用户名: 密码: 验证码:
高碳钢大方坯连铸用保护渣的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为保证攀钢大方坯连铸浇铸U71Mn、PD3等高碳钢的生产顺行和获得良好的铸坯质量,在对国内外大方坯连铸保护渣的研究和应用情况调研基础上,根据大方坯连铸高碳钢的特点、难点,结合攀钢铸机参数和工艺条件,开展了攀钢大方坯连铸高碳钢用保护渣的研究。
     采用Gleeble-1500热模拟试验机测试了重轨(U71Mn)钢的高温力学性能,并建立了铸坯润滑模型,用该模型探讨了保护渣的主要物理性能及渣圈的生成对铸坯润滑的影响。利用高温物性测定仪、粘度计和DTA1700热分析仪研究了CaO—SiO_2—Al_2O_3—Na_2O—CaF_2—MgO渣系中各组分及含量与熔化温度、粘度和析晶温度的关系。采用渣柱法和熔化率法两种不同的测试方式进行了碳质材料与保护渣熔化速度的关系研究。并利用X光衍射仪、电子探针和显微观察等手段,对烧结过程试样的矿相变化和显微结构特征进行了较为全面的研究分析,在此基础上对保护渣的烧结机理和碳质材料、原料预处理对烧结特性的影响进行了探讨,并从烧结机理上分析了渣圈的生成原因,创新性地建立了保护渣烧结特性的定量化评价级方法和评价指标体系。
     在本研究条件下,模型计算表明随保护渣熔化温度、粘度的升高,以及渣圈的生成,铸坯润滑情况恶化。高温力学性能测试表明重轨钢的高温塑性差,保护渣的研究重点应在解决铸坯润滑上。提高保护渣碱度,增加渣中Na_2O、CaF_2、MgO含量能够降低保护渣熔化温度、粘度,但析晶温度随碱度的提高和Na_2O含量的增加而升高。在评价碳质材料种类与保护渣熔化速度的关系时,熔化率法比渣柱法能够更准确地反映出实际生产中不同碳质材料对熔化速度的作用大小,中超碳黑控制熔化速度的能力强于其它碳质材料,且能够在熔化过程中有效地抑制保护渣烧结。
     烧结特性研究揭示了保护渣的烧结过程是由固相反应和液相烧结构成。固相反应在约600℃时产生,生成矿相主要有Ca_2SiO_2F_2、Ca_4F_2Si_2O_7等,同时还有一定的液相生成,随后因液相的出现而烧结致密。测试保护渣烧结过程的体密度——温度关系及致密化起始温度和致密化速率可定量评价保护渣的烧结特性。烧结的致密化起始温度高低和致密化速率大小是影响保护渣生成渣圈的重要因素,烧结致密化起始温度低或致密化速率大的保护渣在生产应用中易生成渣圈。在保护渣中加入碳质材料,对原料进行预熔化或预加热处理可提高保护渣的致密化起始温度或降低致密化速率,从而可抑制或减轻保护渣生成渣圈。
     研究表明攀钢大方坯连铸保护渣的化学组成宜以CaO、SiO_2、Al_2O_3、Na_2O、
    
    重庆大学硕士论文
    CaFZ和MgO为主,适当加入Bao和SrO等特殊组分。保护渣的碱度(Cao/5102)
    应控制在0.8~0.9,熔化温度为1 120一1200℃,粘度为0.3~0.SPa .5,结晶率为0
    %,配碳模式可采用1一2%的中超碳黑和4一10%鳞片石墨的混合配碳模式。工
    业试验表明采用该方案的保护渣浇注的铸坯质量良好,在结晶器内有良好的熔化
    特性,有效的抑制了渣圈生成,且未出现漏钢事故。
Panzhihua Iron and Steel Co (PISC) is to install bloom continuous casting machine (CCM) for the production of high carbon steels, including U71Mn and PD3. Continuous casting of high carbon steel is difficult due to its relatively low shear strength at high temperatures. To ensure a trouble-free bloom continuous casting of high carbon steels and to improve product quality, mould fluxes have been widely used worldwide. In this study, the state-of-the-art in this area has been reviewed; a systematic investigation in the physical chemical properties of mould fluxes and the performance under the conditions of the CCM at PISC in particular has been conducted. The main purpose was to identify the key parameters that control the behavior of mould fluxes particularly sintering potential and the product quality. The knowledge gained from this research will be directly used in guiding the commercial production of high carbon steel in PISC.
    By establishing and using a mathematical model, it was confirmed that the lubrication behavior is controlled by mainly the properties of fluxes. The formation of slag rim was analyzed. Using a viscometer and differential thermal analyzer (DTA1700), the melting temperature, viscosity, crystallizing temperature and their dependence on the components of fluxes in the CaO-SiO2-Al2O3-Na2O-Cap2-MgO system have been studied. The slag column method and the melting ratio method were used to show the relationship between the carbon materials added and the melting rate of fluxes. By utilizing an X-ray diffractometer, electronic probe and optical microscope, the mineralogical composition and microscopic characteristics of fluxes during the sintering process were investigated in detail. In light of these observations, sintering mechanisms and their link with the carbon materials and the pre-treatment procedure of raw materials of fluxes, have been discussed. According to the suggested sintering mechanism, the formation m
    echanism of the slag rim has also been analyzed. A new evaluative method has been proposed, which quantitatively describes the sintering process of mould fluxes.
    A thermal simulation testing machine (Gleeble-1500) was employed to determine the high-temperature mechanic properties of the heavy rail steel-U71Mn. The test demonstrated that the heavy rail steel possesses a low plasticity and tension strength at high temperatures. The breakout could occur under the condition of large frictional force in the CCM mould. Consequently, the research on continuous casting mould
    
    
    fluxes for heavy rail steel should focus on improving lubrication and decreasing casting resistance force. Under the condition studied, the mathematical model also suggested that the elevated melting temperature, increased viscosity and the formation of slag rim could worsen the lubrication for continuous casting strands. The increase in basicity and the contents of Na2O, CaF2, MgO could lower the melting temperature and viscosity of molten fluxes. However, the elevated basicity and Na2O content result in an increase in the crystallization temperature. In assessing the effects of carbon materials on the melting rate, the melting ratio method was found to be more authentic and reliable than the slag column method. Possessing a stronger effect on the melting rate than other carbon materials studied, the intermediate super carbon black, can efficiently hinder the sintering of fluxes.
    The study on the sintering property revealed that the sintering process of fluxes consists of solid-solid reactions and liquid phase reactions. The solid-solid reaction often starts at about 600℃, resulting mineral phases such as Ca2SiO2F2 and Ca4F2Si2O7 along with some liquid phase which is responsible for the densification. The bulk density-temperature relationship, the densification rate and starting temperature can be used to assess quantitatively the sintering potential of fluxes. The densification rate and temperature play the key role in controlling the formation of slag rim. Addition of carbon materials, pre-melting and pre-heat
引文
[1] 宫胁芳治,消耗量诸特性,铁钢,1984,S143
    [2] 舟之川洋,高速铸造技术(3m/min)开发,铁钢,1986,S977
    [3] John H, Courtenav, Steel Metals Magazine, 1989, No.4, P27
    [4] 村上洋,连续铸造铸型内亚包晶炭素钢不均一凝固制御,铁钢,1992,Vol.78.No.1,P105~113
    [5] 川本正辛,高速连铸用特性设计,铁钢,1994,No.3,P219~224
    [6] 曾建华等,国内外超低碳钢连铸结晶器保护渣的设计与应用,钢铁钒钛,2000,No.1,P40
    [7] 卢盛意,连铸坯质量,第二版,北京,冶金工业出版社,2000
    [8] Whittaker D A, Continuous Bloom and Billet Casting at Atlas Specialty Steels, Electric Furnace Conference Proceedings, 1988, P213
    [9] 大西埝泰,大断面铸片内部品质改善,铁钢,1983,S891
    [10] 辻和宽,神户制铁所3号连铸机高炭素钢表面品质改善,材料,2001,No.1,P157~161
    [11] 宫胁芳治,表面横割影响,铁钢,1984,S926
    [12] 高桥宏美,双流连铸机操作铸片品质,铁钢,1983,S890
    [13] 申俊峰等,连铸结晶器保护渣的物质组成分析,钢铁研究,2000,No.1,P6
    [14] 铸钢用保护渣译文集,重庆,重庆大学出版设,1986
    [15] 中森辛雄,连续铸造铸型铸片间摩擦力测定解析结果,铁钢,1984,No.9,P1262~1267
    [16] 中野武人,连铸铸片纵割铸型内熔融影响,铁钢,1981,No.8,P1210~1215
    [17] H.Thomas, Steelmaking Conference Proceedings, 1988, No.2, P66
    [18] 樱谷敏和,铸型振动条件改善连铸铸片纵割防止,铁钢,1981,No.8,P1220
    [19] I.R.Lee, Development of mould powder for high speed continuous casting, Conference on Continuous Casting of Steel and Developing Countries, Beijing, 1993.
    [20] 常盘宪司,流入关检讨,铁钢,1983,S1033
    [21] 长野裕,连铸厚、消耗量铸造条件影响,铁钢,1984,S145
    [22] 荻林成章,低炭素钢用技术开发,制铁研究,1987,No.324,P1~9
    [23] 小山达夫,连续铸造铸型铸片间摩擦现象诸特性,铁钢,1984,S148
    [24] 中野武人,连续铸造熔融举动解析,制铁研究,1987,No.324,P20~29
    [25] А.Ф.СарыеВ,先越容译,连铸保护渣对板坯表面质量的影响,重钢技术,1998,No.3.4,P53~54
    
    
    [26] Horst Abatis, Eiusatz vou uuterschiedlichen Giebpulvevn beim stranggieBen Vou vorblocken und knuppeln, Stahl und Eisn, 1996, No.4, P85
    [27] M. Emi, The Mechanics For Sticking Type Break-cuts and new developments in Continuous Casting Mold fluxes, Steelmaking Conference Proceedings, 1991, P623
    [28] 市川健治,ZrO_2-C材质损伤组成影响,耐火物,1991,Vol.43,No.11,S654
    [29] 中户参,唐晓燕译,对结晶器润滑有影响的连铸保护渣的物性试验及其理论分析,宝钢情报,1990,No.1,P33~41
    [30] 朱果灵等,薄板坯连铸用特殊保护渣的研制,钢铁,1993,No.8,P27~30
    [31] 刘承军,CaO-SiO2-Na2O-CaF2-Al2O3-MgO保护渣系的Al2O3吸收速率和粘度,炼钢,2001,No.6,P42~46
    [32] Powered Mould Additives for Continuous Casting., Nippon Thermochemical. Co.
    [33] 万恩同等,稀土处理钢连铸结晶器保护渣的研制,钢铁研究,1993,No.5,P8
    [34] 曾建华等,钢铁钒钛,2000,No.4,P28
    [35] 岸忠男,熔融型制造技术,制铁研究,1987,No.324,P10
    [36] 王谦,连铸含铝钢Al_2O_3夹杂与结晶器保护渣的作用,四川冶金,1991,No.3,P40
    [37] 金沢敬,高速连续铸造时铸型内润滑·传热举动,铁钢,1997,No.11,P701~706
    [38] 杉谷泰夫,铸型内不均匀凝固散热速率影响,铁钢,1981,No.9,P1508
    [39] 大宫茂,连铸时铸型铸片间摩擦,铁钢,1982,S926
    [40] 铃木乾雄,高速连铸时铸型内传热润滑举动铸型振动波形影响,铁钢,1992,No.1,P113~120
    [41] 水野昭男,双流连铸机续铸造高炭素钢操作特性,铁钢,1984,No.4,S272
    [42] 刘凤云,连铸高碳钢坯凝固基础理论浅探,炼钢,1993,No.2,P16~21
    [43] Mchugh T, UK.Patent 917, 786 filed on 1960.11.
    [44] Pinheiro C A, Mold Flux for Continuous Casting of steel, Iron and Steelmaker, 1995, No.10, P101
    [45] 颜慧成等,连铸保护渣传热润滑数学模拟综述,连铸,1996,№1,P16
    [46] 吴夜明,连铸结晶器保护渣熔化温度对铸坯凝固的影响,钢铁,1991,No.8,P26~29
    [47] 渡边圭见,连铸铸型内传热结晶化举动,铁钢,1997,No.2,P31~36
    [48] 张平等,连铸结晶器中保护渣渣膜传热的研究现状,钢铁研究学报,1995,No.4,P74
    [49] 朱立光等,连铸结晶器内保护渣渣膜状态的数学模拟,北京科技大学学报,1999.No.1.P13~16
    
    
    [50] 张玉文等,方坯连铸保护渣渣膜润滑行为的理论研究,炼钢,2002,No.2,P25
    [51] Riboud. P.V etal., Proc of 62 th NOH-BOS Conf., 1979, No.3, P78
    [52] 柳沢,连续铸造物性研究,铁钢,1975,S482
    [53] 中户参,钢连铸时流入机构物性,铁钢,1984,S149
    [54] 大桥,内流动解析,铁钢,1979,S702
    [55] Kor.G.J.W, Proc of 2 nd Pro. Tech. Conf., 1981, No.2, P124
    [56] 安藤,连铸铸型可视化铸型内润滑检讨,铁钢,1983,S1037
    [57] 安齐,铸型内润滑关数学考察,铁钢,1983,S1038
    [58] 多田,Modeling of slag Rim Formation and pressure in Molten Flux near The meniscus, 铁钢,1984, S155
    [59] J.K.Brimacombe, Mold Flux for Continuous Casting of steel, Iron and Steel Maker, 1995, No.11, P54
    [60] T.Emi etal., Continuous Casting, 1983, Vol.1, P135
    [61] 安齐荣尚,连续铸造铸型铸片间熔融流入润滑机构,制铁研究,1987,No.324,P30
    [62] 迟景灏等,连铸保护渣,第一版,沈阳,东北大学出版社,1992。
    [63] 马田一,连铸消耗量性状影响,铁钢,1983,S1031
    [64] Takato etal, Trans., Iron Steel Inst Japan, 1984, Vol.24, P950-956
    [65] 日本品川株式会社,技术交流资料,1990
    [66] 饭田孝道,多成分系熔融粘度推算式,材料,1995,No.8,P1014
    [67] Nichols.M.W etal, Second International Symposium on Metallurgical Slags and Fluxes, 1984, P235
    [68] 小山邦夫,连铸特性设计,制铁研究,1987,No.324,P219
    [69] 松下行伸,连铸熔融特性改善,R&D神户制钢技报,1993,No.2,P123~127
    [70] 王谦、第四届全国连铸学术会议论文集,1990,P43
    [71] 中户参,保温性状包连续铸造机铸型内传热,铁钢,1980,No.1,P33~41
    [72] 水上秀照,高速铸造时铸型内的润滑最佳振动方式,铁钢,1986,No.4,P1862
    [73] Edward, Iron and Steelmaker, 1999, No.10, P99
    [74] 渡边圭见,卷込及物性影响,CAMP-ISIJ,1998,Vol.11,P860
    [75] 山岗祏一,高速连铸用难卷込性开发,CAMP-ISIJ,1997,Vol.11,P895
    [76] 市川健治,铸型传热速率及构成影响,铁钢,1993,Vol.36,P99~108
    [77] 中岛敬治,材料,1991,No.4,P1247
    
    
    [78] 中岛敬治,材料,1992,No.5,P1221
    [79] 山内章,连续铸造铸型铸片间介否传热特性基础的检讨,铁钢,1993,No.2,P167~173
    [80] 斋藤忠,连铸表面疵的改善,R&D神户制钢技报,1990,No.2,P65
    [81] 木村雅保,人優高性能连铸机的稼働铸片品质,R&D神户制钢技报,1993,No.2,P119
    [82] H.Lidefelt, Continuous Casting of Steel Proceedings of Forth Process Technology Conference, 1982, P316.
    [83] 北原文雄著,孙绍曾译,表面活性剂,第一版,北京,化学工业出版社,1984,P10~180
    [84] 曾建华等,球形空心颗粒状连铸保护渣的开发与应用,炼钢,1996,No.6,P26~29
    [85] 王明顺,DL特殊钢连铸保护渣,特殊钢,1991,No.6,P59~61
    [86] 任路泉等,试验优化设计,第一版,北京,机械工业出版社,1987.2,P121~162
    [87] 黄希祜等,钢铁冶金原理,第二版,北京,冶金工业出版社,1990,P1~188
    [88] 朱立光,高速连铸保护渣的研究及其专家设计系统[博士论文],北京,北京科技大学,2001,P27~78
    [89] 渡边圭见,铸型内传热及连铸结晶化影响,NKK技报,1997,No.3,P1
    [90] 甘永年等,全国第五届冶金过程物理化学年会论文集(上册),重庆大学出版社,1984,P390
    [91] 朱果灵等,高速连铸保护渣系列及制造工艺的研究,北京钢铁总院,内部资料,1999.1
    [92] 谢兵,王雨,王谦等,国家重点科研课题:保护渣系列化开发研究,重庆大学,内部资料,2000.2
    [93] 耐火材料标准汇编组,耐火材料标准汇编(下),第一版,北京,中国标准出版社,1999.6,P3~13
    [94] 果世驹,粉末烧结理论,冶金工业出版社,1998.3,P301~327
    [95] 饶东生,硅酸盐物理化学,第一版,北京,冶金工业出版社,1980.11,P57~293
    [96] 崔国文,缺陷、扩散与烧结,第一版,北京,清华大学出版社,1990.11,P98~197
    [97] 王诚训等,耐火材料技术与应用,第一版,北京,冶金工业出版社,2000.1,P26~81
    [98] 吴夜明等,连铸保护渣中碳粉作用机构的探讨,钢铁,1989,No.7,P17
    [99] 张文杰等,碳复合耐火材料,第一版,北京,科学出版社,1990.6,P10~24
    [100] 张家驹,铁冶金学,第一版,沈阳,东北大学出版社,1988.8,P62~91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700