用户名: 密码: 验证码:
基于复合纳米材料组装的信号增强的电化学免疫传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学免疫传感器是一种将电化学分析方法与免疫学技术相结合而发展起来的具有快速、灵敏、选择性高、操作简便等特点的生物传感器。免疫传感器主要由生物识别系统(感受器)和换能器组成。将抗原或者抗体分子固定到换能器表面称为传感器敏感界面的构建,这是免疫传感器的研究和开发中最为重要和关键的步骤之一。本文从功能化复合纳米材料的制备,传感器敏感界面的构建以及新型信号增强的免疫传感器的研制等方面进行了探索和研究。本文主要分为以下几个部分:
     第一章综述简要概述了现代免疫分析方法,详细介绍了免疫生物传感器的基本原理和敏感界面的固定化技术,着重评述了多种纳米材料在生物传感器方面的应用;详细介绍了电化学信号增强的免疫传感器的基本策略和信号增强的新型电化学免疫传感器的研究进展。
     第二章由于抗原抗体蛋白均为非电活性物质,因此电化学免疫传感器一般需要对抗体或抗原进行生物酶或者电活性物质的标记,从而实现把抗体和抗原结合信息转变为可测的电化学信息。然而标记步骤复杂、耗时,且标记过程可能会影响免疫蛋白的特异性位点,致使生物活性丧失。基于自组装技术和纳米技术,制各了染料硫堇包覆的SiO_2复合纳米粒子,再结合具有比表面积大、吸附力强、生物亲和性好等优点的金纳米粒子,研制了纳米金/硫堇-SiO_2/纳米金复合膜修饰的电流型癌胚抗原(CEA)免疫传感器。值得注意的是,基于硫堇固有的电化学活性,该硫堇-SiO_2复合纳米粒子修饰电极呈现出良好的氧化还原活性,其可以起到氧化还原探针的作用,用以指示免疫反应发生的进程。从而无需在测试溶液中加入其他氧化还原探针,进一步简化操作步骤,构建了无试剂型免疫传感器。与传统的免疫物质测试方法相比,该方法具有无需对生物分子进行标记,不需竞争或者夹心反应,测试液中亦不需加入电活性物质,只需在传感器表面进行常规免疫反应后,将其转移至测量池中测量响应电流信号即可,具有操作简单、响应快、特异性强等特点。
     第三章以具有独特的电学和光学特性的有机半导体材料苝四甲酸二酐(PTCDA,3,4,9,10-perylenetetracarboxylic dianhydride)为原料,通过两步合成法制备了二茂铁基修饰的新型成膜材料(PTC-Fc)。PTC-Fc具有导电性好,氧化还原活性强,易于成膜且比表面积大、表面活性位点多等优点,是一种理想的电极修饰材料。结合有机相合成和相转移技术制备的带正电荷的金纳米粒子构建了电流型CEA免疫传感器。正电荷金纳米粒子的引入不仅牢固的固定了抗体蛋白,很好的保持了抗体蛋白的生物活性,同时与纳米多孔材料PTC-Fc形成镶嵌结构,起到了纳米导线的作用,加快了PTC-Fc的氧化还原电子转移速率。该传感器具有制备简单、灵敏度高、稳定性好、响应时间短等特点。
     第四章酶免疫传感器将酶的化学放大作用与免疫物质的专一性识别相结合,兼有电化学分析的灵敏性和免疫反应的特异性,为进一步提高免疫传感器的灵敏度,设计了免去传统酶标操作的新型多层酶修饰的信号增强的电流型免疫传感器。以牛血清白蛋白(BSA)为固酶基质,通过交联作用固载HRP以提高酶膜的稳定性,基于联吡啶钴(Co(bpy)_3~(3+))与BSA之间的静电作用和疏水作用,Co(bpy)_3~(3+)能够进入BSA-HRP复合膜中形成的具有电化学活性和生物相容性的复合基质。固载抗体后又提出了使用HRP封闭免疫电极上的非特异性吸附位点,并同时利用HRP的生物催化放大作用放大响应电流信号,进而提高免疫传感器的灵敏度的新方法。经实验研究证明,该方法操作简单,切实可行,大大提高了免疫生物传感器的灵敏度。
     第五章磁性纳米粒子具有易于磁性分离的特点,常用于标记免疫蛋白分子,构建可多次再生的免疫传感器。本研究中合成了以磁性纳米颗粒Fe_3O_4为核,普鲁士蓝(PB)为中间层并作为电活性物质,Au为外壳的多层结构的功能化磁性纳米颗粒(Au-PB-Fe_3O_4),该多层结构纳米颗粒兼有在外磁场中可分离性以及生物分子快速固定化等特点,且由于中间层PB的引入,其还具有良好的氧化还原电活性。同时,将辣根过氧化物酶(HRP)、葡萄糖氧化酶(GOD)和蛋白抗体同时标记到该纳米粒子表面。该多功能生物分子标记材料具有生物亲和性、催化活性、电化学活性和易分离等优点。基于夹心免疫反应模式,借助生物标记的三层纳米粒子的多重电化学催化作用可显著放大响应电流信号,构建了超灵敏易再生的电化学免疫传感器。
     第六章在敏感界面的构建方面:将碳纳米管用惰性蛋白BSA分散,制得BSA包覆的功能化CNT复合材料修饰到金电极表面,利用BSA的-NH_2残基吸附小粒径的纳米金颗粒。通过恒电位沉积法,以小粒径的纳米金颗粒为晶种,在HAuCl_4溶液中电沉积纳米金,制得具有高比表面积、强吸附作用和良好的生物亲和性的DpAu-CNT纳米复合膜用以固载抗体蛋白。在信号检测模式方面,设计了进一步增强电流响应信号,提高电极灵敏度的信号放大新策略:首先制备了具有稳定性好、阻抗高等特点的聚合物Nafion(Nf)修饰的纳米SiO_2粒子,以此标记二抗蛋白。当采用夹心免疫反应模式时,由于Nf-SiO_2复合纳米粒子在电极敏感界面的引入,能显著阻碍电子的传输,使电极的有效截面积大大减少,从而起到放大响应信号的作用,进而提高传感器灵敏度。与直接免疫反应的方法相比,以二抗标记的Nf-SiO_2纳米复合物为信号增强手段的夹心免疫反应模式具有更宽的线性范围,高的灵敏度和强的特异性。
Electrochemically based immunosensors are valuable analytical tools for monitoring of the antibody or antigen as the advantages of short response time,high sensitivity, high specificity and easy manipulation,which combined the merits of electrochemical technology and immunoassay.An immunosensor is an analytical device that responds to a suitable combination of a biological recognition system and an electrochenmical transducer,thus the platforms construction of the antigen or antibody biomolecules immobilization have been the vital step in successful development of.an immunosensor. Therefore,this research focuses on the preparation of multi-functionalized nanomaterials,the construction of the immunoreaction interface and the development of sensitivity enhancement electrochemical immunosensors.The detail contents are as follows:
     1.In the review section,after general introduction of immunoassay including its principle and the construction of immunoreaction interface,the application of nanotechnology into immunosensors was highlighted.Moreover,the research development of immunosensors based on novel signal amplificatory strategy was presented.Finally,the work and significance of this thesis was briefly introduced.
     2.Since most immune protein are not intrinsically able to act as redox partners in an electrochemical reaction,most amperometric immunoassay techniques are relied on the label of either antigen or antibody,which requires highly qualified personnel, tedious assay time,or Sophisticated instrumentation.In this experiment,we described a new strategy for the development of a novel reagentless amperometric immunosensor based on the carcinoembryonic antibody(anti-CEA) molecule that was coupled at high density to sandwich(nano-Au/SiO_2@Thionine/nano-Au) nanocomposite layers for efficient carcinoembryonic antigen(CEA) recognition. Herein,the immobilized SiO_2@Thionine may act as electrochemical redox probe to monitor the variety of the kinetic-barrier of the electrode interface.Thus,the detection mode is based on the change of the current response before and after the specific binding of anti-CEA to CEA,due to the immunocomplex inhibiting the access of redox probe to electrode.The assay format avoids the label of antibody or antigen,the competitive or sandwich formats,the addition of an electron transfer mediator to the solution and the separation step,This significantly simplifies the immunoassay,procedure and shortens assay times.
     3.This work describes a two-step conjugate synthesis of a porous organometallic nanostructured materials composed of ferrocenemonocarboxylic(Fc-COOH)and 3,4,9,10-perytenetetracarboxilic diarthydride.(PTCDA) and then a reagentless amperometric immunosensor prepared with positively charged gold nanoparticles (PGN) immobilized in this nanostructure Conductive film is developed.This nanostructured material comtaining ferrocenyt(PTC-Fc) coutd easily form stable film on the electrode surface with efficient redox-activity and excellent conductivity. Furthermore,with the negatively charged surface,this film can be used as an interface to adsorb the PGN,which were prepared in-organic solvents at relatively high concentrations with improved monodispersity compared to those prepared in aqueous solution.The presence of PGN provided a congenial microenvironment for adsorbed biomolecules and decreased the electron transfer impedance.Thus,with anti-CEA as a model antibody,the proposed immunosensor showed rapid and highly sensitive amperometric response to CEA with acceptable preparation reproducibility and stability.
     4.Although the label-free immunosensors are able to detect the physical changes during the immune complex formation,whereas the enzyme-labeled imrnunosensors use signal-generating labels which allow more sensitive and versatile detection modes when incorporated into the complex.Thus,a concept based on a novel redox-biocompatible composite protein membrane fabrication,double enzyme membrane modification technique and antibody immobilization,was exploited to develop a highly sensitive amperometric enzyme immunosensor for detection of CEA. In this concept,a solution of bovine serum albumin(BSA)Containing horseradish peroxidase(HRP) is coated on the gold electrode in such a way that the first enzyme membrane is achieved.Then Co(bpy)_3~(3+),as a redox probes,was embedded in BSA-HRP composite membrane vis the electrostatic force and hydrophobe functions. Moreover,the new strategy of the employment of HRP to block the possible remaining active sites and amplify the response of the antigen-antibody reaction was proposed.The immunosensor constructed with the double layer biocatalytic HRP membranes and the desirable Co(bpy)_3~(3+)/BSA redox-biocompatible composite membrane performed high sensitivity and a wide linear response to CEA,as well as good Stability and long-term life.
     5.With their unique property-superparamagnetism,magnetic nanoparticles have become attractive for exploitation mainly in biology and medicine because they can simplify the process of proteins immobilization and separation.In this work,the preparation,characterization and application of a three-layer magnetic nanoparticle composed of a Fe_3O_4 magnetic core,a Prussian Blue(PB) interlayer and a gold shell (it can be abbreviated as Au-PB-Fe_3O_4) for an ultrasensitive and reproducible electrochemical immunosensing fabrication was described for the first time.With the employment of the Au-PB-Fe_3O_4 nanoparticle,a new signal amplification strategy was developed based on bienzyme(horseradish peroxidase and glucose oxidase) functionalized Au-PB-Fe_3O_4 nanoparticles for an electrochemical immunosensing fabrication by using CEA andα-fetoprotein(AFP) as model systems,respectively. The experiment results show that the multilabeled Au-PB-Fe_3O_4 nanoparticles exhibit satisfying redox electrochemical activity and highly enzyme catalysis activity,which predetermines their utility in high sensitivity antibody detection schemes. Furthermore,this immunosensor could be regenerated,by simply using an external magnetic field which ensured a reproducible immunosensor with high sensitivity.
     6.In this work,the multi-walledcarbon nanotubes(CNTs) were individually dispersed in an aqueous solution by a kind of natural proteins,bovine serum albumin(BSA),to obtain BSA molecules coated CNTs(BSA-CNTs).Then the gold colloids(nano-Au) were absorbed on the BSA-CNTs surface by the amido and disulfide groups of BSA. Later,a functionalized gold/carbon nanotube composite nanohybrid (DpAu/nano-Au/BSA-CNTs) modified electrode was developed based on electrochemical deposition of Au~(3+) onto nano-Au/BSA-MWNTs surface.Thus,a sensitive immunosensor for carbohydrate antigen 19-9(CA19-9) based on antibody immobilization on a functionalized gold/carbon nanotube composite nanohybrid has been constructed with the amplification response of antigen-antibody by the employment of Nation-coated SiO_2 nanoparticles labeled secondary antibody based on a sandwich immunoassay.More importantly,the special biomolecule-binding can not only cause the construction of the dielectric immunocomptex layer but also introduce the insulated Nation coated SiO_2 nanoparticles which demonstrate the relatively high resistance,resulting in a strong detection signal.Moreover,the extremely high stability of the functionalized gold/carbon nanotube composite nanohybrid monolayer allows the designed biosensing interface to obtain a good stability and long-term life.
引文
[1]Wu A.H.B.A selected history and future of immunoassay development and applications in clinical chemistry.Clin.Chim.Acta,2006,369:119-124.
    [2]Liu P.M.,Handl H.,Zou L.,et al.Immunobiological aspects of therapeutic antibodies and related characterization approaches.Curt:.Opin Drug Discovery Dev.,2007,10:515-522.
    [3]马宝骊,肖祥熊.医学免疫学.第1版.上海:同济大学出版社,1987,48-51.
    [4]江世益,张鲁雁.免疫化学.上海:上海医科大学出版社,1996,13-35.
    [5]王重庆.分子免疫学基础.北京:北京大学出版社,1997,8-29.
    [6]徐宜为.免疫检测技术.北京:科学出版社,1991,24-35.
    [7]李振甲.国内外标记免疫分析技术研究现状.中华医学检验杂志,1999,2(5):278-280.
    [8]Yalow R.S.,Berson S.A.Quantitative aspects of the reaction between insulin and insulin-binding antibody.J.Clin.Invest.,1959,38:1996-2016.
    [9]Yalow R.S.,Berson S.A.Assay of plasma insulin in human subjects by immunological methods.Nature,1959,184:1648-1649.
    [10]Yalow R.S.,Berson S.A.Immunoassay of endogenous plasma insulin in man.J.Clin.Invest.,1960,39:1157-1175.
    [11]Nakane P.K.,Pierce G B.Enzyme-labeled antibodies:preparation and localization of antigens.J.Histochem.Cytochem.,1966,14:929-931.
    [12]Coons A.H.,Creech H.J.,Jones R.N.Immunological properties of an antibody containing a fluorescent group.Proc.Soc.Exp.Biol,Med.,1941,47:200-202.
    [13]Jolley M.E.,Wang C.J.,Ekenberg S.J.,et al.Particle concentration fluorescence immunoassay (PCFIA):a new,rapid immunoassay technique with high sensitivity.J.Immunol.,1984,67:21-35.
    [14]Motsenbocker M.,Ichimori Y.,Kondo K.Metal porphyrin Chemiluminescence reaction and application to immunoassay.Anal.Chem.,1993,65:397-402.
    [15]焦奎,张书圣,张敏等.电化学免疫分析法研究进展.分析化学1995,23:1211-1217.
    [16]Parker C.O.,Tothill I.E.Development of an lectrochemical immunosensor for aflatoxin M1 in milk with focus on matrix interference.Biosens.Bioelectron.,2009,24:2452-2457.
    [17]Dijksma M.,Kamp B.,Hoogvliet J.C.,et al.Development of an electrochemical immunosensor for direct detection of interferon-gamma at the attomolar level.Anal Chem.,2001,73:901-907.
    [18]Gooding J.J.Biosensor technology for detecting biological warfare agents:Recent progress and future trends.Anal.Chim.Acta,2006,559:137-151.
    [19]Myszyka D.G Improving biosensor analysis.J.Mol.Recognit.,1999,12(5):279-284.
    [20]Electra G.,Lowe C.R.Immunosensors.Curt Opin.Biotech.,1996,7:66-71.
    [21]Henry J.B.The impact of biosensors on the clinical laboratory.MLO Med.Lab.Obs.,1990,22:32-35.
    [22]Ghindilis A.L.,Skorobotko O.V.,Gavnlova V.P.,et al.A new approach to the construction of potentiometric immunosensors.Biosens.Bioelectron.,1992,7:301-304.
    [23]Hage D.S.Immunoassays.Anal.Chem.,1999,71:294-304.
    [24]Thevenot D.R.,Toth K.,Durst R.A.,et al.Electrochemical biosensors:recommended definitions and classification.Biosens.Bioelectron.,2001,16:121-131.
    [25]孙艳,孙锋,杨玉孝等.光学免疫传感器技术与应用.仪表技术与传感器,2002,7:5-8.
    [26]卢澄,高志贤,潘家荣.压电免疫传感器研究进展.解放军预防医学杂志,2008,26:68-71.
    [27]焦奎,张书圣,张敏等.电化学免疫分析法进展.分析化学,1995,23:1211-1217.[28]段媛媛,杨成丽,周建刚等.基于SPR生物传感器的免疫学检测.生物技术通讯,2002,13:264-268.
    [29]Pizziconi V.B.,Page D.L.,A cell-based immunobiosensor with engineered molecular recognition-Part Ⅰ:design feasibility.Biosens.Bioelectron.,1997,12:287-299.
    [30]Xie B.,Mecklenburg M.,Danielsson B.,et al,Development of an integrated thermal biosensor for the simultaneous determination of multiple analytes.Analyst,1995,120:155-160.
    [31]Vankerkhof J.C.,Bergveld P.,Schasfoort R.B.M.The ISEFET based heparin sensor with a monotayer of protamine as affinity ligand.Biosens.Bioelectron.,1995,10(3):269-282.
    [32]Wang J.,Parnidi P.,Rogers K.R.Sol-gel derived thick-film amperometric immunosensors.Anal.Chem,1998,70:1171-1175.
    [33]Tinsley-Bown A.M.,Canham L.T.,Hollings M.,et al.Tuning the pore size and surface chemistry of porous silicon for immunoassays.Phys.Stat.Sol.,2000,182:547-553.
    [34]Ngeh-Ngwainbi J.,Foley P.H.,Kuan S.S.,et al.Parathion antibodies on piezoelectric crystals.J.Am.Chem.Soc.,1986,108:5444-5447.
    [35]Owaku K.G.,Masahiro I.,Yoshihito A.M.,et al.Protein A Langrnuir-Blodgett film for antibody immobilization and its use in optical immunosensing.Anal Chem.,1995,67:1613-1616.
    [36]Zhou Y.L.,Li Z.,Hu N.F.,et al.Layer-by-layer assembly of ultrathin,films of hemoglobin and clay nanoparticles with electrochemical and catalytic activity.Langmuir,2002,18,8573-8579.
    [37]Zhang X.,Chen H.,Zhang H.Layer-by-layer assembly:from conventional to unconventional methods.Chem.Commun.,2007,14:1395-1400.
    [38]Zheng L.Z.,Yao X.,Li J.H.Layer-by-layer assembly films and their applications,in electroanalytical chemistry.Curt.Anal Chem.,2006,2:279-296
    [39]Cavicchi R.E.Coulomb suppression of tunneling rate from small metal particles.Phys.Rev.Lett.,1984,52:1453-1456.
    [40]Ball P.,Li G.Science at atomic scale.Nature,1992,355:761-766.
    [41]Penn S.G.,He L.,Natan M.J.Nanoparticles for bioanalysis.Curr Opin Chem Biol,2003,7:609-615.
    [42]Guo S.J.,Dong S.J.Biomolecule-nanoparticle hybrids for electrochemical biosensors.Trac-Trend.Anal.Chem.,2009,28:96-109.
    [43]You C.C.,Chompoosor A.,Rotello V.M.The biomacromolecule-nanoparticle interface.Nano.Today,2007,2:34-43.
    [44]Daniel M.C.,Astruc D.Gold Nanoparticles:assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology.Chem.Rev.,2004,104:293-346.
    [45]Guo S.J.,Wang E.K.Synthesis and electrochemical applications of gold nanoparticles.Anal.Chim.Acta,2007,29:181-192.
    [46]Granot E.,Katz E.,Basnar B.,et al.Enhanced bioelectrocatalysis using Au-nanoparticle /polyaniline hybrid systems in thin films and microstructured rods assembled on electrodes.Chem.Mater.,2005,17:4600-4609.
    [47]Yin H.S.,Ai S.Y.,Shi W.J.,et al.A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase.Sens.Actuators B,2009,137:747-753.
    [48]He P.L.,Shen L.,Cao Y.H.,et al.Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes.Anal Chem.,2007,79:8024-8029.
    [49]Hilliard L.R,Zhao X.,Tan W.Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies.Anal Chim.Acta,2002,470:51-56.
    [50]He P.,Hu N.,Rusling J.F.Driving forces layer-by-layer self-assembly of films of SiO2nanoparticles and heme proteins.Langmuir,2004,20:722-729.
    [51]Yang Z.J.,Xie Z.Y.,Liu H.,et al.Streptavidin-functionalized three-dimensional ordered nanoporous silica film.for highly efficient chemiluminescent immunosensing.Adv.Funct.Mater.,2008,18:3991-3998.
    [52]Sun Y.Y.,Yan F.,Yang W.S.,et al.Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment.Biomaterials,2006,27:4042-4049.
    [53]Hong C.L.,Yuan R.,Chai Y.Q.,et al.Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3.Anal Chim.Acta,2009,633:244-249.
    [54]Willner I.,Katz E..Magnetic control of electrocatalytic and bioelectrocatalytic processes.Angew.Chem.Int.Ed.,2003,42:4576-4588.
    [55]Tsourkas A.,Hofstetter O.,Hofstetter H.,et al.Magnetic relaxation switch immunosensors detect enantiomeric impurities.Angew.Chem.Int.Ed.,2004,43:2395-2399.
    [56]吴伟,贺全国,陈洪.磁性纳米粒子在生物传感器中的应用研究进展,化学通报,2007,4:277-285.
    [57]Mavr(?) F.,Bontemps M.,Ammar-Merah S.,et al.Electrode surface confinement of self-assembled enzyme aggregates using magnetic nanoparticles and its application in bioelectrocatalysis.Anal Chem.,2007,79:187-194.
    [58]Katz E.,Weizmann Y.,Willner I.Magnetoswitchable reactions of DNA monolayers on electrodes:gating the processes by hydrophobic magnetic nanoparticles.J.Am.Chem.Soc.,2005,127:9191-9200.
    [59]Karyakin A.A.,Karyakina E.E.Prussian blue-based ‘artificial peroxidase' as a transducer for hydrogen peroxide detection.Application to biosensors.Sens.Actuators B,1999,57:268-273.
    [60]Karyakin A.A.,Karyakina E.E.,Gorton L.Amperometric biosensor for glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide.Anal Chem.,2000,72:1720-1723.
    [61]Vaucher S.,Li M.,Mann S.Synthesis of Prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions.Angew.Chem.Int.Ed.,2000,39:1793-1796.
    [62]Fiorito P.A.,Gon(?)ales V.R.,Ponzio E.A.,et al.Synthesis,characterization and immobilization of Prussian blue nanoparticles.A potential tool for biosensing devices.Chem.Commun.,2005,19:366-368.
    [63]Ricci F.,Palleschi G.Sensor and biosensor preparation,optimisation and applications of Prussian blue modified electrode.Biosens.Bioelectron.,2005,21:389-407.
    [64]Zhao W.,Xu J.J.,Shi C.G.,et al.Multilayer membranes via layer-by-layer deposition of prganic polymer protected prussian blue nanoparticles and glucose oxidase for glucose biosensing.Langmuir,2005,21:9630-9634.
    [65]Chen S.H.,Yuan R.,Chai Y.Q.,et al.A new antibody immobilization technique based on organic polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric immunosensors.Sens.Actuators B,2008,135:236-244.
    [66]Iijima S.Helical microtubes of graphitic carbon.Nature,1991,354:56-58.
    [67]Xi F.N.,Liu L.J.,Chen Z.C.,et al.One-step construction of reagentless biosensor basedon chitosan-carbon nanotubes-nile blue-horseradish peroxidase biocomposite formed by electrodeposition.Talanta,2009,78:1077-1082.
    [68]Shi L.H.,Liu X.Q.,Niu W.X.,et al.Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohom modified electrode.Biosens.Bioelectron.,2009,24:1159-1163.
    [69]Cheng Y.X.,Liu Y.J.,Huang J.J.,et al.Amperometric tyrosinase biosensor based on Fe_3O_4nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms.Electrochim.Acta,2009,54:2588-2594.
    [70]Cui R.J.,Liu C.,Shen J.M.,et al.Gold nanoparticle-colloidal carbon nanosphere hybrid material:Preparation,characterization,and application for an amplified electrochemical immunoassay.Adv.Funct.Mater.,2008,18:2197-2204.
    [71]Zhu A.W.,Tian Y.,Liu H.Q.,et al.Nanoporous gold film encapsulating cytochrome c for the fabrication f a H_2O_2 biosensor.Biomaterials,2009,article in press(Available online 5 March 2009).
    [72]Guo S.J.,Dong S.J.,Wang E.K.Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanoeables:preparation and application as etectrocatalysts for oxygen reduction.J.Phys.Chem.C,2008,112:2389-2393.
    [73]Li N.,Yuan R.,Chai Y.Q.,et al.New antibody immobilization strategy based on gold nanoparticles and Azure I/multi-walled carbon nanotube composite membranes for an amperometrie enzyme immunosensor.J.Phys.Chem.C,2007,111:8443-8450.
    [74]Breyer B.,Radeliff F.J.Polarographie investigation of the antigen-antibody reaction.Nature,1951,167:79-79.
    [75]Mantzila A.G.,Maipa V.,Prodromidis M.I.Development of a faradic impedimetric immunosensor for the detection of salmonella typhimurium in milk.Anal.Chem.,2008,80:1169-1175.
    [76]Aizawa M.,Morioka A.,Suzuki S.,et al.Enzyme immunosensor.Ⅲ.Amperometric determination of human ehorionic gonadotropin by membrane-bound antibody.Anal.Biochem.,1979,94:22-28.
    [77]Liang R.P.,Qiu J.D.,Cai P.X.A novel amperometric immunosensor based on three-dimensional sol-gel network and nanoparticle self-assemble technique.Anal.Chim.Acta.,2005,534:223-229.
    [78]Worwood M.Serum transferrm receptor assays and their application.Ann.Clin.Biochem.,2002,39:221-230.
    [79]Wilson M.S.,Nie W.Y.Electrochemical multianalyte immunoassays using an array-based sensor.Anal.Chem.,2006,78:2507-2513.
    [80]Thomas J.H.,Kim S.K.,Hesketh P.J.,et al.Bead-based electrochemical irnmunoassay for bacteriophage MS2.Anal Chem.,2004,76:2700-2707.
    [81]Kim S.K.,Hesketh P.J.,Li C.M.,et al.Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system.Biosens.Bioelectron.,2004,20:887-894.
    [82]Camp(?)s M.,Iglesia P.,Berre M.L.,et al.Enzymatic recycling-based amperometric immunosensor for the ultrasensitive detection of okadaic acid in shellfish.Biosens.Bioelectron.,2008,24:716-722.
    [83]Limoges B.,Marchal D.,Mavr F.,et al.High amplification rates from the association of two enzymes confined within a nanometric layer immobilized on an electrode:modeling and illustrating example.J.Am.Chem.Soc.,2006,128:6014-6015.
    [84]Anzai J.I.,Kobayashi Y.,Nakamura N.,et al.Layer-by-layer construction of multilayer thin films composed of avidin and biotin-labeled poly(amine)s.Langmuir,1999,15:221-226.
    [85]Wilchek M.,Bayer E.A.The avidin-biotin complex in bioanalytieal applications.Anal.Biochem.,1988,171:1-32.
    [86]Edwards K.A.,BaeumnerA J.Liposomes in analyses.Talanta,2006,68:1421-1431.
    [87]Edwards K.A.,Baeumner A.J.Analysis of liposomes.Talanta,2006,68:1432-1441.
    [88]G(?)mez-Hens A.,Fern(?)ndez-Romero J.M.The role of liposomes in analytical processes.Trends.Anal.Chem.,2005,24:9-19.
    [89]Rongen H.A.H.,Bult A.,van Bennekom W.P.Liposomes and immunoassays.J.Immunol.Methods,1997,204:105-133.
    [90]李庭,曾光明,汤琳等.脂质体免疫传感器的研究进展.分析化学,2008,38(1):122-126.
    [91]Alfonta L.,Singh A.K.,Willner I.Liposomes labeled with biotin and horseradish peroxidase:A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes.Anal Chem.,2001,73:91-102.
    [92]Mason J.T.,Xu L.X.,Sheng Z.M.,et al.A liposome-PCR assay for the ultrasensitive detection of biological toxins,Nature Biotechnol.,2006,24:555-557.
    [93]Vinayaka A.C.,Basheer S.,Thakur M.S.Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor.Biosens.Bioelectron.,2009,24:1615-1620.
    [94]Ho J.A.,Lin Y.C.,Wang L..S.,et al.Carbon nanoparticle-enhanced immunoelectrochemical detection for protein tumor marker with cadmium sulfide biotracers.Anal Chem.,2009,81:1340-1346.
    [95]Das J.,Jo K.,Lee J.W.,et al.Electrochemical immunosensor using p-aminophenol redox cycling by hydrazine combined with a low background current.Anal.Chem.,2007,79:2790-2796.
    [96]Limoges B.,Marchal D.,Mavr(?) F.,et al.Theory and practice of enzyme bioaffinity electrodes:chemical,enzymatic,and electrochemical amplification of in situ product detection.J.Am.Chem.Soc,2008,130:7276-7285.
    [97]Limoges B.,Marchal D.,Mavr(?) F.,et al.Theory and practice of enzyme bioaffinity electrodes:direct electrochemical product detection.J.Am.Chem,Soc.,2008,130:7259-7275.
    [98]Viswanathan S.,Rani C.,Anand A.V.,et al.Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode.Biosens.Bioelectron.,2009,24:1984-1989.
    [99]Mani V.,Chikkaveeraiah B.V.,Patel V.,et al.Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification.ACS Nano.,2009,3:585-594.
    [100]Yu X.,Munge B.,Patel V.,et al.Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers.J.Am.Chem.Soc.,2006,128:11199-11205.
    [101]Liu G.D.,Wang J.,Kim J.,et al.Electrochemical coding for multiplexed immunoassays of proteins.Anal.Chem.,2004,76:7126-7130.
    [102]Wang J.,Liu G.D.,Munge B.,et al.DNA-based amplified bioelectronic detection and coding of proteins.Angew.Chem.Int.Ed.,2004,43:2158-2161.
    [103]Chumbimuni-Torres K.Y.,Dai Z.,Rubinova N.,et al.Potentiometric biosensing of proteins with ultrasensitive ion-selective microelectrodes and nanoparticle labels.J.Am.Chem.Soc.,2006,128:13676-13677.
    [104]Cui R.J.,Pan H.C.,Zhu J.J.,et al.Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels.Anal,Chem.,2007,79:8494-8501.
    [105]P(?)rez-Olmos R.,Soto J.C.,Z(?)rate N.,et al.Montenegro sequential injection analysis using electrochemical detection:Areview.Anal,Chim.Acta.2005,554:1-16.
    [106]Yu X.,Munge B.,Patel V.,et al.Carbon nanotube amplification strategies for highly sensitive immuno-detection of cancer biomarkers.J.Am.Chem.Soc.2006,128:11199-11205.
    [107]Wilson M.S.,Rauh R.D.Novel amperometric immunosensors based on iridium oxide matrices.Biosens.Bioelectron,2004,19:693-699.
    [108]Gong F.C.,He D.S.,Cao Z.,et al.An amperometric enzyme-linked immunosensor using resveratrol as the substrates for horseradish peroxidase for Brucella Melitensis antibody assay.Chinese J.Ana.l Chem.2007,35:1783-1786.
    [109]Adam J.K.,Odhav B.,Bhoola K.D.Immune responses in cancer.Pharmacol Therapeut.,2003,99:113-132.
    [110]Kristian A.,Hans P.,Mogens K.Carcinoembryonic antigen(CEA) and alkaline phosphatase in progressive colorectal cancer with special reference to patient survival.Eur.J.Cancer Clin.Oncol.,1986,22:211-217.Eur.J.
    [111]陶华林,李红霞.肿瘤标志物的研究及临床应用进展(综述).国外医学临床生物化学与检验学分册,2005,26:54-59.
    [112]Hammarstr(o|¨)m S.The carcinoembryonic antigen CEA family:structures,suggested functions.and expression in normal and malignant tissues.Semin..Cancer.Biol.,1999,9:67-81.
    [113]Zong D.,Feng Y.,Hua Y,et al.Novel amperometric immunosensor for rapid separation-free immunoassay of carcinoembryonic antigen.J.Immunol.Methods,2004,287:13-20.
    [114]Zhang B.,Zhang X.,Yan H.,et al.A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor.Biosens.Bioelectron.,2007,23:19-25.
    [115]Huang X.J.,Li C.C.,Gu B.,et al.Controlled molecularly mediated assembly of gold nanooctahedra for a glucose biosensor.J.Phys.Chem.C,2008,112:3605-3611.
    [116]Thanh N.T.K.,Rosenzweig Z.Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles.Anal.Chem.,2002,74,1624-1628.
    [117]Zhang C.,Zhang Z.,Yu B.,et al.Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry.Anal.Chem.,2002,74,96-99.
    [118]Cheng W.L.,Jiang J.G,Dong S.J.,et al.Altemate assemblies of thionine and Au-nanoparticles on an amino functionalized surface.Chem.Commun.,2002,1706-1707.
    [119]Ding Y.H.,Zhang X.M.,Liu X.X.,et al.Adsorption characteristics of thionine on gold nanoparticles.Langmuir,2006,22:2292-2298.
    [120]Enustun B.V.,Turkevich J.J.Coagulation of colloidal gold.J.Am.Chem.Soc.,1963,85: 3317-3328.
    [121]Frens G..Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.Nature.Phy.Sci.,1973,241:20-22.
    [122]Yao H.,Li N.,Xu S.,et al.Electrochemical study of a new methylene blue/silicon oxide nanocomposition mediator and its application for stable biosensor of hydrogen peroxide.Biosens.Bioelectron.,2005,21:372-377.
    [123]Bonnet J.P.,Tran-Van F.,Chevrot C.Photoactive ionic assemblies between n dopable perylene and p dopable carbazole derivatives.Synthetic Met.,2006,56:1292-1298.
    [124]Ozaki J.,Nisiiizawa S.,Nishiyama Y.Electronic properties of model compounds simulating carbons prepared at low temperatures.Carbon,1997,35:45-52.
    [125]Sapagovas V.J.,Gaidelis V.,Kovalevskij V.,et al.3,4,9,10-perylenetetmcarboxylic acid derivatives and their photophysical properties.Dyes Pigments.,2006,71:178-187.
    [126]Eremtchenko M.,Schaefer J.A.,Tautz F.S.Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design.Nature,2003,425:602-605.
    [127]Forrest S.R.Ultrathin organic films grown by organic molecular beam deposition and related techniques.Chem.Rev.,1997,97:1793-1896.
    [128]Tucker J.H.R.,Collinson S.R.Recent developments in the redox-switched binding of organic compounds.Che.Soc.Rev.,2002,31:147-156.
    [129]Wang Y.,Tang Z.,Kotov N.A.Bioapplication of nanosemiconductors.Mater.Today.,2005,8:20-31.
    [130]Sun N.J.,Guan L.H.,Shi Z.J.,et al.Ferrocene peapod modified electrodes:Preparation,characterization,and mediation of H_2O_2.Anal Chem.,2006,78:6050-6057.
    [131]Liu Y.,Shi L.,Wang M.,et al.A novel amperometric horseradish peroxidase biosensor based on room temperature ionic liquids sol-gel matrix.Green.Chem.,2005,7:655-658.
    [132]Collinson M.M.,Rausch C.G.,Voigt A.A Electroactivity of redox probes encapsulated within sol-gel-derived silicate films.Langmuir,1997,13:7245-7251.
    [133]Calvo E.J.,Danilowicz C.B.,Wolosiuk A.Supramolecular multilayer structures of wired redox enzyme electrodes.Phys.Chem.Chem.Phys.,2005,7:1800-1806.
    [134]Honda T.,Miyazaki M.,Nakamura H.,et al.Immobilization of enzymes on a microchannel surface through cross-linking polymerization.Chem.Commun.,2005,5062-5064.
    [135]Sampath S.,Lev O.3d organized self-assembled monolayer electrodes:a novel biosensor configuration.Adv.Mater.,1997,9:410-413.
    [136]Yu T.,Zhang Y.,You C.,et al.Controlled nanozeolite-assembled electrode:remarkable enzyme-immobilization ability and high sensitivity as biosensor.Chem.Eur.J.,2006,12:1137-1143.
    [137]Willner I.,Baron R.,Willner B.Growing metal nanoparticles by enzymes.Adv.Mater.,2006,18:1109-1120.
    [138]Mirkin C.A.,Letsinger R.L.,Mucic R.C.,et al.A DNA-based method for rationally assembling nanoparticles into macroscopic materials.Nature,1996,382:607-609.
    [139]Gittins D.I.,Caruso F.Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media.Angew Chem Int.Ed.,2001,16:3001-3004.
    [140]Preechaworapun A.,Ivandini T.A.,Suzuki A.,et al.Development of amperometric immunosensor using boron-doped diamond with poly(o-aminobenzoic acid).Anal Chem.,2008,80:2077-2083.
    [141]Chert H.,Jiang J.H.,Huang Y.,et al.An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex.Sens.Actuators B.,2006,117,211-218.
    [142]Ionescu R.E.,Gondran C.,Gheber L.A.,et al,Construction of amperometric immunosensors based on the electrogeneration of a permeable biotinylated polypyrrole film.Anal Chem.,2004,76:6808-6813.
    [143]Penalva J.,Puchades R.,Maquieira A.Analytical properties of immunosensors working in organic media.Anal Chem.,1999,71:3862-3872.
    [144]Yu X.,Kim S.N.,PaPadimitrakoPoulos F.,et al,Protein immunosensor using single-wall carbon nanotube forests with eleetorchemical detection of enzyme labels.Mol.Bio.Syst.,2005,1:70-78.
    [145]Wang J.Electrochemical biosensors:Towards point-of-care cancer diagnostics.Biosens.Bioelectron.,2006,21:1887-1892.
    [146]Valat C.,Limoges B.,Huet D.,et al,A disposable protein A-based immunosensor for flow-injection assay with electrochemical detection.Anal Chim.Acta.,2000,404:187-194.
    [147]Calvo E.J.,Danilowicz C.,Lagier C.M.,et al,Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes.Biosens.Bioelectron.,2004,19:1219-1228.
    [148]Meziani M.J.,Rollins H.W.,Allard L.F.,et al,Protein-protected nanoparticles from rapid expansion of supercritical solution into aqueous solution.J.Phys.Chem.B,2002,106:11178-11182.
    [149]Meziani M.J.,Sun Y.P.,Protein-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution.J.Am.Chem.Soc.,2003,125,8015-8018.
    [150]Bhamthi S.,Nogami M.,Ikeda S.,Novel electrochemical interfaces with a tunable kinetic barrier by self-assembling organically modified silica gel and gold nanoparticles.Langmuir,2001,17,1-4.
    [151]Tang D.P.,Yuan R.,Chai Y.Q.,et al,New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2'-bipyridyl)cobalt(Ⅲ) multilayer films for hepatitis B surface antigen determinations.Biosens.Bioelectron.,2005,21:539-548.
    [152]Dai Z.,Chen J.,Yan F.,et al,Electrochemical sensor for immunoassay of carcinoembryonic antigen based on thionlue monolayer modified gold electrode.Cancer Detection Prevention.,2005,29:233-240.
    [153]Wu J.,Tang J.H.,Dai Z.,et al,A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen.Biosens.Bioelectron.,2006,22:102-108.
    [154]Wilson M.S.,Electrochemical immunosensors for the simultaneous detection of two tumor markers.Anal.Chem.,2005,77:1496-1502.
    [155]Liu G D.,Lin Y.H.,Nanomaterial labels in electrochemical immunosensors and immunoassays.Talanta,2007,74:308-317.
    [156]Valentini,F;Palleschi,G.Nanomaterials in analytical chemistry.Anal.Lett.,2008,41:479-520.
    [157]Vazquez M.,Luna C.,Morales M.P.,et al.Magnetic nanoparticles:synthesis,ordering and properties.Phys.B.Condens.Matter,2004,354:71-79.
    [158]Gupta A.K.,MSynthesis G.et al.Surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials,2005,26;3995-4021.
    [159]Tang D.P.,Yuan R.,Chai Y.Q.,et al.Core/shell magnetic CoFe_2O_4/SiO_2 porous composite nanoparticles as immobilized affinity supports for clinial immunoassays.Adv.Funct.Mater., 2007,17:976-982.
    [160]Tang D.P.,Yuan R.,Chai Y.Q.,et al.Ultrasensitive electrochemical imrnunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer.Anal.Chem.,2008,80:1582-1588.
    [161]Zhanga J.,Kongb Q.,Dua J.,et al.Formation,characterization,and magnetic properties of Fe_3O_4 mierooctahedrons.J.Crys.Grow.,2007,308:159-163.
    [162]Kim D.K.,Mikhaylova M.,Zhang Y.,et at.Protective coating of superparamagnetic iron oxide nanoparticles.Chem.Mater.,2003,15:1617-1627.
    [163]Wuang S.C.,Neoh K.G,Kang E.T.,et al.HER-2-mediated endocytosis of magnetic nanospheres and the implications in cell targeting and particle magnetization.Biomaterials,2008,29:2270-2279.
    [164]Buschmann W.E.,Ensling J.,Gutlich P.,et al.Electron transfer,linkage isomerization,bulk magnetic order,and spin-glass behavior in the iron hexacyanomanganate prussian blue analogue.Chem.Eur.J.,1999,5:3019-3028.
    [165]Lee H.,Lee E.,Kim D.K.,et al.Antibiofouling polymer-coated superparamagnetic Iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging.,J.Am.Chem.Soc.,2006,128:7383-7389.
    [166]Dobson J.Magnetic nanoparticles for drug delivery.Drug.DeV.Res.,2006,67:55-60.
    [167]Jana N.R.,Ying J.Y.Synthesis of functionalized Au nanoparticles for protein detection.Adv.Mater.,2008,20:430-434.
    [168]Ipe B.,Yoosaf K.,Thomas K.G.Functionalized gold nanoparticles as phosphorescent nanomaterials and sensors.J.Am.Chem.Soc.,2006,128:1907-1913.
    [169]Krajewska B.Application of chitin-and chitosan-based materials for enzyme immobilizations.Enzyme Microb.Technol.,2004,35:126-139.
    [170]Xu Q.,Mao C.,Liu N.N.,et al.Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite.Biosens.Bioelectron.,2006,22:768-773.
    [171]Luo X.L.,Xu J.J.,Zhang Q.,et al.Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly.Biosens.Bioelectron.,2005,21:190-196.
    [172]Zhao G.,Feng J.J.,Zhang Q.L.,et al.Synthesis and characterization of prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H_2O_2.Chem.Mater.,2005,17:3154-3159.
    [173]Dai H.J.Carbon nanotubes:synthesis,integration,and properties.Ace.Chem.Res.,2002,35(12):1035-1044.
    [174]Wang J.Carbon-nanotube based electrochemical biosensors.Electroanalysis,2005,17:7-14.
    [175]Dong X.C.,Lau C.M.,Lohani A.,et al.Electrical detection of femtomolar DNA via gold-nanoparticle enhancement in carbon-nanotube-network field-effect transistors.Adv.Mater.,2008,20:2389-2393.
    [176]Jiang K.,Eitan A.,Schadler,et al.Selective Attachment of gold nanoparticles to nitrogen-doped carbon nanotubes.Nano.Lett.,2003,3:275-277.
    [177]Chert Y.,Liu H.P.,Ye T.,et al.DNA-directed assembly of single-wall carbon nanotubes.J.Am.Chem.Soc.,2007,129:8696-8697.
    [178]Yang H.P.,Chen SG.,Li C.H.,et al.Nanomaterials based electrochemical biosensors.Prog. Chem.,2009,21(1):210-216.
    [179]Pang X.Y.,He D.M.,Luo S.L.,et al.An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite.Sens.Actuators,B.,2009,137(1):134-138.
    [180]Chen R.J.,Zhan Y.,Wang D.,et al.Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization.J.Am.Chem.Sock,2001,123:3838-3839.
    [181]Star A.,Stoddart J.S.,Streuerman D.,et al.Preparation and properties of polymer-wrapped single-walled carbon nanotubes.Angew.Chem.Int.Ed.,2001,40:1721-1725.
    [182]#12
    [183]Matsuura K.,Saito T.,Okazaki T.,et al.Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions.Chem.Phy.Letters.,2006,429:497-502.
    [184]Liu,G.Z.,Paddon-Row M.N.,Gooding,J.J.,Protein modulation of electrochemical signals:application to immunobiosensing.Chem Commun.,2008,3870-3872.
    [185]Kneuer C.,Sameti M.,Haltner E.G.,et al.Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA.In.t J.Pharm.,2000,196(2):257-261.
    [186]Tominaga Y.,Hong I.-C.1,Asai S.,et al.Proton conduction in Nation composite membranes filled with mesoporous silica.J.Power Sources,2007,171:530-534.
    [187]Goonetilleke K.S.,Siriwardena A.K.Systematic review of carbohydrate antigen(CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer.Eur.J.Surg.Oncol.,2007,33:266-370.
    [188]Gouveia-Caridade C.,Pauliukaite R.,Brett C.M.A.Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol.Electrochimi.Acta,2008,52:6732-6739.
    [189]Jeykumari D.R.S.,Narayman S.S.A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes.Biosens.Bioelectron.,2008,23:1404-1411

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700