用户名: 密码: 验证码:
感应滤波换流变压器及直流调制改善交流系统稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国未来二十年的电力发展格局为:“西电东送、南北互供、全国联网”。直流输电工程在西电东送和全国联网中承担着主要任务,随着输送距离的增大和容量的增加,给直流输电技术提出了更高的要求,减少直流输电系统对交流系统的谐波注入,限制在各种工况下直流系统无功补偿对交流系统的影响,是直流输电技术的热点问题。
     我国南方电网是世界上最复杂的交直流并联电网,在交流系统故障时,利用直流系统的快速调节提高交流系统的暂态稳定水平,抑制交流系统的低频振荡,是研究交直流并联系统安全稳定运行的关键问题。
     在交直流并联输电系统中,直流系统对交流系统稳定性的影响主要由直流系统的拓扑结构和控制策略决定。基于感应滤波的直流输电系统中换流变压器结构有别于传统的换流变压器结构,而直流调制技术能改善交流系统的稳定性是一个众所周知的事实。因此,本文以这两个方面来研究直流输电系统如何改善交流系统的稳定性。
     本文依托“十一五”重大科技专项及国家自然科学基金,对基于感应滤波的直流输电系统在交流系统故障时,感应滤波换流变压器的滤波和无功补偿特性改善交流系统的稳定性进行了研究,对直流调制改善交流系统的频率及暂态稳定性进行了理论研究。研究重点及创新点主要体现在以下几个方面:
     (1)感应滤波换流变压器的短路阻抗是实现滤波的关键因素,设计者以遗传算法设计了短路阻抗,算法复杂,收敛较早。本文以换流阀最大短路冲击电流为原则优化设计了感应滤波换流变压器的短路阻抗,算法简单,易于实现。
     (2)分析了引起谐波不稳定的两个主要原因:幅值较大的低次非特征谐波电流流过谐波阻抗较大的系统引起正反馈;变压器铁芯的饱和现象。基于感应滤波的直流输电系统,对这两个原因已有研究,但是研究结果是建立在实验的基础之上,并没有从机理上进行本质的分析。本文在交流系统发生不对称故障时,将交流电压分解为正序谐波电压和负序谐波电压形式,并对直流输电系统交流侧的正序、负序谐波传递到直流侧的规律进行了推导。由于感应滤波换流变压器的作用,使得直流侧的谐波电压幅值比传统的直流输电系统有所降低。以正序、负序谐波在交、直流侧传递的规律为基础,分析了基于感应滤波的直流输电系统交流侧等值谐波阻抗的计算公式;直流侧等值谐波阻抗的计算公式。得出了基于感应滤波的直流输电系统的谐波等值阻抗比传统的直流输电系统要小,以上以正序、负序谐波电压在交直流侧传递的计算方法,很好的从机理上论证了基于感应滤波的直流输电系统在抑制谐波不稳定方面的优势。
     (3)对感应滤波换流变压器铁芯的饱和现象研究,目前都是基于实测数据和录波,本文以传统变压器铁芯饱和的研究方法为基础,考虑感应滤波换流变压器绕组布置的特殊性,用电路-磁路耦合模型建立了感应滤波换流变压器的绕组电磁关系,数值仿真和实验结果相一致。研究成果有助于进一步研究其本体特性。
     (4)对基于感应滤波的直流输电系统换流站的电压稳定性进行了计算,换流站交流系统的失稳常常是由于无功功率的欠补或过补造成的。基于感应滤波的直流输电系统的无功补偿特性使得逆变站的电压稳定性比传统直流输电有所改善。现有研究进行了感应滤波换流变压器的换相电抗和换相电压的跌落值这两个因数与传统直流输电的比较,而本文在此基础上对比了这两个因素对电压调节效应的评估计算的影响。验证了基于感应滤波的直流输电系统能增强换流站的电压稳定性。
     直流调制的调制信号和控制策略是研究的关键,针对目前两种主要的调节-交流系统的频率调节和交流系统的稳定性调节。在已有的线性与非线性变结构直流调制策略基础上进行控制器的改进研究。
     (1)着重研究了交直流并联系统中,受端系统出现负荷扰动时的频率控制问题,提出了变结构的直流调制线性控制器。建立了频率偏差、交流功率偏差与直流功率偏差控制的简单模型,采用了最优二次型切换面设计,与传统方法相比,该方法简单,状态变量少,容易实现,有利于抑制外部扰动,鲁棒性强。有利于在多端交直流并联系统中应用。
     (2)针对交直流并联系统的暂态稳定性问题,提出了非线性变结构直流调制控制器的设计新方法。本文与常规的变结构设计步骤相反,先设计了切换面,再设计控制器。该方法能使非线性系统的非线性变结构控制器的设计简单化。
     本文以交直流输电系统的应用需求为背景,以直流输电对交流系统稳定性影响为研究对象,研究了基于感应滤波的直流输电能在一定程度上改善交流系统的稳定性,研究成果有助于感应滤波换流变压器在直流输电中的推广应用。论文也对直流系统和交流系统的联合调节作了一定的研究,变结构直流调制器的设计新方法为交直流并联运行系统的控制器设计提供了有益的参考。
In the next two decades, the pattern of the electric power development in Chinais:“the power transmission from west to east, north and south mutual supply andnationwide network”. HVDC (High Voltage Direct Current) transmission technologyundertakes the main task in the power transmission from west to east and nationwidenetwork. With increase of the transmission distance and transmission capacity,reliability of power system is higher standard for the DC transmission. The hotresearch field is how to reduce harmonic injection into AC system and how to reducethe influence that the reactive power compensation under various HVDC operatingconditions on the AC system.
     China Southern Power Grid is the most complex AC/DC hybrid systems.Utilizing the quick response of the DC system to improve the dynamic stability andsuppress the low frequency oscillations of AC grids under AC fault, which is a keyresearch issue for the security and stability operation of the AC/DC hybrid system.
     The effect of the DC system to AC system stability is mainly determined by theDC system topology and control strategy in the AC-DC parallel system. Based on thefact that the structure of the inductive filtering converter transformer of HVDCsystem is different from the structure of the traditional converter transformer,combined with the truth that the DC modulation can improve the performance of theAC system. Therefore, this thesis studied the DC system improved the stability of theAC system in these two aspects.
     Based on “the Eleventh Five” important scientific and technological specialFoundation and National Natural Science Foundation of China, this thesis studied thefiltering characteristic of inductive filtering converter transformer and its reactivepower compensation characteristic on improving AC system’s stability in case of ACsystem fault in the DC transmission system, and also carried out a theoretical researchon DC power modulation that improves the frequency and transient stability of ACsystem in the AC system fault. The fundamental research and the related innovativeachievement in this thesis can be summarized as follows:
     (1) The short-circuit impedance of the converter transformer is the key to filter,the designer using the genetic algorithm design short-circuit impedance, which makesthe algorithm complex and convergence earlier. This thesis takes the converter valve’sbiggest impact short circuit current as a design principle to optimize the short-circuitimpedance of inductive filtering converter transformer, the algorithm is simplified and can be realized easily.
     (2) The two main reasons that result harmonic instability are analyzed: thepositive feedback is occurred when the larger amplitude low-order harmonic passesthrough the system that owns larger harmonic impedance; and the transformer coresaturation phenomenon is another reason. Although these two reasons have beenstudied based on inductive filtering DC transmission system, the result was based onexperiment. Essence of this term has not been analyzed yet. In this term, the ACpower will be decomposed into positive sequence voltage and negative sequencevoltage when single phase fault occur in the AC system, the negative and positivesequence harmonic pass from the AC side to the DC side in HVDC system iscalculated. Because of the effect of inductive filtering converter transformer, the DCside harmonic voltage amplitude will be lower than the traditional DC transmissionsystem. Based on the transfer characteristic of the positive sequence, and negativesequence harmonics between AC-and DC-side, this thesis analyzed the equivalentharmonic impedance at the AC-and DC-side of the inductive filtering based HVDCsystem. The research result shows that harmonic equivalent impedance of theinductive filtering based HVDC converter station is smaller than the traditionalHVDC system. The above calculation method of the positive sequence, negativesequence harmonic voltage passing in AC to DC side, demonstrated the advantages ofthe DC transmission system based on the inductive filtering in the suppression ofharmonic instability in mechanism.
     (3) At present, the study of the inductive filter converter transformer coresaturation phenomenon are based on the measured data and the wave recording, basedon traditional method transformer core saturation, taking the special of inductivefiltering transformer winding arrangement into account. The electromagneticrelationship among windings of the inductive filtering converter transformer isestablished by using the circuit-magnetic coupling model. The simulation resultscoincide with the experimental results. The result contribute to the further study of itsbody features.
     (4) Calculating the voltage stability of inductive filtering based HVDC converterstation, it is found that the instability of AC system in converter station is often due toreactive power over compensation or de-compensation. Reactive power compensationcharacteristics of the inductive filtering converter transformer better stability of thevoltage in the inverter station than that of traditional HVDC. The former researchcompared commutation reactance and the dropping value of the commutation voltagewith the traditional DC transmission. On this basis, there is a comparison of these twofactors’ affection on the assessment of the voltage regulator. It verified that the inductive filtering based on HVDC transmission system can enhance the voltagestability of the converter station.
     Signal modulation and control strategies play the key role in the DC modulationresearch. For two main regulation-the AC system frequency regulation and stabilityregulation, the controller has some improvements in the existing linear and nonlinearvariable structure DC modulation strategies.
     (1) Variable structure DC modulation linear controller is proposed by focusingon researching frequency control when load disturbance occurred in the receiversystem in a parallel AC-DC interconnected power system. Using the optimal formswitching surface design in sliding mode, a simple model is built including offrequency deviation, the AC power deviation and DC power deviation. Using theoptimal quadratic form switching surface design in sliding mode. Compared withtraditional methods, this method is easy to achieve by its simplification with less statevariable, suppress external disturbances, the strong robustness. It also contribute toapplication in multi-terminal AC-DC parallel system.
     (2) In terms of the transient stability problems of the AC-DC parallel system, thenew design method of nonlinear variable structure DC modulation controller isproposed. Steps of the variable structure design are contrary to the conventional ones.First, the switching surface was designed, and then the controller is designed. Thismethod is easy to carry out make nonlinear variable structure controller in nonlinearsystems become simplified.
     Based on the background of the application requirements of AC-DC transmissionsystem and took the DC transmission’s impact on the stability of the AC system as thestudy object, this thesis makes a deep research on inductive filtering based HVDCtransmission system can improve the stability of the AC system, It provides a usefulpractical reference for the application of the inductive filtering converter transformer.the joint regulation of the DC system and AC system are also studied. The designmethod of variable structure DC modulator provides a useful reference for thecontroller design of AC-DC parallel operation system.
引文
[1]张运洲.西电东送存在的问题及对策思考.中国电力,2004,37(3):19-21
    [2]彭毅晖.高压直流输电的发展与展望.湖南电力,2007,27(1):52-57
    [3]舒印彪.中国直流输电的现状及展望.高电压技术,2004,30(11):1-3
    [4]徐政,屠卿瑞,裘鹏.从2010国际大电网会议看直流输电技术的发展方向.高电压技术,2010,36(12):3070-3076
    [5] Bahrman M P, Johnson B K. The abcs of HVDC transmission technologies. IEEEPower and Energy Magazine,2007,5(2):32-34
    [6] B. R. Anderson. HVDC transmission opportunities and challenges.In: The8thIEEE International Conference on AC and DC Power Transmission. London:Institution of Electrical Engineers,2006:24-29
    [7]杨勇.高压直流输电技术发展与应用前景.电力自动化设备,2001,21(9):58-60
    [8]车孝轩.直流输电技术的动向与未来.高电压技术,1996,22(3):91-94
    [9]张桂斌,徐政.直流输电技术的新发展.中国电力,2000,33(3):32-35
    [10]陈红军,孟庆东.高压直流输电技术的发展及其在电网中的作用.中国电力,2001,34(12):68-71
    [11]郎需军,高戟,林清海.高压直流输电技术.山东电力技术,2003,10(1):26-28
    [12]浙江大学发电教研组.直流输电.北京:水利电力出版社,1985,143-155
    [13]戴熙杰.直流输电基础.北京:水利电力出版社,1990,20-24
    [14]李庚银,吕鹏飞,李广凯,等.轻型高压直流输电技术的发展与展望.电力系统自动化,2003,27(4):77-81
    [15]马振军.轻型HVDC和VSC简介.高压电器,2002,38(6):5-6
    [16]武娟,任震,黄雯莹,等.轻型直流输电的运行机理和特性分析.华南理工大学学报(自然科学版),2001,29(8):41-44
    [17]赵杰.高压直流输电的前沿技术.中国电力,2005,38(10):1-6
    [18]李兴源.高压直流输电系统的运行与控制.北京:科学出版社,1998,123-130
    [19]赵婉君.高压直流输电工程技术.北京:中国电力出版社,2004,50-56
    [20]韩富春.电力系统自动化技术.北京:中国电力出版社,2003,45-55
    [21] M.Noroozian, A.A.Edris, D.Kidd, et al. The potential use of voltage sourcedconverter based back to back tie in load restorations. IEEE Transactions onPower Delivery,2003(18):1416-1421
    [22] N. Prabhu, K. R. Padiyar. Investigation of subsynchronous resonance withVSC-based HVDC transmission systems. IEEE Transactions on Power Delivery,2009,24(1):433-440
    [23] C. Du, E. Agneholm, G. Olsson. VSC-HVDC systems for industrial plants withon site generators. IEEE Transactions on Power Delivery,2009,24(3):1359-1366
    [24][苏]C. B.瓦修京斯基著.变压器的理论与计算.崔立君,杜恩田译.北京:机械工业出版社,1983,300-321
    [25]王钢,李志铿,李海锋,等.交直流系统的换流器动态相量模型.中国电机工程学报,2010,30(1):59-64
    [26] Hu Lihua, Yacamini R. Harmonic transfer through converters and HVDC links.IEEE Transactions on Power Electronics.1992,3(7):514-525
    [27] Gutierrez-Sanchez O, Fuerte-Esquivel C R. Analysis of unstable solutions in asingle-phase AC/DC converter. IEEE Power Engineering Review,2000,20(6):49-51
    [28]林伟芳,汤涌,卜广全.多馈入交直流系统电压稳定性研究.电网技术,2008,32(11):7-12
    [29]刘明波,程劲辉,程莹.交直流并联电力系统动态电压稳定性分析.电力系统自动化,1999,23(16):27-30
    [30]李勇,罗隆福,刘福生,等.变压器感应滤波技术的发展现状与应用前景.电工技术学报,2009,24(3):86-92
    [31]罗隆福,李勇,许加柱,等.基于自耦补偿与谐波屏蔽换流变压器的直流输电系统仿真研究.电网技术,2007,31(1):32-35
    [32]许加柱.新型换流变压器及其滤波系统的理论与应用研究:[湖南大学博士学位论文].长沙:湖南大学,2007,31-33
    [33] Yong Li, Longfu Luo, Christian Rehtanz, et al. Study on characteristicparameters of a new converter transformer for HVDC systems. IEEETransactions on Power Delivery,2009,24(4):2125-2131
    [34] Longfu Luo, Yong Li, Jiazhu Xu, et al. A new converter transformer and acorresponding inductive filtering method for HVDC transmission system. IEEETransactions on Power Delivery,2008,23(3):1426-1431
    [35]周群,张谊,黄家裕.非特征谐波引起的次同步振荡研究.电网技术,1999,23(12):4-5
    [36]李勇,罗隆福,贺达江,等.新型直流输电系统典型谐波分布特性分析.电力系统自动化,2009,33(10):59-63
    [37] Sebastiao E. M, DE Oliveira,Jose Octavio R. P.Guimaraes. Effects of voltagesupply unbalance on AC harmonic current components produced by AC/DCconverters. IEEE Transactions on Power Delivery,2007,22(4):2498-2507
    [38] Graeme N. Bathurst, Neville R. Waston, Jos Arrillaga. Modeling of bipolarHVDC links in the harmonic domain. IEEE Transactions on Power Delivery,2000,15(3):1034-1038
    [39] Kadry Sadek, Mareos Pereira. Harmonic transfer in HVDC systems underunbalanced conditions. IEEE Transactions on Power Systems,1999,14(4):1394-1399
    [40] Peter Riedel. Harmonic voltage and current transfer, and AC-and DC-sideimpedances of HVDC converters. IEEE Transactions on Power Delivery,2005,20(3):2095-2099
    [41] A. R. Wood and J. Arrillaga. The frequency dependent impedance of an HVDCconverter. IEEE Transactions on Power Delivery,1995,10(3):1635-1641
    [42] Hammad A E. Analysis of second harmonic instability for ChateauguayHVDC/SVC scheme. IEEE Trans on Power Delivery,1992,7(1):410-415.
    [43] A. E. Hammad. Analysis of second harmonic instability for the HVDC/SVCscheme. IEEE Transactions on Power Delivery,1992,7(1):410-415
    [44] P. S. Bodger, G. D. Irwin, D. A. Woodford. Controlling harmonic instability ofHVDC links connected to weak AC systems. IEEE Transactions on PowerDelivery,1990,5(4):2039-2046
    [45]许加柱,罗隆福,李季.交流系统故障对滤波换相换流器的影响分析.电工技术学报,2010,25(1):144-150
    [46]罗隆福,尚荣艳,许加柱.基于新型换流变压器的直流输电系统改善换相的机理.中国电机工程学报,2009,29(9):50-56
    [47]李勇,罗隆福,尚荣艳,等.新型直流输电系统阀侧绕组无功补偿特性分析.电力系统自动化,2007,31(8):52-55,66
    [48]许加柱,罗隆福,李季.新型换流变压器及其滤波系统的换相电抗的分析计算.电工技术学报,2007,33(12):118-123
    [49]徐政.交直流电力系统动态行为分析.北京:机械工业出版社,2005,110-112
    [50]吴华坚,王渝红,李兴源.基于综合性能指标的交直流混合系统直流调制研究.电力系统保护与控制,2010,38(22):69-72
    [51]陈淮金.直流调制对交直流混合系统稳定性影响的研究.中国电机工程学报,1994,18(9):11-17
    [52] Hamad A E. Stability and control of HVDC and AC transmissions in Parallel.IEEE Trans. on Power Delivery,1999,14(4):154-1554
    [53]荆勇,杨晋柏,李柏青,等.直流调制改善交直流混联系统暂态稳定性的研究.电网技术,2004,28(10):1-4
    [54]高为炳.变结构控制的理论及设计方法.北京:科学出版社,1996,14-19
    [55]杨柳,钟杰峰.广东1500MVA大容量变压器短路阻抗的研究.电力系统自动化,2008,32(23):104-107
    [56]刘艳华.云广直流特高压换流变压器短路阻抗的选择.高电压技术,2006,32(9):100-102
    [57]杨汾艳,徐政.直流输电系统换流变压器短路阻抗的选择.高电压技术,2008,34(8):1628-1632
    [58]贺以燕.关于国内生产高压直流换流变压器的思考.变压器,1997,34(5):10-14.
    [59] Arabi S, Kundur P, Sawada J H. Appropriate HVDC transmission simulationmodels for various power system stability studies. IEEE Trans on PWRS,1998,13(4):1292-1297
    [60]王钢,李志铿,李海锋,等. HVDC换流器等值谐波阻抗的计算方法.中国电机工程学报,2010,30(19):64-68
    [61]马玉龙,肖湘宁,姜旭,等. HVDC换流器的阻抗频率特性.电力系统自动化,2006,30(12):66-69
    [62] E. V. Larsen, D. H. Baker, J. C. Mclver. Low-order harmonic interactions onAC/DC systems. IEEE Transactions on Power Delivery,1989,4(1):493-501
    [63] S. Chen, A. R. Wood, J. Arrillaga. HVDC converter transformer core saturationinstability: a frequency domain analysis. IEEE Proc.Gener. Transm. Distrib,1996,143(1):75-81
    [64]杨小兵,李兴源,金小明,等.云广特高压直流输电系统中换流变压器铁心饱和不稳定分析,电网技术,2008,32(19):5-9
    [65]穆子龙,李兴源.交、直流输电系统相互影响引起的谐波不稳定问题.电力自动化设备,2009,33(2):96-100
    [66]皇甫成,阮江军,张宇,等.变压器直流偏磁的仿真研究及限制措施.高电压技术,2006,32(9):117-120
    [67]皇甫成,魏远航,钟连宏,等.基于对偶性原理的三相多芯柱变压器暂态模型.中国电机工程学报,2007,27(3):83-88
    [68]洪淑月,施晓钟.电力变压器的数学模型与仿真研究.电工技术学报,2003,18(2):72-76
    [69]李庆民,徐国政,钱家骊,等.大功率GTO等效传热模型的研究.中国电机工程学报,2000,20(1):19-28
    [70]何娜,黄丽娜,武健,等.基于粒子群优化算法的混合有源滤波器中无源滤波器的多目标优化设计.中国电机工程学报,2008,28(27):1845-1849
    [71]李泓志,崔翔,卢铁兵,等.变压器直流偏磁的电路–磁路模型.中国电机工程学报,2009,29(27):119-125
    [72]吴笃贵,徐政.三相多芯柱电力变压器的谐波模型研究.电网技术,2003,27(4):15-21
    [73]赵亮亮,陈超英.电力系统仿真研究中自耦变压器模型的研究.电力系统及其自动化学报,2004,16(1):83-88
    [74] Cherry E C. The quality between interlinked electric and magnetic circuits andthe formation of transformer equivalent circuits. Proceedings of the PhysicalSociety: Section B,1994,62(2):101-111
    [75]刘明波,程劲辉,程莹.交直流并联电力系统动态电压稳定性分析,电力系统自动化,1999,23(16):27-30
    [76] L.A. Pilotto, A.E. HaTnIllad. Transient AC voltage related phenomena forHVDC schemes connected to weak ac system. IEEE Trans on Power Delivery,1992,7(3):1396-1404
    [77]冉立,任震.交直流并联系统交流母线电压稳定性评估的模型和算法.中国电机工程学报,1989,9(3):26-33
    [78]徐政,高慧敏,杨靖萍.南方电网中直流紧急功率调制的作用.高电压技术,2004,30(11):24-26
    [79]杨卫东,薛禹胜,荆勇.南方电网中直流输电系统对交流系统的紧急功率支援.电力系统自动化,2003,27(17):68-72
    [80]谢惠藩,张尧,夏成军,等.交直流互联电网直流功率调制相关问题.电网技术,2009,33(4):43-50
    [81]黄震,郑超,庞晓艳.四川多回±800kV直流外送系统直流有功功率协调控制.电网技术,2011,35(5):52-58
    [82]朱浩骏,兰洲,蔡泽祥.交直流互联系统鲁棒自适应直流功率调制.电力系统自动化,2006,30(7):21-26
    [83] Edwards C.A practical method for the design of sliding mode controllers usinglinear matrix inequalities.Automatic,2004,10(3):1-9
    [84] Bartolini G, Pisano A, Punta E, et al.A survey of applications of second ordersliding mode control to mechanical systems. International Journal of Control,2003,76(9):875-892
    [85] Zhuang K Y, Su H Y, Zhang K Q. Adaptive terminal sliding mode control forhigh order nonlinear dynamic system.Automatic,2003,4(1):85-63
    [86] Chen M S, Hang Y R, Tomizuka M A. A state dependent boundary layer designfor sliding mode control. Automatic Control,2002,47(10):1677-1681
    [87]姚琼荟,黄继起,吴汉松.变结构控制系统.重庆:重庆大学出版社,1997,112-116
    [88] Kang B P, Ju J L. Sliding mode controller with filtered signal for robotmanipulators using virtual plant/controller. Mechatronics,1997,7(3):277-286
    [89] Yanada H, Ohnishi H. Frequency-shaped sliding model control of anelectrohydraulic servomotor. Systems and Control and Dynamics,1999,213(1):441-448
    [90] Lin F J, Chiu S L, Shyu K K. Novel sliding mode controller for synchronousmotor drive. IEEE Trans on Aerospace and Electronic Systems,1998,34(2):532-542
    [91] Utkin V I. Sliding modes in control optimization. Berlin:Spring-Verlag,1992,23-25
    [92] Lu X Y, Spurgeon S K. Control of nonlinear non-minimum phase systems usingdynamic sliding mode. Int Journal of System Science,1999,30(2):183-198
    [93] Kim S M, Han W Y, Kim S J. Design of a new adaptive sliding mode observerfor sensorless induction motor drive. Electric Power Systems Research,2004,70(1):16-22
    [94] HedricK J K, Yip P P. Multiple sliding surface control: theory and application.Journal of Dynamic Systems, Measurement, and Control,2000,122(4):586-593
    [95] Edwards C, Spurgeon S K. sliding mode control, Theory and Applications.Taylor&Francis,1998,32-36
    [96]罗建裕,王小英,鲁庭瑞.基于广域测量技术的电网实时动态监测系统应用.电力系统自动化,2003,27(24):78-80
    [97]钟志安,程林,孙元章.全局暂态功角测量研究及动态模拟实验.电力系统自动化,2002,26(16):16-21
    [98]陈干平,秦翼鸿.发电机励磁系统及调速系统的交迭分解分散控制.重庆大学学报,1998,11(3):14-22
    [99] Issarachai Ngamroo.A stabilization of frequency oscillations using a powermodulation control of HVDC link in a parallel AC-DC.IEEE Transactions onPower Systems,2006,12(3):1405-1410
    [100]董清,高曙,鲍海.同步发电机调速系统附加H∞鲁棒分散控制.中国电机工程学报,2002,22(2):47-51
    [101]竺炜,唐颖杰,谭喜意.发电机调速附加控制系统频率稳定的作用.电力自动化设备,2008,28(12):21-24
    [102]蒋铁铮,陈陈,艾芊.汽轮发电机汽门开度的分散非线性预测控制.中国电机工程学报,2006,26(20):22-26.
    [103]卢强.输电系统最优控制.北京:科学技术出版社,1982,184-192
    [104]吴捷,陈巍,刘永强.现代控制理论在电力系统中的应用(一,二).中国电机工程学报,1999,18(6):373-387
    [105]王渝红,李群湛,何晓琼.直流控制策略及对电网稳定性的影响.西南交通大学学报,2008,43(3):304-308
    [106]卢强,王仲鸿,韩英铎.电力系统最优控制.北京:科学出版社,1984:137-219
    [107]郑希云,李兴源,王渝红.交直流系统中直流调制的协调控制.高电压技术,2010,36(4):1055-1060
    [108]陈荔,刘会金,陈格桓.直流调制在多回直流输电系统的作用.高电压技术,2006,32(3):87-89
    [109]张建设,张尧,张志朝.直流系统控制方式对大扰动后交直流混合系统电压和功率恢复的影响.电网技术,2005,29(5):19-24
    [110]李兴源,刘红超,邱晓燕,等.改善暂态稳定性的HVDC非线性控制策略.电力系统自动化,2002,26(14):16-19
    [111]康忠健,勾松波,孟繁玉. SVC与发电机励磁的非线性变结构协调控制.高电压技术,2008,34(5):995-1000
    [112]鲜艳霞,李兴源. HVDC与发电机励磁的非线性综合控制策略.电网技术,2004,28(14):32-35
    [113]谢小荣,韩英译,崔文进.多机电力系统中发电机励磁控制设计的数学模型.中国电机工程学报,2001,21(9):8-12
    [114]邵振霞,李兴源. HVDC紧急功率支援自适应模糊控制器设计.电力系统自动化,2002,15(5):1-4
    [115]程丽敏,李兴源,刘剑.提高交直流系统暂态稳定的非线性最优协调控制.高电压技术,2011,37(4):1029-1034
    [116]韩云瑞.输电系统自动控制的变结构方法.控制理论与应用,1997,14(5):638-641
    [117] Perruquetti W, Barbot J P. Sliding mode control in engineering. New York,American: Marcel Dekker Inc,2002,143-150
    [118] Xu J X, Lee T H,Wang M, Desigh of variable structure controllers withcontinuous switching control, International Journal Of Control,1996,65(3):409-431
    [119] Al-hamouz, Z.M. and Abdel-Magid.Y.L. Variable structure load frequencycontroller for multiaria power systems. Electric Power and EnergySyst.1993,15(5):293-300
    [120] Subbarao, G. V. and Ashok Iyer. Nonlinear excitation and governor controlusing variable structure.Control,1993,57(6):1325-1342
    [121] Li X Y. A nonlinear emergency control strategy for HVDC transmissionsystems. Electric Power Systems Research,2003,67(2):153-159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700