用户名: 密码: 验证码:
移动机器人旋转电弧传感焊枪偏差与倾角检测及角焊缝跟踪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业技术的不断发展,大型结构件的应用越来越多。在这些大型结构件的焊接生产中存在大量的弯曲角焊缝和折线角焊缝,实现这些焊缝的自动化焊接对于提高生产效率和保证产品质量具有非常重要的意义。这些工件结构庞大,很多焊接作业必须在现场进行,难以采用手臂式机器人进行自动焊接,也难以采用编程或示教的方式进行焊缝跟踪;另外在对这些焊缝进行自动焊接时,不仅要控制焊枪跟踪焊缝移动,同时还要调整焊枪的倾角,以保证焊接质量。
     为此,本文以轮式移动焊接机器人为平台,解决大范围移动焊接问题;同时采用旋转电弧作为传感器,进行焊枪偏差识别与倾角检测,从而实现大型构件角焊缝自动焊接。研究内容主要包括:焊接电流信号的滤波处理;焊枪偏差与倾角检测;水平弯曲角焊缝、具有直角转弯的角焊缝和水平折线角焊缝跟踪及焊枪倾角调整控制器的设计。
     针对焊接电流信号易受外界噪声干扰影响的问题,本文提出以软阈值小波滤波为核心的组合滤波算法,对旋转电弧传感器采集到的电流信号进行滤波处理,使电流波形得到了明显地改善,提高了电流信号的信噪比,为焊枪的偏差和倾角检测奠定了基础。
     对特征谐波法在焊枪偏差和倾角检测中的应用问题进行了理论研究并给出了试验验证,发现该方法可以用来对焊枪偏差和倾角进行同时检测,扩展了特征谐波法的应用范围。指出在焊枪倾角不为零时,传统的采用一次谐波幅值检测焊枪偏差大小的方法会产生较大误差。为了提高焊枪偏差的检测精度,首次提出特征平面法对焊枪偏差和倾角同时进行检测。该方法充分利用旋转电弧传感器采集得到的焊接电流信息,采用最小二乘原理在三维空间构建特征平面,通过求特征平面与坐标平面交线的斜率,将焊枪偏差和焊枪倾角信息分别投影到两个正交的平面上,实现了二者的解耦。
     针对焊接过程难以建模的问题,采用分段控制策略设计控制器对水平滑块进行控制,该控制器在大偏差时采用比例控制,在小偏差时采用参数自调整模糊控制,并利用免疫反馈规律对比例因子进行修正,实现了直线焊缝、小曲率焊缝的跟踪。针对水平弯曲角焊缝跟踪的特点,设计模糊控制器对水平滑块和车轮进行协调控制,采用焊枪偏差信息获得机器人运动方向和焊缝走向之间的角度偏差,控制车轮转弯,并采用预测控制原理对控制量进行修正,实现水平弯曲角焊缝的平滑跟踪。
     在船舱格子形角焊缝焊接中,存在90度的直角转弯,给跟踪控制带来了很大难度。文中详细介绍了如何利用焊枪倾角信息检测拐角点,利用超声波传感器测量前方焊缝位置的方法。并对机器人的运动学模型进行推导,设计控制器实现此类焊缝的跟踪焊接。
     对于变化角度较大的折线角焊缝跟踪问题,设计带有转动关节的焊枪,并将该焊枪置于移动机器人平台上,设计控制器利用焊枪偏差和倾角信息,首次实现在焊缝跟踪的同时对焊枪的倾角进行调整。
     最后通过实际焊接试验证明了本文研究工作的有效性。另外,本文所设计的焊缝跟踪系统在九江同方江新造船厂进行了生产现场实际试用,取得了预期的效果。
With the development of modern industry, there is a growing application of large welding structures, so there are many curved fillets and broken-lined fillets need to be welded. For improvement of production efficiency and guarantee of product quality, it is essential to realize arc welding automation in the manufacturing of these workpieces. Because of the large scale, these structures must been welded in out of workshop, so the arm welding robot can not be used and the welding paths are not easily pre-programmed. Moreover it is necessary to control welding torch moving along with the seams and adjust the torch's inclination simultaneously for obtain highly welding quality when tracking these seams.
     In this dissertation, a wheeled mobile robotic arc welding seam tracking system is developed, and the system uses a rational arc sensor to detect the deviation and inclination of welding torch. The main research contents are: the filtering of welding currents; the identification of welding torch deviation and inclination; the control methods designing for automatic tracking curved fillets, lattice box fillets and broken-lined fillets.
     In consideration of the fact that welding current signals are often disturbed by outside noises, soft threshold wavelet filtering method is applied to process the welding current signals, that make the welding current shape is obviously smoothed and the signal-to-noise ratio is much improved.
     It is researched in theory and experiments that the character harmonic method can be used to detect deviation and inclination of welding torch simultaneously. The results show that the traditional method of using the amplitude of one-order harmonic to detect deviation would result in big error when the inclination is not zero. For improve the detection precition, the character plane method is developed in this dissertation, which fits the arc currents to a plane in three dimensions using a least-square fitting method. The deviation of welding torch is obtained through calculating the intersection line slope of the fitting plane with the YZ plane, and the inclination is calculated through the intersection line slope of the fitting plane with the XZ plane. Because of the deviation and inclination is projected to two orthogonal planes, so they can be decoupled.
     A multi-segment controller is designed to track lined fillet and small curvature fillet, which is composed of a proportion controller and a self-turning fuzzy controller to control horizontal slider. When the deviation is large the proportion controller will be used to quickly reduce the deviation, otherwirse the self-turning fuzzy controller will be used to avoid overshoot and achieve smooth tracking, and the immunity feedback method is applied to modify proportion gene of fuzzy controller. For the curved seam tracking problem a predictive fuzzy controller is designed to coordinate control cross-slider and wheels. This method uses the information of weld torch deviation to estimate the robot's orientation errors, and uses predictive control theories to offset the control outputs. The experiment results show that the presented method is valid to track curved fillets.
     In the welding of lattice box fillets, there are many right-angle corners that make tracking seam become very difficult. The method of using welding torch inclination to detect the corner and using ultrasonic sensor to detect the position of frontage seam is detail discussed in this dissertation. The mathematical model of mobile robot is built and the controller is designed to tracking these seams.
     For the broken-lined welding seams tracking problem, a welding torch with rotation axis is designed which is placed in the flat of mobile robot. A controller is proposed that use of the welding torch deviation and inclination information as input values, meantime use of the mathematical model of mobile robot to control rotation axis, horizontal silder and wheels to track welding seam and adjust torch inclination.
     In the last though experiment results show that the feasibility and validity of thisresearch work. In addition, the designed arc welding seam tracking system was triedout in Jiujiang Tongfang Jiangxin Shipyard Co., Ltd, and anticipant result is acquired.
引文
[1]潘际銮.现代弧焊控制[M].北京:机械工业出版社,2000.6.
    [2]潘际銮.现代弧焊控制在爬行全位置弧焊机器人中的应用研究[J].河北科技大学学报,2007,28(11:1-4.
    [3]黄石生.我国焊接技术的整体发展水平与趋势[J].现代焊接,2004,6:31-32.
    [4]朱进满.焊接机器人的应用[J].现代制造,2005,12:42-47.
    [5]张轲,吕学勤,吴毅雄等.移动焊接机器人的研究现状及发展趋势[J].焊接,2004,8:5-9.
    [6]陈善本.焊接过程现代控制技术[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [7]哈恩晶.焊接机器人的应用现状与发展趋势[J].机械工人(热加工),2004,5:16-18.
    [8]唐新华.焊接机器人的现状及发展趋势[J].电焊机,2006,36(3):1-5.
    [9]熊震宇.旋转电弧传感弧焊机器人焊缝纠偏智能控制系统[D].南昌大学博士论文,2002.
    [10]王海东.新型轮式机器人焊缝跟踪智能控制系统的研究[D].南昌大学硕士论文,2004.
    [11]叶建雄,张发云,任华.基于神经网络的焊枪倾角检测[J].焊接,2008,8:36-39.
    [12]叶建雄.旋转电弧传感焊枪倾角检测及水下焊缝跟踪技术研究[D].南昌大学博士学位论文,2007.
    [13]顾震宇.全球工业机器人产业现状与趋势[J].机电一体化,2006,2:6-9.
    [14]徐方.工业机器人产业现状与发展[J].机器人技术与应用,2007,9:2-4.
    [15]林尚扬,陈善本.焊接机器人及其应用[M].北京:机械工业出版社,2000.
    [16]卢本.焊接机器人的类型与应用(一)[J].现代焊接,2006,42(6):11-15.
    [17]周律.基于视觉伺服的弧焊机器人焊接路径获取方法研究[D].上海交通大学博士学位论文,2007.
    [18]Byoung-Oh Kam,Yang-Bae Jeon,Jin-Ho Suh,et al.Motion Control of Two-Wheeled welding Mobile Robot with Seam Tracking Sensor[J].International Journal of the Korean Society of Precision Engineering,2003,4(2):30-38.
    [19]W.-S Yoo,J.-D.Kim,S.-J.Na.A Study on A Mobile Platform-manipulator Welding System for Horizontal Fillet Joints[J].Mechatronics,2001,11:853-868.
    [20]Yasuo Suga,Akifumi Muto.Automatic tracking of welding line by autonomous mobile robot for welding of plates(Tracking of linear and angled welding lines)[J].Transactions of the Japan Society of Mechanical Engineers(Part C),1997,612(63):2918-2924.
    [21]Yasuo Suga,Keishin Saito.Recognition and automatic tracking of weld line in welding of T-joint of pipes by an autonomous mobile robot with vision sensor[J]. Transactions of the Japan Society of Mechanical Engineers(Part C),1996,595(62):1191-1196.
    [22]张华,潘际銮,徐建宁等.无轨道全位置爬行式机器人系统[J].机械工程学报,2006,42(7):85-91.
    [23]王军波,孙振国,陈强等.基于CCD传感器的球罐焊接机器人焊缝跟踪[J].焊接学报,2001,22(2):31-34.
    [24]焦向东,蒋力培,薛龙等.球罐全位置焊接机器人智能控制系统[J].焊接学报,2000,21(4):1-4.
    [25]曹莹瑜,黄民双,蒋力培等.一种新颖的接触式光电焊缝跟踪传感器[J].电焊机,2008,38(2):21-23.
    [26]董德祥,亢稚禄.接触式光电传感焊缝跟踪技术的研究[J].焊接设备与材料,1999,12:27-28.
    [27]Kang-Yul Bae,Jin-Hyun Park.A study on development of inductive sensor for automatic weld seam tracking[J].Journal of Materials Processing Technology,2006,176:111-116.
    [28]胡百僖.利用电弧声音信号进行脉冲等离子弧全位置焊接质量控制系统的研究[J].焊接,1980,5:17-24.
    [29]马跃洲,陈剑虹,梁卫东.GMAW电弧声的参数化模型及应用[J].机械工程学报,2005,41(11):209-214.
    [30]Ajay Mahajan,Fernando Figueroa.Intelligent seam tracking using ultrasonic sensors for robotic welding[J].Robotica,1997,15:275-281.
    [31]胡绳荪,刘勇,孙栋等.超声传感埋弧焊焊缝跟踪的研究[J].压力容器,2001,18(1):13-16.
    [32]何龙标,吴敏生,李路明等.电弧超声焊缝跟踪的试验研究[J].电焊机,2005,35(8):38-39.
    [33]谭一炯,周方明,王江超等.焊接机器人技术现状与发展趋势[J].电焊机,2006,36(3):6-10.
    [34]Jae Seon Kim,Young Tak Son,et al.A Robust Visual Seam Tracking System for Robotic Arc Welding[J].Mechatronics,1996,6(2):141-163.
    [35]Je-Young Yu,Suck-Joo Na.A study on vision sensors for seam tracking of Height-Varying weldment.Part 1:Mathematical Model[J].Mechatronics,1997,7(7):599-612.
    [36]e-Young Yu,Suck-Joo Na.A study on vision sensors for seam tracking of Height-Varying weldment.Part2:Applications[J].Mechatronics,1995,8:21-36.
    [37]黄军芬,邹勇,曹莹瑜等.光纤式激光焊缝跟踪传感器[J].现代制造工程,2008,1:108-110.
    [38]徐培全,唐新华,李莉娜等.视觉传感机器人焊缝跟踪系统[J].上海交通大学学报,2008,42(1):28-31.
    [39]S.B.CHEN,X.Z.CHEN,T.QIU.Acquisition of Weld Seam Dimensional Position Infromation for Arc Welding Robot Based on Vision Computing[J].Journal of Intelligent and Robotic System,2005,43:77-79.
    [40]Peiquan Xu,Guoxiang Xu,Xinhua Tang,Shun Yao.A visual seam tracking system for robotic arc welding[J].Int J Adv ManufTechnol,2008,37:70-75.
    [41]Xu Peiquan,Tang Xinhua,Lu Fenggui,Yao Shun.An active vision sensing method for welded seams location using "circle-depth relation" algorithm[J].Int J Adv Manuf Technol,2007,32:918-926.
    [42]徐培全,唐新华,芦凤桂等.基于机器人焊接的视觉传感器系统综述[J].焊接,2005,8:11-14.
    [43]Pyunghyun Kim,Sehun Rhee,Chang Hee Lee.Automatic teaching of welding robot for free-form seam using laser vision sensor[J].Optics and Lasers in engineering,1999,31:173-182.
    [44]孙振国,王军波,陈强等.新型智能球罐焊接机器人视觉传感器的研究[J].光学技术,2001,27(3):252-255.
    [45]张广军,陈善本,刘晓东.脉冲GTAW焊接区视觉图像传感系统[J].焊接,2001,7:23-27.
    [46]K-Y Bae,T-H Lee,K-C Ahn.An optical sensing system for seam tracking and weld pool control in gas metal arc welding of steel pipe[J].Journal of Materials Processing Technology,2002,120:458-465.
    [47]闫志鸿,张广军,邱美珍等.脉冲熔化极气体保护焊熔池图像的检测与处理[J].焊接学报,2005,26(2):37-40.
    [48]Hongyuan Shen,Jing Wu,Tao Lin,Shanben Chen.Arc welding robot system with seam tracking and weld pool control based on passive vision[J].Int J Adv Manuf Technol,2008,39:669-678.
    [49]熊震宇,张华,潘际銮.基于旋转电弧传感的空间位置曲线焊缝跟踪[J].焊接学报,2003,24(5):36-40.
    [50]贾剑平,张华,潘际銮.川丁弧焊机器人的新型高速旋转电弧传感器的研制[J].南昌大学学报(工科版),2000,22(3):1-4.
    [51]曾松盛,石永华,王国荣.基于电弧传感器的焊缝跟踪技术现状与展望[J].焊接技术,2008,37(2):1-6.
    [52]朱江.弧焊机器人焊缝跟踪[J].电焊机,2008,38(6):41-43.
    [53]洪波,魏复理,来鑫等.一种用于焊缝跟踪的磁控电弧传感器[J].焊接学报,2008,29(5):1-4.
    [54]费跃农.电弧传感器焊缝自动跟踪系统及电弧传感基础理论研究[D].清华大学博士论文,1990.
    [55]廖宝剑.以电弧为传感器的多自由度智能焊接系统研究[D].清华大学博士论文,1993.
    [56]蔡自兴,陈海燕,魏世勇.智能控制工程研究的进展[J].控制工程,2003,10(1):1-6.
    [57]盛万兴,戴汝为.关于智能控制[J].电子学报,1999,27(5):86-89.
    [58]陈善本,林涛.智能化焊接机器人技术[M].北京:机械工业出版社,2006.
    [59]黄石生等.基于ART人工神经网络的焊缝跟踪检测算法[J].机械工程学报,1994,4:93-97.
    [60]高向东等.机器人焊缝跟踪神经网络控制的研究[J].机械工程学报,2000,8:7-10.
    [61]梁明等.焊缝自动跟踪系统中的智能控制[J].电焊机,2000,8:17-20.
    [62]胡绳荪.焊缝跟踪模糊控制器的研究[J].电焊机,2000,9:32-34.
    [63]高延峰,张华,毛志伟等.轮式机器人折线焊缝跟踪协调控制方法[J].焊接学报,2008,29(5):33-36.
    [64]李刚,刘兴堂,徐安民.智能控制理论及发展[J].空军工程大学学报,2003,6(3):75-78.
    [65]易继锴,侯嫒彬.智能控制技术[M].北京:北京工业大学出版社,1999.
    [66]蔡自兴.智能控制-基础与应用[M].北京:国防工业出版社,1998.
    [67]李军.自适应模糊控制在消防传感器恒温测试温箱中的应用研究[D].西安交通大学硕士学位论文,2003.
    [68]程冰.模糊神经网络研究[D].广东工业大学硕士学位论文,2005.
    [69]Kevin M.Passino,Stephen Yurkovich.Fuzzy Control[D].1998.
    [70]贺剑锋,陈晖,黄石生.模糊控制的新近发展[J].控制理论与应用,1994,11(4):129-130.
    [71]Antonio Sala,Thierry Marie Guerr,Robert Babuska.Perspectives of fuzzy systems and control[J].Fuzzy Sets and Systems,2005,156:432-444.
    [72]王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003.
    [73]杜海峰.基于模糊神经网络的智能整合方法研究及其应用[D].西安交通大学博士论文,2001.
    [74]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1990.
    [75]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1999.
    [76]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993.
    [77]王耀南.机器人智能控制工程[M].北京:科学出版社,2004.
    [78]Chun-Liang Lin,Huai-Wen Su.Intelligent Control Theory in Guidance and Control System Design:an Overview[J].Proc Natl.Sci.Counc.ROC(A),2000,24(1):15-30.
    [79]孙瑞祥.进化计算与智能诊断[D].西安交通大学博士学位论文,2000.
    [80]陈国良,王煦法,庄镇泉,王东生.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [81]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [82]吉根林.遗传算法研究综述[J].计算机应用与软件,2004,21(2):69-73.
    [83]王磊.免疫进化计算理论及应用[D].西安电子科技大学博士学位论文,2001.
    [84]黄席樾等.现代智能算法理论及应用[M].北京:科学出版社,2005.
    [85]丁永生.计算智能-理论技术与应用[M].北京:科学技术出版社,2004.
    [86]王孙安,郭子龙.混沌免疫优化组合算法[J].控制与决策,2006,21(2):205-209.
    [87]韩生康,周文愚.基于免疫更新机制的遗传算法及其在规划问题中的应用[J].控制与决策,2002,17(3):343-345.
    [88]黄石生等.TIG焊熔宽的自整定PID闭环控制系统[J].焊接学报,1994,6:122-130.
    [89]黄石生等.钨极氩弧焊缝熔宽模糊控制系统设计[J].焊接学报,1996,6:94-98.
    [90]陈强等.焊接过程的模糊控制[J].机械工程学报,1995,8:86-91.
    [91]胡绳荪,孟英谦,单平.焊缝跟踪Fuuzy-P控制规则的研究[J].机械工程学报,2000,36(12):50-53.
    [92]粱明,王国荣等.规则白调整模糊控制器在焊缝跟踪中的应用[J].华南理工大学学报,2003,31(2):44-48.
    [93]高向东,黄石生,余英林.机器人焊缝跟踪神经网络控制的研究[J].机械工程学报,2000,36(5):7-10.
    [94]孙华,徐松源等.基于模糊神经网络的焊缝跟踪算法[J].哈尔滨理工大学学报,2001,6(4):67-70.
    [95]廖宝剑.弯曲及折线焊缝的自动跟踪[J].中国机械工程,1994,5(2):32-34.
    [96]Li Di,T.Srikanthanb,R.S.Chandel,Inoue Katsunori.Neural-network-based self-organized fuzzy logic control for arc welding[J].Engineering Applications of Artificial Intelligence,2001,14:115-124.
    [97]Kim J W.Na S J.A Self-Organizing Fuzzy Control Approach to Arc Sensor for Weld Joint Tracking in Gas Metal Arc Welding of Butt Joint[J].Welding Journal.1993,72(20):60-66.
    [98]Chiung-Hsin Tsai,Kuang-Hua Hou,Han-Tung Chuang.Fuzzy control of pulsed GTA welds by using real-time root bead image feedback[J].Journal of Materials Processing Technology,2006,176:158-167.
    [99]Pyunghyun Kim,Sehun Rhee,Chang Hee Lee.Automatic teaching of welding robot for free-formed seam using laser vision sensor[J].Optics and Lasers in Engineering,1999,31:173-182.
    [100]Hsing-Chia Kuo,Li-Jen Wu.An image tracking system for welded seams using fuzzy logic[J].Journal of Materials Processing Technology,2002,120:169-185.
    [101]E.Halmoy.Simulation of rotational arc sensing in gas metal arc welding[J].Science and technology of welding and joining,1999,4(6):347-351.
    [102]Y.H.Shi,W.S.Yoo,S.j.Na.Mathematical modeling of rotational arc sensor in GMAW and its applications to seam tracking and endpoint detection[J].Science and technology of welding and joining,2006,11(6):723-730.
    [103]陈康宁.机械工程控制基础[M].西安:西安交通大学出版社,1999.
    [104]任彦硕.自动控制原理[M].北京:机械工业出版社,2004.
    [105]丁玉美,高西全.数字信号处理[M].西安:西安电子科技大学出版社,2005.
    [106]从玉良,王宏志.数字信号处理原理及其Matlab实现[M].北京:电子工业出版社,2005.
    [107]吴建华.中值滤波与均值滤波的去噪性能比较[J].南昌大学学报,1998,20(1):32-35.
    [108]唐长青.数学形态学方法及其应用[M].北京:北京科学出版社,1990.
    [109]蒋刚毅等.基于数学形态滤波的语音信号基音特征提取[J].声学学报,1998,23(6):522-528.
    [110]洪波,袁灿,潘际銮,等.电弧传感器小波信号处理系统[J].焊接学报,2005,26(1):61-64.
    [111]杨立军,徐立城,张晓囡,等.短路过渡CO_2焊电信号的小波滤波[J].焊接学报,2006,27(8):31-34.
    [112]潘泉,张磊,孟晋丽.小波滤波方法及应用[M].北京:清华大学出版社,2005.
    [113]刘刚.应用连续小波变换检测机器中的撞击与故障定位[D].西安交通大学博士学位论文,2001.
    [114]薛家祥,张晓囡,黄石生.弧焊过程电信号小波软闽值消噪[J].焊接学报,2000,21(2):18-21.
    [115]D.L.Donoho.De-noising by soft-thresholding[J].IEEE Tans On Information Theory,1995,41(3):613-627.
    [116]Bin Liu,Yuanyuan Wang,Weiqi Wang.Spectrogram Enhancement Algorithm:a soft Thresholding-based Approach[J].Ultrasound in Med.& Boil,1999,25(5):839-846.
    [117]孙俊生,武传松.电弧压力对MIG焊接熔池几何形状的影响[J].金属学报,2001,37(4):434-438.
    [118]数理统计编写组.数理统计[M].西安:西北工业大学出版社,1999.
    [119]王海东,张华,徐建宁.轮式自主移动焊接机器人协调控制策略[J].焊接学报,2004,25(3):4-6.
    [120]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.
    [121]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,1998.
    [122]Lotfi A.Zadeh.Soft Computing and Fuzzy Logic[J].IEEE Software,1994,12:48-56.
    [123]周志华,曹存根.神经网络及其应用[M].北京:清华大学出版社,2004.
    [124]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [125]王仲民,岳宏等.轮式移动机器人轨迹跟踪控制[J].太原理工大学学报,2005,36(4):474-476.
    [126]徐俊艳,张培仁.非完整轮式移动机器人轨迹跟踪控制研究[J].中国科学技术大学学报,2004,34(3):376-380.
    [127]Wei Ren,Ji-Sang.Nonlinear Tracking Control for Nonholonomic Mobile Robots with Input Constraints:An Experimental Study[C].Portland of USA,2005American Control Conference,June 8-10,2005,4923-4928.
    [128]Seong Jin-Ma,Tan Lam-Chung,Young Bok-Kim,et al.Tracking Control of a Welding Mobile Robot Based On Adaptive Backstepping Method[C].Vietnam,International Symposium on Electrical & Electronics Engineering,Oct.11.12 2005,43-51.
    [129]Jiang Zhong-Ping,Henk Nijmeijer.Tracking Control of Mobile Robots:A Case Study in Backstepping[J].Automatic,1997,33(7):1393-1399.
    [130]Farzad Pourboghrat,Mattias P.Karlsson.Adaptive control of dynamic mobile robot with nonholonmic constraints[J].Computers and Electrical Engineering,2002,28:241-253.
    [131]Min-Soeng Kim,Jin-Ho Shin,Sun-Gi Hong,Ju-Jang Lee.Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances[J].Mechatronics.2003,13:507-519.
    [132]高延峰,张华,彭俊斐等.轮式移动焊接机器人弯曲焊缝跟踪控制[J].机器人,2007,29(5):339-342.
    [133]钟飞,钟毓宁.Mamdani与Sugeno型模糊推理的应用研究[J].湖北工业大学学报,2005,20(2):28-30[J].
    [134]赵恒平,俞金寿.一种基于T-S模型的自适应建模方法及应用[J].华东理工大学学报,2004,30(4):442-445.
    [135]邹健.智能预测控制及其应用[D].浙江大学博士学位论文,2002.
    [136]诸静.智能预测控制及其应用[M].杭州:浙江大学出版社,2003.
    [137]王俊国.基于神经网络的建模方法与控制策略研究[D].华中科技大学博士学位论文,2004.
    [138l Xianhua Jiang,Yuichi Motai,and Xingquan Zhu.Predictive Fuzzy Control for a Mobile Robot with Nonholonomic Constraints[C].2005 International Conference on Advanced Robotics,ICAR'05,Proceedings.2005:58-63.
    [139]Fraichard,Garnier.Fuzzy control to drive car-like vehicles[J].Robotics and Autonomous Systems.2001,34:1-22.
    [140]Foudil Abdessemed,Khier Benmahammed,Eric Monacelli.A fuzzy-based reactive controller for a non-holonomic mobile robot[J]Robotics and Autonomous Systems.2004,47:31-46.
    [141]Andon Venelinov Topalov,Jong-Hwan Kim,Todor Philipov Proychev.Fuzzy-net control of non-holonomic mobile robot using evolutionary feedback-error-learning [J].Robotics and Autonomous Systems,1998,23:187-200.
    [142]Gao yanfeng,Zhang Hua,Mao Zhiwei.Predictive Fuzzy Control for a Mobile Welding Robot Seam Tracking[C].The 7th World Congress on Intelligent Control and Automation,WCICA'08,Chongqing,2008:2271-2276.
    [143]毛志伟,张华,郑国云.旋转电弧传感器弯曲焊缝移动焊接机器人机构设计[J].焊接学报,2005,26(11):51-54.
    [144]喻强,张华,毛志伟,等.集装箱波纹板折线焊缝的三自由度焊接机器人逆运动学分析[J].机床与液压,2007,35(2):56-58.
    [145]熊有伦.机器人学[M].北京:机械工业出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700