007,26(3):615-623
    72.赵世发,周军元,王俊,等.一次罕见的特大暴雨物理量场特征分析.南京气象学院学报,2002,25(2):271-276
    73.赵宇,吴增茂.9711号北上台风演变及暴雨过程的位涡诊断分析.中国海洋大学学报(自然科学版),2004,34(1):13-21
    74.赵宇,吴增茂,刘诗军,等.由变性台风环流引发的山东特大暴雨天气的位涡场分析.热带气象学报,2005,21(1):33-43
    75.朱立娟,龚建东.OIQC技术在雷达反演VAD廓线资料退模糊中的应用研究.高原气象,2006,25(5):862-869
    76. Ballentine, R. J. Numerical simulation of land-breeze-induced snowbands along the western shore of Lake Michigan. Mon.Wea. Rev.,1982,110:1544–1553
    77. Braham, R. R., Jr. and R. D. Kelly. Lake-effect snowstorms on Lake Michigan,USA. Cloud Dynamics.1982,7–101
    78. Braham, R. R., Jr. The midwest snow storm of 8–11 December 1977. Mon. Wea. Rev., 1983, 111: 253–272
    79. Briggs,W.G. and M.E.Graves. A lake breeze index.J.Appl. Meteor. 1962,1:474-480
    80. Broumas,S. Vorticity and other relationships in lake effect storms,NWS,Buffalo,unpublished report.1977
    81. Browing K. A. Wexler R A. Determination of kinematic properties of a wind field using Doppler radar.J.Appl. Meteor., 1986,15:1302-1306
    82. Byrd,G.P., R.A.Anstett, J.E.Heim, and D.M.Usinsk.Mobile sounding observations of lake-effect snowbands in western and central NewYork.Mon.Wea.Rev. ,1991,119:2323-2332
    83. Carter, G. M. , Salem, T. L. Jr., and M. A. Wool.The use of new technology for enhanced snow forecasts in the vicinity of Lakes Erie and Ontario. Preprints, 15th Conf. On Wea. Anal. and Forecasting, Amer. Meteor. Soc., Norfolk, VA. 1996,567-572
    84. Choularton, T. W.and S.J.Perry.A model of the orographic enhancement of snowfall by the seeder-feeder mechanism. Quarterly Journal of the Royal Meteorological Society, 1986,112(472):335-345
    85. Clarke,R. Recommended methods for the treatment of the boundary layer in numerical models.Aust.Meteor.Mag.,1970,18:51-73
    86. Dan B. Wintertime cloud microphysics review. 1999: http://www.crh.noaa.gov/arx/micrope.html
    87. David A R,Kristovichand N. F. Observations of Widespread Lake-Effect Cloudiness Influences of Lake Surface Temperature and Upwind Conditions. Wea. Forecasting,1998,13:811-821
    88. Eito, Hisaki; Kato, Teruyuki; Yoshizaki, Masanori et al. Numerical Simulation of the Quasi-Stationary Snowband Observed over the Southern Coastal Area of the Sea of Japan on 16 January 2001.J. Meteorol. Soc. Japan. 2005,83(4):551-576
    89. Fairall C. W., Bradley E. F., Rogers D. P., et al. Bulk Parameterization of Air-Sea Fluxes for Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. J.Geo.Research, 1996,101: 3747-3764
    90. Forbes,G.S.,and J.H.Merritt.Mesoscale vortices over the Great Lakes in winertime.Mon.Wea.Rev.,1984,112:377-381
    91. Gloria E.E. andMaurice B.D.Inclusion of sensible heating in convective parameterization applied to Lake-effect snow. Mon.Wea.Rev.,1979,107:551-565
    92. Hanako YOSHIHARA, Masayuki KAWASHIMA, Ken-ichiro ARAI et al. Doppler Radar Study on the Successive Development of Snowbands at a Convergence Line near the Coastal Region of Hokuriku District.Jour of the Meteo Soc of Japan,2004,82(4):1057-1079
    93. Hjelmfelt,M.R., and R. R. Braham Jr. Numerical simulation of the airflow over Lake Michigan for a major lake-effect snowevent.Mon.Wea.Rev.,1983,111:205–219
    94. Hjelmfelt,M.R. Numerical study of the influence of environmental conditions on lake effect snowstorms over Lake Michigan.Mon.Wea.Rev. 1990,118:138-150
    95. Hjelmfelt,M.R. Orographic effects in simulated lake-effect snowstorms over Lake Michigan. Mon.Wea.Rev.,1992,120:373-377
    96. Holroyd,E.W.,Ⅲ.Lake effect cloud bands as seen from weather satellites.J.Atmos.Sci., 1971,28:1165-1170
    97. Hoskins B J,M E McIntyre,A W Robertson. On the use and significance of isentropic potential vorticity maps.Quart J. R. Meteor Soc.,1985,111(6):877-946
    98. Jeff S.W. A foot of snow from a 3000-foot cloud.The Ocean-Effect Snowstorm of 14 January 1999. Amer.Meteo.Soc., 2002,83:19-22
    99. Jerome B.B. Surface wind directions associated with snowfall in upstate New York. National Weather Digest, 2001,25(3):19-27
    100. Jiusto,J.E.,D.A Paine and M.L. Kaplan.Great Lakes snowstorms.Part Ⅱ:Synoptic and climatological aspects. ESSA Grant E22-13-60(G)ASRC,State University of New York at Albany Report EssA E22-49-70, 1970,58
    101. Jiusto,J.E. and H.K.Weickmann. Types of snowfall. Bulletin Amer Meteo Soc., 1973,54(11):1148-1162
    102. Joshua J. S., A. R. Kristovich and M.R. Hjelmfelt. Boundary Layer and Microphysical Influences of Natural Cloud Seeding on a Lake-Effect Snowstorm. Mon.Wea.Rev., 2006,134(7):1842-1858
    103. Justin Marc Arnott, M. Evans and R. Grumm .Regional scale ensemble forecast of the Lake Effect snow event of February 2007.The 22nd Conference on Weather Analysis and Forecasting/18th Conference on Numerical Weather Prediction,2007,Park City, UT
    104. Kevin A.C., M. R. Hjelmfelt, R. G. Derickson, D. A. R. Kristovich and N. F. Laird. Numerical Simulation of Transitions in Boundary Layer Convective Structures in a Lake-Effect Snow Event. Mon.Wea.Rev., 2000 , 128:3283-3295
    105. Kolker,B.Current forecast procedures for lake effect snows in western New York,especially related to 1976-77 and 77-78 winters.Proc. of the 1978 AnnualMeeting, Eastern Snow Conf.,Hanover,NH. 1978,17-35
    106. Koscielny A J , Doviak R J , Rabin R.Statistical considerations in the estimation of divergence from single Doppler radar and application to prestorm boundary layer observations. J.Appl.Meteor.,1982,21:197-210
    107. Kuetter,J.P. Cloud bands in the earth’s atmosphere: observation and theory.Tellus.,1971,23:404-425
    108. Laird, N. F. Observation of coexisting mesoscale lake-effect vortices over the western Great Lakes. Mon. Wea. Rev.,1999, 127:1137–1141
    109. Lavoie,R.L. A mesoscalemodel of lake effect snowstorms. J.Atmos.Sci., 1972 ,29:1025-1040
    110. Mark R. Hjelmfelt. Numerical Study of the Influence of Environmental Conditions on Lake-Effect Snowstorms over Lake Michigan. Mon. wea. rev.,1990,118:138-149
    111. Moore P.K.and R.E.Orville. Lighting characteristics in lake effect thunderstorms.Mon.Wea.Rev., 1990,118:1767-1782
    112. Muller R.A. Snowbelts of the Great Lakes.Weatherwise.1966,19:248-255
    113. Neil F.L. Observation of coexisting mesoscale lake-effect vortices over the western Great Lakes. Mon.Wea.Rev.,1999,127:1137-1141
    114. Neil E. Laird and John E. Walsh, David A. R. Kristovich. Model Simulations Examining the Relationship of Lake-Effect Morphology to Lake Shape,Wind Direction,and Wind Spped. Mon. wea. rev.,2003,131:2102-2111
    115. Niziol T.A. A record-setting lake effect snowstorm at Buffalo NY.Natl.Wea.Dig., 1982,7(4):19-24
    116. Niziol T.A., W. R. Snyder, and J. S. Waldstreicher. Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting.,1995,10:61–77
    117. Passarelli R. E. and R. R. Braham Jr. The role of the winter land breeze in the formation of Great Lake snow storms.Bull. Amer. Meteor. Soc.,1981, 62: 482–491
    118. Peace R. L., Jr., and R. B. Sykes Jr. Mesoscale study of a lake effect snowstorm. Mon. Wea. Rev.,1966, 94: 495–507
    119. Pease S. R., W. A. Lyons, C. S. Keen, and M. Hjelmfelt.Mesoscale spiral vortex embedded within a Lake Michigan snow squall band: High resolution satellite observations and numerical model simulations. Mon. Wea. Rev.,1988,116: 1374–1380
    120. Peter J. Sousounis. A numerical investigation of wind speed effects on lake-effect storms. Boundary-Layer Meteorology, 1993, 64(3):261-290
    121. Petterssen, S. Weather Analysis and Forecasting.Weather and Weather Systems,1956,2:266
    122. Sam S.C. and R.R.Braham. Observational study of a convective internal boundary layer over Lake Michigan.Journal of the Atmo.sci.,1991, 48(20):2265-2279
    123. Steenburgh W. J, H. Scottf, and O. Darylj. Climatology of Lake-Effect Snowstorms of the Great Salt Lake. Mon.Wea.Rev.,2000,128:709–727
    124. Reinking,R.F.,R.A.Kropfli,R.Caiazza,G.P.Byrd,R.Ballentine,A.Stamm,R.S.Penc,T.A.Niziol,and C.Bedford.The Lake Ontatio Winter Storms Project(LOWS).Preprints,16th Conf. on Severe Local Storms,Kananaskis Park,Canada,Aner.Meteor.Soc.,1990,613-618
    125. Robert L W,Craig J T.Introduction to RAMS4.3/4.4[EB/OL].[2006208229]. http://www.atmet.com/html/docs/rams/ug442rams2intro.pdf
    126. Rodger A.B. and V.T. WOOD. Improved Detection Using Negative Elevation Angles for Mountaintop WSR-88Ds: Simulation of KMSX near Missoula, Montana. Wea. Forecasting,2002,17:223-237
    127. Rodger A.B. and T. A. Niziol, N.R. Donaldson et al. Improved Detection Using Negative Elevation Angles for Mountaintop WSR-88Ds. Part III: Simulations of Shallow Convective Activity over and around Lake Ontario. Wea. Forecasting,2007,22:839-852
    128. Roscoe R.B.Snow particle size spectra in Lake effect snows. Journ of app Meteo.,1990,29:200-207
    129. Sento N., K.Iwanami, R.Misumi, et al. A Classification of Snow Clouds byDoppler Radar Observations at Nagaoka,Japan.SOLA,2005,1:161-164
    130. Tage A. and Stefan N.Topographically induced convective snowbands over the Baltic Sea and their precipitation distribution. Wea.Forecasting, 1990,5:299–312
    131. Thomas A. N.Operational Forecasting of Lake Effect Snowfall in Western and Central New York. Wea. Forecasting,1987,2:310-321
    132. Thomas A. Niziol,Warren R.Snyder,Jeff S.Waldstreicher. Winter Weather Forecasting throughout the eastern United States. PartⅣ: Lake Effect Snow. Wea. Forecasting, 1995,10:61-77
    133. Tadayasu OHIGASHI and Kazuhisa TSUBOKI. Structure and Maintenance Process of Stationary Double Snowbands along the Coastal Region. J. Meteorol. Soc., Japan. 2005,83(3):331-349
    134. Waldstreicher, J S. A foot of snow from a 3000-foot cloud: The ocean-effect snowstorm of 14 January 1999. Bull.Amer.Meteor. Soc.,2002,83:19-22
    135. Walsh,J.E.Sea breeze theory and applications.J.Atmos.Sci., 1974,31:2012-2026
    136. Wiggin,B.L. Great snows of the Great Lakes.Weatherwise.1950,3:123-126
    137. Wilson J.D. Effect of Lake Ontario on precipitation.Mon.Wea. Rev.,1977,106:207-214
    138. Winstead N. S., R.M. Schaaf, and P.D. Mourad. Synthetic Aperture Radar Observations of the Surface Signatures of Cold-Season Bands over the Great Lakes.Wea. Forecasting.,2001,16:315-328
    139. Yasushi Fujiyoshi, Naohiro Yoshimoto And Takao Takeda. A Dual-Doppler Radar Study of Longitudinal-Mode Snowbands.Part I: A Three-Dimensional Kinematic Structure of Meso-Scale Convective Cloud Systems within a Longitudinal-Mode Snowband. Mon.Wea.Rev.,1998,126:72-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700