用户名: 密码: 验证码:
基于广义相关分析的调制制式模糊分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间中各种无线电信号的模式、频率以及功能复杂化,形式多样化,客观上要求无线电终端能够适应多模式、多频段、多功能环境,因此期望能够在使用、规划和创建无线电过程中,事先认知并描述复杂空间的无线电状态(RKRL:Radio KnowledgeRepresentation Language)(包括波达方向、频率、功率、调制制式、信道编码、传输帧结构等),进而对这个复杂的状态空间进行合理的解析,从而作出理性选择,形成了“认知无线电”的总和,作为一个不可缺少的内在功能要求,调制制式的自动分类也开始得到关注。截获信号通常被埋藏在噪声中(高斯白噪声、脉冲噪声等),传统的决策理论和统计模式识别的方法,分类信息的利用较低,特征提取带有较大的盲目性,且受噪声影响大,因而识别性能不太理想。如何在特征参数的提取中减弱噪声和干扰的影响,设计具有较强适应能力和容错能力的分类器,是研究的主要方向。
     本文在前人工作的基础上,围绕“无线电认知研究”中调制分类子课题,在信噪比变化较大,存在干扰信号的情况下,对数字通信信号调制制式自动分类预处理过程的改进、新的有效分类特征构造,分类器建模的自适应优化算法理论基础和实现进行了深入的研究,形成了一套有效的数字通信信号调制制式分类解决方案。所做的工作主要包括:
     首先对调制分类前预处理的几个关键环节整合的基础上,分析了信号序列边界处瞬时频率估计以及精确的载频估计方法,设计了一种模糊加权滤波算法,可较好地保护信号的细节信息,为提高分类性能打下了好基础。
     接着讨论了有效分类特征的选择与提取,基于对广义相关函数形式的分析,引出高阶正交累积量和高阶正交循环累积量,并根据理论分析和测试选择性能最优的分类特征构造形式,新特征实际上定义了一种调制信号同相分量与正交分量的高阶相关统计量,蕴涵更多调制制式的本质结构特征,实验证明具有明显的抑制噪声和干扰的效果。利用模糊聚类方法确定了特征空间的聚类中心等信息,可作为后续分类器设计的参考。
     最后利用神经网络的学习机制实现调制制式自适应模糊分类器的非线性动态建模,先根据特征训练样本的大致分布状况建立蕴涵初始经验的并联模糊分类器,再采取分层决策的级联结构,提高了特征与分类器的契合度,最大程度上减少了隶属度函数和模糊规则的冗余。蕴涵初始经验的模糊推理系统,其知识推理结构明确可控,通过样本训练实现结构参数自适应调整和优化,完成其逼近求精,系统在信噪比等环境参数变化较大情况下具有更好的适应性和容错性,正确识别率和效率相对神经网络识别器和模糊识别器有明显提高。
The various signal pattem,frequency and function of radio are more complicated inspace,and the form diversifies,objectively,require that the radio terminal is able to adapt tomany patterns,multifrequency,multi functional environment.Therefore,in the process ofusing,planning and creating,the radio consumer longs to be able to predict and describ thestates of complicated space radio signals using RKRL(Radio Knowledge RepresentationLanguage),include DOA(Direction Of Arrival),frequency,power,modulation format,signal channel encode,frame structure,etc..Then analyse on this complicated state spacerationally and make reasonal choices.All the above issues form the concept of“CognitiveRadio”.As a necessary function module,Automatic modulation classification has attractedmore attention.The intercepted signals are often concealed in noise including Gaussianwhite noise and impulse noise.Moreover,since the former methods of statistical patternrecognition and decision theory are mostly used,the information of classification isn'tadequately utilized.Sometimes,the features are extracted subjectively and easily affected bynoise,so the classification performances aren't satisfying.How to reduce the influence ofsignal noise ratio and interference in features? How to design the classifier with greateradaptability and fault tolerance? All of these problems are the topic way of the paperresearch.
     Based on the previous works,this thesis has engaged in extensive research on Sub-topicof modulation foramat classification in“Radio Cognition Studies”.Considering the largevariation range of communication signal's SNR and the interference from other signals,themodified preprocessing,the novel classification features with excellent quality and theoptimal adaptive classifiers are presented for automatic digital modulation classification.Finally an improved global solution is formed.The main works can be summarizedasfollows:
     Firstly,several key problems of the preprocessing of modulation classification areintegrated into a part.The instantaneous frequency estimation method at signal sequenceboundary and the accurate carrier frequency estimation method are analysed.A fuzzyweighted filter algorithm with preferable signal details protection capability is presented,which is contributed to improve the classification performance.
     Then,the selection and abstraction of classification features are discussed.This thesisintroduces the high order orthogonal cumulant (HOOC)and high order orthogonal cycliccumulant (HOOCC)based on the analysis of generalized correlation function.The optimalstructure form of the classification features are selected according to the theoretical analyseand simulation estimation.The novel features actually defines a high Order correlation statistics of the in-phase component and quadrature component of the modulated signal,which contains more essential information of modulation formats and has evidente effect tosuppress noise and interference.The clustering centers of the feature space,which can be thereference information for modulation classifier design,are determined by the fuzzyclustering algorithm.
     Finally,the non-linear dynamic modeling of an adaptive fuzzy modulation classifier,which based on the training mechanism within the neural network,was presented.Themodel adopted the parallel and hierarchical decision-based structure,which made thefeatures match the classifier and reduced the redundancy of the membership functions andfuzzy rules.The system with initial experience guarantees the controllability of theknowledge inference structure.By applying the training data,the algorithm adaptivelyadjusted and optimized the structure parameter and completed the approximation process.The simulation results verify the better adaptability and fault-tolerance of the system in thepresence of various environment parameters (SNR etc),as well as the improvement of theaverage probability of correct classification and the algorithm efficiency,compared with theneural network classifier or fuzzy classifier.
引文
[1]陈卫东.数字通信信号调制识别算法研究:[博士论文].西安电子科技大学,2001.
    [2]杨小牛,楼才义,徐建良.软件无线电原理与应用.北京:电子工业出版社,2001.
    [3]罗利春.无线电侦查信号分析与处理.北京:国防工业出版社,2003.
    [4]Rosti,A.-V.Statistic Methods in Modulation Classification:[Master of Science thesis].Tampere University of Technology Department of Information Technology,1998.
    [5]Chung-Yu,H.,Polydoros,A.Likelihood methods for MPSK modulation classification.Communications,IEEE Transactions on.1995,43(234):1493-1504.
    [6]Kim,K.,Polydoros,A.Digital modulation classification:the BPSK versus QPSK case.in:Military Communications Conference,1988.MILCOM 88,Conference record.'21 st Century Military Communications - What's Possible?'.1988 IEEE:1988.431-436 vol.432.
    [7]Weaver,C.S.,Cole,C.A.,Krumland,R.B.,Miller,M.L.,The automatic classification of modulation types by pattern recognition,Technical Report AD691069,April,1969.
    [8]Leinonen,J.,Juntti,M.Modulation classification in adaptive OFDM systems.in:Vehicular Technology Conference,2004.VTC 2004-Spring.2004 IEEE 59th:vol.3,2004.1554-1558 Vol.1553.
    [9]Wei,W.,Mendel,J.M.Maximum-likelihood classification for digital amplitude-phase modulations.IEEE Transactions on Communications.2000,48(2):189-193.
    [10]Sills,J.A.Maximum-likelihood modulation classification for PSK/QAM.in:Military Communications Conference Proceedings,1999.MILCOM 1999.IEEE:vol.1,1999.217-220 vol.211.
    [11]Polydoros,A.,Kim,K.On the detection and classification of quadrature digital modulations in broad-band noise.Communications,IEEE Transactions on.1990,38(8):1199-1211.
    [12]C.Y.Huang,A.P.Two Small-SNR Classification Rules for CPM.in:Proceedings of IEEE MILCOM'92:vol.3,1992.1236-1240.
    [13]Huang,C.-Y.,Polydoros,A.Likelihood methods for MPSK modulation classification.IEEE Transactions on Communications.1995,43(2-4 pt 3):1493-1504.
    [14]Wei,S.,Xu,J.L.,Mengchu,Z.Real-time Modulation Classification Based On Maximum Likelihood.Communications Letters,IEEE.2008,12(11):801-803.
    [15]Su,W.,Xu,J.L.,Zhou,M.Real-time Modulation Classification Based On Maximum Likelihood.Communications Letters,IEEE.2008,12(11):801-803.
    [16]Shi,Q.,Karasawa,Y.Maximum Likelihood Based Modulation Classification for Unsynchronized QAMs.in:Global Telecommunications Conference,2008.IEEE GLOBECOM 2008.IEEE:2008.1-5.
    [17]Wei,Z.,Hu,Y.Automatic digital modulation recognition algorithms based on approximately logarithm likelihood method.in.Piscataway,NJ 08855-1331,United States:Institute of Electrical and Electronics Engineers Computer Society,vol.2,2007.834-838.
    [18] Dobre, O. A., Hameed, F. Likelihood-based algorithms for linear digital modulation classification in fading CHANNELS, in. Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Inc., 2007. 1347-1350.
    [19] Zhang, W., Yang, H. Automatic Digital Modulation Recognition Algorithms Based on Approximately Logarithm Likelihood Method, in: Communications, Circuits and Systems Proceedings, 2006 International Conference on: vol. 2, 2006. 834-838.
    [20] Octavia, A. D., Fahed, H. Likelihood-Based Algorithms for Linear Digital Modulation Classification in Fading Channels, in: Electrical and Computer Engineering, 2006. CCECE '06. Canadian Conference on: 2006. 1347-1350.
    [21] Liang, H. Maximum likelihood BPSK and QPSK classifier in fading environment using the EM algorithm, in: System Theory, 2006. SSST '06. Proceeding of the Thirty-Eighth Southeastern Symposium on: 2006. 313-317.
    [22] Tadaion, A. A., Derakhtian, M., Gazor, S., Aref, M. R. Likelihood ratio tests for PSK modulation classification in unknown noise environment, in: Electrical and Computer Engineering, 2005. Canadian Conference on: 2005. 151-154.
    [23] Li, H., Dobre, O. A., Bar-Ness, Y., Su, W. Quasi-hybrid likelihood modulation classification with nonlinear carrier frequency offsets estimation using antenna arrays, in. Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Inc., vol. 2005, 2005.1605743.
    [24] Hong, L., Dobre, O. A., Bar-Ness, Y, Wei, S. Quasi-hybrid likelihood modulation classification with nonlinear carrier frequency offsets estimation using antenna arrays, in:Military Communications Conference, 2005. MILCOM 2005. IEEE: 2005. 570-575 Vol.571.
    [25] Zhao, Z., Lang, T. A MPSK modulation classification method based on the maximum likelihood criterion, in: Signal Processing, 2004. Proceedings. ICSP '04. 2004 7th International Conference on: vol. 2, 2004. 1805-1808 vol.1802.
    [26] Yucek, T., Arslan, H. A novel sub-optimum maximum-likelihood modulation classification algorithm for adaptive OFDM systems, in: Wireless Communications and Networking Conference, 2004. WCNC. 2004 IEEE: vol. 2, 2004. 739-744 Vol.732.
    [27] Ho, K. C, Hong, L. Likelihood method for BPSK and unbalanced QPSK modulation classification, in: Society of Photo-Optical Instrumentation Engineers, vol. 4395, 2001.155-162.
    [28] Wen, W., Mendel, J. M. Maximum-likelihood classification for digital amplitude-phase modulations. Communications, IEEE Transactions on. 2000, 48(2): 189-193.
    [29] Panagiotou, P., Anastasopoulos, A., Polydoros, A. Likelihood ratio tests for modulationclassification, in: MILCOM 2000. 21st Century Military Communications Conference Proceedings: vol. 2, 2000. 670-674 vol.672.
    [30] Yang. Yawpo, L. C.-H., Soong Ta-Wei. A log-likelihood function-based algorithm for QAM signal classfication. Signal Processing. 1998, 70(1): 61-71.
    [31] Boiteau, D., Le Martret, C. A general maximum likelihood framework for modulation classification, in: Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on: vol. 4, 1998. 2165-2168 vol.2164.
    [32] Wen, W., Mendel, J. M. A new maximum-likelihood method for modulation classification, in: Signals, Systems and Computers, 1995. 1995 Conference Record of the Twenty-Ninth Asilomar Conference on: vol. 2, 1995. 1132-1136 vol.1132.
    [33] Sapiano, P. C., Martin,J.D. Maximum likelihood PSK classification using the DFT of phase histogram, in: GLOBECOM'95. Singapore: 1995. 1029-1033.
    [34] Chugg, K. M., Chu-Sieng, L., Polydoros, A. Combined likelihood power estimation and multiple hypothesis modulation classification, in: Signals, Systems and Computers, 1995.1995 Conference Record of the Twenty-Ninth Asilomar Conference on: vol. 2, 1995.1137-1141 vol.1132.
    [35] C.S.Long, K. M. C. a. A. P. Further Results in Likelihood Classification of QAM Signals, in: Proceedings of IEEE MILCOM'94: vol. 1, 1994. 57-61.
    [36] Liang, H., Ho, K. C. Classification of BPSK and QPSK signals with unknown signal level using the Bayes technique, in: Circuits and Systems, 2003. ISC AS '03. Proceedings of the 2003 International Symposium on: vol. 4, 2003. IV-l-IV-4 vol.4.
    [37] Beidas, B. F., Weber, C. L. Modulation classification of MFSK signals using the higher-order correlation domain, in: Military Communications Conference, 1995. MILCOM '95, Conference Record, IEEE: vol. 1, 1995. 186-191 vol.181.
    [38] Beidas, B. F., Weber, C. L. Higher-order correlation-based approach to modulation classification of digitally frequency-modulated signals. Selected Areas in Communications, IEEE Journal on. 1995, 13(1): 89-101.
    [39] Lay, N. E., Polydoros, A. Per-survivor processing for channel acquisition, data detection and modulation classification, in: Signals, Systems and Computers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar Conference on: vol. 2, 1994. 1169-1173 vol.1162.
    [40] Lay, N. E., Polydoros, A. Modulation classification of signals in unknown ISI environments. in: Military Communications Conference, 1995. MILCOM '95, Conference Record, IEEE:vol. 1, 1995. 170-174 vol.171.
    [41] Abdi, A., Dobre, O. A., Choudhry, R., Bar-Ness, Y, et al. Modulation classification in fading channels using antenna arrays, in: Military Communications Conference, 2004. MILCOM 2004. IEEE: vol. 1, 2004. 211-217 Vol. 211.
    [42] Lesage, S., Tourneret, J. Y., Djuric, P. M. Classification of digital modulations by MCMC sampling, in: Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference on: vol. 4, 2001. 2553-2556 vol.2554.
    [43] Yu-Chuan, L., Kuo, C. C. J. Sequential modulation classification of dependent samples. in: Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on: vol. 5, 1996. 2690-2693 vol. 2695.
    [44] Yawpo, Y., Ching-Hwa, L. An asymptotic optimal algorithm for modulation classification. Communications Letters, IEEE. 1998, 2(5): 117-119.
    [45] Liang, H., Ho, K. C. Modulation classification of BPSK and QPSK signals using a two element antenna array receiver, in: Military Communications Conference, 2001. MILCOM 2001. Communications for Network-Centric Operations: Creating the Information Force.IEEE: vol. 1,2001. 118-122 vol.111.
    [46] Hong, L., Ho, K. C. BPSK and QPSK modulation classification with unknown signal level. in: MILCOM 2000. 21st Century Military Communications Conference Proceedings: vol. 2,2000. 976-980 vol.972.
    [47] Dobre, O. A., Abdi, A., Bar-Ness, Y., Wei, S. The classification of joint analog and digital modulations, in: Military Communications Conference, 2005. MILCOM 2005. IEEE: 2005.3010-3015 Vol. 3015.
    [48] Le Martret, C. J., Boiteau, D. M. Modulation classification by means of different orders statistical moments, in: MILCOM 97 Proceedings: vol. 3, 1997. 1387-1391 vol.1383.
    [49] Huang, Q.-S., Peng, Q.-C, Shao, H.-Z. Blind modulation classification algorithm for adaptive OFDM systems. IEICE Transactions on Communications. 2007, E90-B(2):296-301.
    [50] Azzouz, E. E., Nandi, A. K. Automatic identification of digital modulation types. Signal Processing. 1995,47(1): 55-69.
    [51] Nandi, A. K., Azzouz, E. E. Automatic analogue modulation recognition. Signal Processing.1995, 46(2): 211-222.
    [52] Azzouz, E. E., Nandi, A. K. Procedure for automatic recognition of analogue and digital modulations. Communications, IEE Proceedings-. 1996, 143(5): 259-266.
    [53] Azzouz, E. E., Nandi, A. K. Automatic Modulation Recognition of Communication. Netherlands: Kluwer Academic Publishes, 1996.
    [54] Nandi, A. K., Azzouz, E. E. Modulation recognition using artificial neural networks. Signal Processing. 1997, 56(2): 165-175.
    [55] Azzouz, E. E., Nandi, A. K. Automatic modulation recognition--Ⅰ. Journal of the Franklin Institute. 1997, 334(2): 241-273.
    [56] Azzouz, E. E., Nandi, A. K. Automatic modulation recognition-Ⅱ. Journal of the Franklin Institute. 1997, 334(2): 275-305.
    [57] Nandi, A. K., Azzouz, E. E. Algorithms for automatic modulation recognition of communication signals. Communications, IEEE Transactions on. 1998, 46(4): 431-436.
    [58] Wong, M. L. D., Nandi, A. K. Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Processing. 2004, 84(2): 351-365.
    [59] Wong, M. L. D., Nandi, A. K. Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptrons. in: Signal Processing and its Applications, Sixth International, Symposium on. 2001: vol. 2, 2001. 390-393 vol.392.
    [60] Hsue, S.-Z., Soliman, S. S. Automatic modulation recognition of digitally modulated signals. in. Piscataway, NJ, USA: Publ by IEEE, vol. 3, 1989. 645-649.
    [61] Hsue, S. Z., Soliman, S. S. Automatic modulation classification using zero crossing. Radar and Signal Processing, IEE Proceedings F. 1990, 137(6): 459-464.
    [62] Assaleh, K., Farrell, K., Mammone, R. J. A new method of modulation classification for digitally modulated signals, in: Military Communications Conference, 1992. MILCOM '92,Conference Record. 'Communications - Fusing Command, Control and Intelligence'., IEEE:1992. 712-716 vol.712.
    [63] Yue-xian, W., Lin-dong, G., Fan-fan, L. Comprehensive features based digital modulation identification using a neural tree network, in: Communications, Circuits and Systems, 2005. Proceedings. 2005 International Conference on: vol. 2, 2005. 752.
    [64] Farrell, K. R., Mammone, R. J. Modulation classification using a neural tree network, in. Piscataway, NJ, USA: Publ by IEEE, vol. 3, 1993. 1028-1032.
    [65] Park, C.-S., Kim, D. Y A novel robust feature of modulation classification for reconfigurable software radio. IEEE Transactions on Consumer Electronics. 2006, 52(4): 1193-1200.
    [66] Ho, K. C, Prokopiw, W., Chan, Y. T. Modulation identification by the wavelet transform, in: Military Communications Conference, 1995. MILCOM '95, Conference Record, IEEE: vol.2, 1995. 886-890 vol.882.
    [67] Ho, K. C, Prokopiw, W., Chan, Y. T. Modulation identification of digital signals by the wavelet transform. Radar, Sonar and Navigation, IEE Proceedings -. 2000, 147(4): 169-176.
    [68] Prakasam, P., Madheswaran, M. Automatic Modulation Identification of QPSK and GMSK using Wavelet Transform for Adaptive Demodulator in SDR. in: Signal Processing, Communications and Networking, 2007. ICSCN '07. International Conference on: 2007.507-511.
    [69] Jian, C., Yonghong, K., Jiandong, L., Fenglin, F., et al. Digital modulation identification by wavelet analysis, in: Computational Intelligence and Multimedia Applications, 2005. Sixth International Conference on: 2005. 29-34.
    [70] Jae-Do, J., Young-Jin, K., Kwang-Wook, L., Kyung Hoon, L., et al. Modulation type classification method using wavelet transform for adaptive modulator, in: Intelligent Signal Processing and Communication Systems, 2004. ISPACS 2004. Proceedings of 2004 International Symposium on: 2004. 289-292.
    [71] Jin, J.-D., Kwak, Y.-J., Lee, K.-W., Lee, K. H., et al. Modulation type classification method using wavelet transform for adaptive modulator, in. New York, NY 10016-5997, United States: Institute of Electrical and Electronics Engineers Inc., 2004. 289-292.
    [72] Ou, X., Huang, X.-W., Yuan, X., Yang, W.-Q. Modulation identification of digital signals by constructing quasi-Haar wavelet. Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/Journal of Sichuan University (Engineering Science Edition). 2004, 36(4): 95-98.
    [73] Mahmoud, W. A., Amamra, I., Al-Sammarie, J. M. Identification of digital modulation techniques using the discrete wavelet transform and neural network. Advances in Modelling and Analysis B. 2003, 46(1-2): 43-55.
    [74] Hong, L., Ho, K. C. Identification of digital modulation types using the wavelet transform, in. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers Inc., vol. 1, 1999.427-431.
    [75] Liedtke, F. F. Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknow parameters. Signal Processing. 1984, 6(4): 311-323.
    [76] Deng, H., Doroslovacki, M., Mustafa, H., Xu, J., et al. Automatic digital modulation classification using instantaneous features, in: Institute of Electrical and Electronics Engineers Inc., vol. 4, 2002. 4168.
    [77] Swami, A., Sadler, B. M. Hierarchical digital modulation classification using cumulants. Communications, IEEE Transactions on. 2000,48(3): 416-429.
    [78] Wei, D., Youzheng, W., Jing, W. Joint power estimation and modulation classification using second- and higher statistics, in: Wireless Communications and Networking Conference,2002. WCNC2002. 2002 IEEE: vol. 1, 2002. 155-158 vol.151.
    [79] Hatzichristos, G., Fargues, M. P. A hierarchical approach to the classification of digital modulation types in multipath environments, in: Signals, Systems and Computers, 2001. Conference Record of the Thirty-Fifth Asilomar Conference on: vol. 2, 2001. 1494-1498 vol.1492.
    [80] Yang, Y, Soliman. S.S. Statistical moments based classifier for MPSK signals, in: GLOBECOM'91. Phoenir, AZ: vol. 1, 1991. 72-76.
    [81] Soliman, S. S., Hsue, S. Z. Signal classification using statistical moments. Communications,IEEE Transactions on. 1992, 40(5): 908-916.
    [82] Yang, Y, Soliman. S.S. An improved moment-based algorithm for signal classification. Signal Processing. 1995, 43(3): 231-244.
    [83] Luo, L. Comments on "Signal classification using statistical moments". Communications, IEEE Transactions on. 2002, 50(2): 195.
    [84] Schreyogg, C, Reichert, J. Modulation classification of QAM schemes using the DFT of phase histogram combined with modulus information, in: MILCOM 97 Proceedings: vol. 3,1997. 1372-1376 vol.1373.
    [85] DeSimio, M. P., Prescott, G. E. ADAPTIVE GENERATION OF DECISION FUNCTIONS FOR CLASSIFICATION OF DIGITALLY MODULATED SIGNALS, in. New York, NY,USA: IEEE, 1988. 1010-1014.
    [86] Schreyogg, C., Kittel, K., Kressel, U., Reichert, J. Robust classification of modulation types using spectral features applied to HMM. in: MILCOM 97 Proceedings: vol. 3, 1997.1377-1381 vol.1373.
    [87] Marchand, P., Le Martret, C, Lacoume, J. L. Classification of linear modulations by a combination of different orders cyclic cumulants. in: Higher-Order Statistics, 1997. Proceedings of the IEEE Signal Processing Workshop on: 1997. 47-51.
    [88] Marchand, P., Lacoume, J.-L., Le Martret, C. Multiple hypothesis modulation classification based on cyclic cumulants of different orders, in. Piscataway, NJ, USA: IEEE, vol. 4, 1998.2157-2160.
    [89] Spooner, C. M. Classification of co-channel communication signals using cyclic cumulants. in: Signals, Systems and Computers, 1995. 1995 Conference Record of the Twenty-Ninth Asilomar Conference on: vol. 1, 1995. 531-536 vol.531.
    [90] Dobre, O. A., Bar-Ness, Y, Wei, S. Robust QAM modulation classification algorithm using
    ??cyclic cumulants. in: Wireless Communications and Networking Conference, 2004. WCNC. 2004 IEEE: vol. 2, 2004. 745-748 Vol.742.
    [91] Dobre, O. A., Abdi, A., Bar-Ness, Y., Su, W. Selection combining for modulation recognitionin fading channels, in: Military Communications Conference, 2005. MILCOM 2005. IEEE:2005. 2499-2505 Vol. 2494.
    [92] Venalainen, J., Terho, L., Koivunen, V. Modulation classification in fading multipath channel.in: Signals, Systems and Computers, 2002. Conference Record of the Thirty-Sixth Asilomar Conference on: vol. 2, 2002. 1890-1894 vol.1892.
    [93] Stolpman, V. J., Paranjpe, S., Orsak, G. C. A blind information theoretic approach to automatic signal classification, in: Military Communications Conference Proceedings, 1999. MILCOM 1999. IEEE: vol. 1, 1999. 447-451 vol.441.
    [94] Paris, B. P., Orsak, G. C., Chen, H., Warke, N. Modulation classification in unknown dispersive environments, in: Acoustics, Speech, and Signal Processing, 1997. ICASSP-97.,1997 IEEE International Conference on: vol. 5, 1997. 3853-3856 vol.3855.
    [95] Wen, W., Mendel, J. M. A fuzzy logic method for modulation classification in nonideal environments. Fuzzy Systems, IEEE Transactions on. 1999, 7(3): 333-344.
    [96] Lopatka, J., Pedzisz, M. Automatic modulation classification using statistical moments and a fuzzy classifier, in: Signal Processing Proceedings, 2000. WCCC-ICSP 2000. 5th International Conference on: vol. 3, 2000. 1500-1506 vol.1503.
    [97] Hero, A. O.,Ⅲ, Hadinejad-Mahram, H. Digital modulation classification using power moment matrices, in: Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on: vol. 6, 1998. 3285-3288 vol.3286.
    [98] Xiaoming, H., Donoho, D. A simple and robust modulation classification method via counting, in: Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on: vol. 6, 1998. 3289-3292 vol.3286.
    [99] Donoho, D. L., Huo, X. Large-sample modulation classification using Hellinger representation, in: Signal Processing Advances in Wireless Communications, 1997 First IEEE Signal Processing Workshop on: 1997. 133-136.
    [100] Swami, A., Sadler, B. Modulation classification via hierarchical agglomerative cluster analysis, in: Signal Processing Advances in Wireless Communications, 1997 First IEEE Signal Processing Workshop on: 1997. 141-144.
    [101] Taira, S., Murakami, E. Automatic classification of analogue modulation signals by statistical parameters, in: Military Communications Conference Proceedings, 1999. MILCOM 1999.IEEE: vol. 1, 1999. 202-207 vol.201.
    [102] Yoshioka, H., Shirato, Y., Toyoda, I., Umehira, M. A fast modulation recognition technique using nearest neighbor rules with optimized threshold for modulation classification in Rayleigh fading channels, in: Wireless Personal Multimedia Communications, 2002. The 5th International Symposium on: vol. 3, 2002. 1049-1052 vol.1043.
    [103] Louis, C., Sehier, P. Automatic modulation recognition with a hierarchical neural network, in: Military Communications Conference, 1994. MILCOM '94. Conference Record, 1994 IEEE: 1994. 713-717 vol.713.
    [104] Li, P., Wang, F., Wang, Z. Algorithm for Modulation Recognition Based on High-order Cumulants and Subspace Decomposition, in: Signal Processing, 2006 8th International Conference on: vol. 3, 2006.
    [105] Matic, V., Lestar, B., Tadic, V. The use of digital signal processing for a modulation classification, in: Electrotechnical Conference, 2002. MELECON 2002. 11th Mediterranean:2002. 126-130.
    [106] Arulampalam, G., Ramakonar, V., Bouzerdoum, A., Habibi, D. Classification of digital modulation schemes using neural networks, in: Signal Processing and Its Applications, 1999.ISSPA '99. Proceedings of the Fifth International Symposium on: vol. 2, 1999. 649-652 vol.642.
    [107] Seaman, B., Braun, R. M. Using cyclostationarity in the modulation classification of analogue signals, in: Communications and Signal Processing, 1998. COMSIG '98. Proceedings of the 1998 South African Symposium on: 1998. 261-266.
    [108] Ta, N. P. A wavelet packet approach to radio signal modulation classification, in: Singapore ICCS '94. Conference Proceedings.: vol. 1, 1994. 210-214 vol.211.
    [109] Ghani, N., Lamontagne, R. Neural networks applied to the classification of spectral features for automatic modulation recognition, in: Military Communications Conference, 1993.MILCOM '93. Conference record. 'Communications on the Move'., IEEE: vol. 1, 1993.111-115 vol.111.
    [110] Han, Y. Y., Lee, W. C., Yoon, D. W. On the error rate evaluation and modulation classification for coherent and noncoherent PSK signals using the transformation of random variable, in: Communications, 1993. ICC 93. Geneva. Technical Program, Conference Record, IEEE International Conference on: vol. 3, 1993. 1508-1514 vol.1503.
    [111] Hwang, C. Y., Polydoros, A. Advanced methods for digital quadrature and offset modulation classification, in: Military Communications Conference, 1991. MILCOM '91, Conference Record, 'Military Communications in a Changing World'., IEEE: 1991. 841-845 vol.842.
    [112] Dubuc, C., Boudreau, D., Patenaude, F., Inkol, R. An automatic modulation recognition algorithm for spectrum monitoring applications, in: Communications, 1999. ICC '99. 1999 IEEE International Conference on: vol. 1, 1999. 570-574 vol.571.
    [113] Mobasseri, B. G. Digital modulation classification using constellation shape. Signal Processing. 2000, 80(2): 251-277.
    [114] Namjin, K., Kehtarnavaz, N., Yeary, M. B., Thornton, S. DSP-based hierarchical neural network modulation signal classification. Neural Networks, IEEE Transactions on. 2003, 14(5): 1065-1071.
    [115] Ishii, H., Suzuki, T., Hosoya, H., Kamisawa, T. Automatic modulation identification for non-linear digital modulation (based on software radio techniques), in: Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings on: vol. 2, 2003.1237-1241 vol.1232.
    [116] Hosoya, H., Kamisawa, T., Kuroda, M., Ishii, H., et al. Automatic modulation identification for linear digital modulation, in: Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings on: vol. 2, 2003. 1810-1814 vol.1812.
    [117] Mustafa, H., Doroslovacki, M. Effects of symbol rate on the classification of digital modulation signals, in: Acoustics, Speech, and Signal Processing, 2005. Proceedings.(ICASSP '05). IEEE International Conference on: vol. 5, 2005. v/437-v/440 Vol. 435.
    [118] Hippenstiel, R., El-Kishky, H., Frick, C., Dataprasad, S. Modulation identification using neural networks and wavelet domain based approaches, in: Signals, Systems and Computers,2004. Conference Record of the Thirty-Eighth Asilomar Conference on: vol. 2, 2004.2116-2120 Vol.2112.
    [119] Dobre, O. A., Abdi, A., Bar-Ness, Y., Su, W. Survey of automatic modulation classification techniques: classical approaches and new trends. Communications, IET. 2007, 1(2): 137-156.
    [120] Yang, Y., Soliman. S.S. Optimum classifer for M-ARY PSK signals, in: ICC'91. Denver CO:1991.1693-1691.
    [121] Soliman, S. S., Hsue, Shue-Zen. Signal classification using statistical moments. IEEE Transactions on Convnunications. 1992,40(5): 908-916.
    [122] Schreyoegg, C., Kittel, K., Kressel, U., Reichert, J. Robust classification of modulation types using spectral features applied to HMM. in. Piscataway, NJ, USA: IEEE, vol. 3, 1997.1377-1381.
    [123] Schreyoegg, C., Reichert, J. Modulation classification of QAM schemes using the DFT of phase histogram combined with modulus information, in. Piscataway, NJ, USA: IEEE, vol. 3,1997.1372-1376.
    [124] Lin, Y.-C., Kuo, C. C. J. Sequential modulation classification of dependent samples, in. Piscataway, NJ, USA: IEEE, vol. 5, 1996. 2690-2693.
    [125] Lin, Y.-C., Kuo, C. C. J. Classification of quadrature amplitude modulated (QAM) signals via sequential probability ratio test (SPRT). Signal Processing. 1997, 60(3): 263-280.
    [126] Char-Dir, C., Polydoros, A. Envelope-based classification schemes for continuous-phase binary frequency-shift-keyed modulations, in: Military Communications Conference, 1994. MILCOM '94. Conference Record, 1994 IEEE: 1994. 796-800 vol.793.
    [127] Yang, Y., Liu Ching-Hwa, Soong Ta-Wei,. A log-likelihood function-based algorithm for QAM signal classification. Signal Processing. 1998, 70(1): 61-71.
    [128] Yang, Y, Soliman, S. S. Suboptimal algorithm for modulation classification. IEEE Transactions on Aerospace and Electronic Systems. 1997, 33(1): 38-45.
    [129] Jondral, F. Foundations of automatic modulation classification, in. Berlin 12, West Ger: Publ by VDE-Verlag GmbH, 1989. 201-206.
    [130] Hipp, J. E. Modulation Classification Based on Statistical Moments, in. New York, NY, USA:IEEE, 1986.6.
    [131] Whelchel, J. E., McNeill, D. L., Hughes, R. D., Loos, M. M. Signal understanding: an artificial intelligence approach to modulation classification, in: Tools for Artificial Intelligence, 1989. Architectures, Languages and Algorithms, IEEE International Workshop on: 1989.231-236.
    [132]Hill,P.C.,Orzeszko,G.R.Performance comparison of neural network and statistical discriminant processing techniques for automatic modulation recognition.in.Bellingham,WA,USA:Publ by Int Soc for Optical Engineering,vol.1469,1991.329-340.
    [133]Fabrizi,P.M.,Lopes,L.B.,Lockhart,G.B.RECEIVER RECOGNITION OF ANALOGUE MODULATION TYPES.in.London,Engl:IERE,1986.135-140.
    [134]Chan,Y.T.,Gadbois,L.G.Identification of the modulation type of a signal.Signal Processing.1989,16(2):149-154.
    [135]Akmouche,W.Detection of multicarrier modulations using 4th-order cumulants.in:Military Communications Conference Proceedings,1999.MILCOM 1999.IEEE:vol.1,1999.432-436 vol.431.
    [136]Weidong,Y.S.C.Classification of MPSK signals using cumulant invariants.Journal of Electronics.2002,19(1):99-103.
    [137]Mustafa,H.,Doroslovacki,M.Digital modulation recognition using support vector machine classifier.in:Signals,Systems and Computers,2004.Conference Record of the Thirty-Eighth Asilomar Conference on:vol.2,2004.2238-2242 Vol.2232.
    [138]Ho,K.C.,Scheidl,A.E.,Inkol,R.J.Signal identification based on orthogonal transform.in:Acoustics,Speech,and Signal Processing,1995.ICASSP-95.,1995 International Conference on:vol.5,1995.3599-3602 vol.3595.
    [139]Lin,Y.-C.,Kuo,C.C.J.Modulation classification using wavelet transform.Proceedings of SPIE - The International Society for Optical Engineering.1994,2303:260-271.
    [140]Sangwoo,C.,Chong Hyun,L.,Joohwan,C.,Dongmyung,A.Classification of digital modulations using the LPC.in:National Aerospace and Electronics Conference,2000.NAECON 2000.Proceedings of the IEEE 2000:2000.774-778.
    [141]罗明,杨绍全.带限Mpsk信号的调制分类.系统工程与电子技术.2004,(08).
    [142]胡建伟,汤建龙,杨绍全.使用小波变换的Mpsk信号调制类型识别.电路与系统学报.2006,(03).
    [143]吕铁军,郭双冰,肖先赐.调制信号的分形特征研究.中国科学.2001,(6):508-513.
    [144]Wood,S.L.,Larimore,M.G.,Treichler,J.R.Modem constellation identification:a performance comparison of two methods.in:Acoustics,Speech,and Signal Processing,1990.ICASSP-90.,1990 International Conference on:1990.1651-1654 vol.1653.
    [145]Chiu,S.Fuzzy model identification based on cluster estimation.Jounral of Intelligent and Fuzzy System.1994,2(3):267-278.
    [146]Zhu,Q.,Kam,M.,Yeager,R.Non-parametric identification of QAM constellations in noise.in:Acoustics,Speech,and Signal Processing,1993.ICASSP-93.,1993 IEEE International Conference on:vol.4,1993.184-187 vol.184.
    [147]Lu,M.,Xiao,X.,Li,L.Cyclic spectral features based modulation recognition.in:Communication Technology Proceedings,1996.ICCT'96.,1996 International Conference on:vol.2,1996.792-795 vol.792.
    [148]韩国栋,蔡斌,邬江兴.调制分析与识别的谱相关方法.系统工程与电子技术.2001,(03).
    [149]杨志俊,范海波,曹志刚.基于谱分析的通信信号调制方式自动识别.无线通信技术.2003,(02).
    [150]Gardner W.A.,S.C.M.The cumulant theory of cyclostationary time-series,part Ⅰ:foundation.IEEE Transaction on Signal Processing.1994,42(12):3387-3408.
    [151]Spooner C.M.,G.W.A.The cumulant theory of cyclostationary time-series,part Ⅱ:Development and Applications.IEEE Transaction on Signal Processing.1994,42(12):3409-3429.
    [152]Gardner,W.A.,Spooner,C.M.Cyclic spectral analysis for signal detection and modulation recognition.in:Military Communications Conference,1988.MILCOM 88,Conference record.'21st Century Military Communications - What's Possible?'.1988 IEEE:1988.419-424 vol.412.
    [153]Headley,W.C.,Reed,J.D.,da Silva,C.R.C.Distributed Cyclic Spectrum Feature-Based Modulation Classification.in:Wireless Communications and Networking Conference,2008.WCNC 2008.IEEE:2008.1200-1204.
    [154]Jondral,F.Automatic classification of high frequency signals.Signal Processing.1985,9(3):177-190.
    [155]Einicke,G.A.A flexible architecture for real-time modulation recognition.in:Australian ASSPA'89:1989.133-137.
    [156]DeClouet,J.A.,Naraghi-Pour,M.Robust modulation classification techniques using cumulants and hierarchical neural networks.in.Bellingham WA,WA 98227-0010,United States:SPIE,vol.6567,2007.65671.
    [157]Park,C.-S.,Kim,D.Y.Modulation classification of analog and digital signals using neural network and support vector machine.in.Heidelberg,D-69121,Germany:Springer Verlag,vol.4493 NCS,2007.368-373.
    [158]赖惠成,褚辉.一种混合模式的神经网络自动调制识别器.电子与信息学报.2008,(05).
    [159]孙建成,张太镒,刘枫.基于支持向量机的多类数字调制方式自动识别算法.西安交通大学学报.2004,(06).
    [160]Li,J.,Peng,J.,Chu,H.,Zhu,W.Automatic digital modulation recognition using support vector machines and genetic algorithm.in.Heidelberg,D-69121,Germany:Springer Verlag,vol.3497,2005.568-573.
    [161]韩钢,张文红,李建东,陈彦辉.基于高阶累积量和支撑矢量机的调制识别研究.系统工程与电子技术.2003,(08).
    [162]张贤达,保铮.通信信号处理.北京:国防工业出版社,2000.
    [163]Boashash,B.Estimating and interpreting the instantaneous frequencies of a signal-Part 1:Foundations.in:Proc.IEEE:1992.520-568.
    [164]罗明.数字通信信号的自动识别与参数估计研究:[博士论文].西安电子科技大学,2005.
    [165]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998.
    [166]Weiyu H.,J.L.Minimum-maximum exclusive mean (MMEM) filter to remove impulse noise from highly corrupted image.Electronics Letters.1997,33(2):124-125.
    [167]谈新权,金顺哲,陈筱倩.消除图像脉冲噪声的模糊结合滤波器.光电工程.2004,31(8):61-64.
    [168]胡延平,李广森,李纲,皇甫堪.利用参数统计方法自动识别数字调制信号.通信学报. 2002,(02).
    [169]Mobasseri,B.G.Constellation shape as a robust signature for digital modulation recognition.in:Military Communications Conference Proceedings,1999.MILCOM 1999.IEEE:vol.1,1999.442-446 vol.441.
    [170]张贤达.现代信号处理.(第二版).北京:清华大学出版社,2002.
    [171]姚天任,孙洪.现代数字信号处理.武汉:华中科技大学出版社,1999.
    [172]高新波.模糊聚类分析及应用.西安:西安电子科技大学出版社,2004.
    [173]L.,C.S.Fuzzy model identification based on cluster estimation.Journal of Intelligent and Fuzzy Systems.1994,2(3):267-278.
    [174]潘天红,薛振框,李少远.基于减法聚类的多模型在线辨识算法.自动化学报.2009,35(2):220-224.
    [175]曹谢东.模糊信息处理及应用.北京:科学出版社,2003.
    [176]蒋泽军.模糊数学教程.北京:国防工业出版社,2004.
    [177]A.,Z.L.Fuzzy Logic Toolbox User's Guide Version 2.1.1.Berkeley,CA:MathWorks lnc,2001.
    [178]楼顺天,胡昌华,张伟.基于MATLAB的系统分析与设计.西安:西安电子科技大学出版社,2001.
    [179]Wei,W.,Mendel,J.M.Fuzzy logic method for modulation classification in nonideal environments.IEEE Transactions on Fuzzy Systems.1999,7(3):333-344.
    [180]吴月娴,葛临东,许志勇.常用数字调制信号识别的一种新方法.电子学报.2007,35(4):782-785.
    [181]叶健,葛临东,吴月娴.一种优化的Rbf神经网络在调制识别中的应用.自动化学报.2007,(06):652-654.
    [182]田景文,高美娟.人工神经网络算法研究及应用.北京:北京理工大学出版社,2006.
    [183]Azzouz,E.E.,Nandi,A.K.Automatic modulation recognition - II.Journal of the Franklin Institute.1997,334B(2):275-305.
    [184]Azzouz,E.E.,Nandi,A.K.Automatic modulation recognition - I.Journal of the Franklin Institute.1997,334B(2):241-273.
    [185]Schneider,R.F.,Chu,D.C.Modulation recognition of spread spectrum signals using modulation domain measurements.in:Military Communications Conference,1991.MILCOM '91,Conference Record,'Military Communications in a Changing World'.,IEEE:1991.819-826 vol.812.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700