用户名: 密码: 验证码:
氨基甲酸乙酯和大肠杆菌的表面增强拉曼光谱检测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“食品污染物”是指非特意在食品中添加,但能够在生产(包括谷物栽培、动物饲养和兽药使用)、制造、加工、调制、处理、填充、包装、运输和包藏等过程中产生,或是由于环境污染带入到食品中的对人类健康有危害的任何物质。它包括化学污染物和微生物污染物两大类。氨基甲酸乙酯是属于食品加工处理过程中的一种化学污染物,是发酵食品特别是酒精饮料中自然形成的一种物质,对人类健康具有致癌的潜在威胁;大肠杆菌是食源性微生物污染物非常重要的一个分支,某些致病菌菌株能够在一定程度上危害人的身体健康,使人致病甚至致死。
     本课题采用表面增强拉曼技术,并结合纳米技术、量子力学理论、光学、分子生物学、化学计量学等各领域的最新研究成果,探索建立了用于酒精饮料中氨基甲酸乙酯(EC)和水溶液中大肠杆菌(E.coli)快速检测的一系列免标记SERS新方法。
     本文的主要研究结果和结论如下:
     (1)建立了一种基于密度泛函理论和表面增强拉曼光谱技术的氨基甲酸乙酯快速检测方法。首先基于密度泛函理论(DFT)对氨基甲酸乙酯(EC)分子的空间几何结构进行了优化,其次结合拉曼光谱(RS)和表面增强拉曼光谱(SERS)技术,对EC分子的拉曼光谱和SERS光谱的特征峰进行了解析,对分子振动模式进行了峰的归属;再次通过分子静电势(MEP)对EC分子与SERS活性基底银纳米颗粒表面的反应吸附方式进行了研究;最后结合理论计算和试验研究的结果,研究了基于SERS技术的免标记方法对水溶液中氨基甲酸乙酯定性和定量检测的可行性,进而对EC定量检测分析的特征峰进行了优化选择,探索了此方法的检测限。结果表明:①基于B3LYP/6-31G (d)和aug-cc-pVTZ水平基组的DFT理论计算得到的EC分子的拉曼光谱峰与试验结果相符合。EC分子的拉曼特征峰为396,512,672,854,996,1076,1127,1150,1273,1346,1440,1457,1622,1688,2934,2965,2991,和3414cm-1,主要归属于羰基,C-C键,C-H键和N-H键振动。②根据SERS表面选择原则,结合MEP3D等值面图和EC的SERS特征峰振动模式归属,可以推断EC分子是通过酰胺基团和C-C键与SERS活性基底Ag NPs的表面吸附作用的。因酰胺基团的拉曼增强效果并不强,推断酰胺基团是以平行模式与Ag NPs表面作用,而C-C键的增强效果是最强的,推断其是以垂直模式与Ag NPs表面作用。③归属于us(CC)+co(CH)振动模式的1006cm-1处的拉曼峰是EC分子增强效应最强的SERS峰,在不同浓度下峰形及强度测试重复性最好,被用来作为水溶液中EC分子定量检测的特征峰。结果显示在1×10-6M到1×10-3M的浓度范围内,EC的拉曼峰强与其浓度成线性关系,相关系数为0.9253,检测限为2×10-7M(17.8μg/L)。此方法研究了EC晶体的拉曼光谱图,为物质鉴定的拉曼谱图库提供参考。证实了SERS技术在EC定性和定量检测中的可行性,结果表明基于此方法得到的定量分析检测限远低于各国设定的标准值,为EC的快速检测手段提供了新思路。
     (2)建立了一种基于Au@Ag NPs表面增强拉曼光谱技术的氨基甲酸乙酯定量检测方法。首先通过种子生长法在Au核表面合成不同Ag壳厚度的银壳包被金核的纳米颗粒(Au@Ag NPs),比较不同Ag壳厚度的纳米颗粒在不同激光波长下的SERS效果,选取最优Au@Ag NPs作为SERS活性基底进行EC检测。再次,基于EC分子SERS特征峰归属的研究结果,选择最佳定量特征峰对水溶液和酒精溶液中的不同浓度EC进行定量检测,并探索了此方法对酒精溶液中EC的定量检测限。结果表明:①通过染料分子罗丹明6G(R6G)和待测物EC对不同Ag壳厚度(1-11nm)的Au@Ag NPs在不同激发波长下SERS增强效果的表征,7nmAg壳厚度的Au@Ag NPs在633nm激发波长下展现出最强的SERS效应。②通过对不同浓度(1×10-9M到1×10-4M)EC水溶液的检测,得知以Au@Ag NPs为SERS活性基底得到的EC分子三个主要SERS特征峰1003cm-1,1083cm-1,和1117cm-1被显著增强,它们分别归属于us(CC)+ω(CH),δ(NH)+νs(OC)+δ(CH2)和δ(NH2+CH3)的振动模式;结果表明,EC的拉曼强度与其浓度在1×10-9M到1×10-7M的浓度范围内具有线性关系,其R2值分别为0.9682,0.9428,和0.9679;其中以1003cm-1处的SERS峰重复性最高,得到的线性关系最好,被选作为酒精溶液中EC定量检测的特征峰。③通过在三种酒精饮料(伏特加,白朗姆,和水果酒Obstler)中添加不同浓度的EC,验证基于以上方法对EC进行定量检测的可行性。结果表明与以上结果相同,在1×10-9M到1×10-7M的浓度范围内,酒精溶液中EC的拉曼强度与其浓度成线性关系,R2值分别为0.8065,0.9106,和0.9283,检测限分别为9.0×10-9M(0.8μg/L),1.3×10-7M(11.6μg/L),和7.8×10-8M(6.9μg/L)。整个检测过程只需15分钟,且不需要任何复杂的样品前处理。结果表明基于Au@AgNPs的表面增强拉曼光谱方法能够快速地检测酒精饮料中的痕量EC,检测限远远低于各国设定的标准值,这为开发实际酒精样品中EC的快速检测方法和手段提供了研究基础。
     (3)建立了一种基于免标记表面增强拉曼光谱技术的水溶液中大肠杆菌快速检测方法。选取E.coli DSM1116菌株作为大肠杆菌检测模型,使其自由生长在Ag NP胶体溶液中,优化其培养条件(震荡速度、培养时间、培养温度),选取较优条件培养的大肠杆菌进行检测。首先探索了基于较优培养条件SERS技术快速检测大肠杆菌以及鉴别三种不同大肠杆菌菌株E. coli DSM498/1116/5695的可行性;其次结合拉曼成像方法,探索了此方法对单个细菌和不同浓度大肠杆菌检测的可行性。结果表明:①E.coli DSM1116在Ag NP胶体溶液中以100rpm震荡速度,37℃的条件培养3h后,获得SERS检测的较优培养条件。通过计算其最强峰732cm-1处的拉曼信号,其(浓度1×108cells/mL)拉曼强度可达最大为18000cps。②基于较优培养条件建立的SERS方法与简单的混合方法相比,不仅大肠杆菌的出峰位置增多,重复性提高,且拉曼强度提高到3.5倍。③Ag NPs-E. coli混合溶液由最初的黄绿色变为鲜明的草绿色,在紫外-可见光吸收光谱图中出现500-700nm新的宽吸收峰;通过TEM结果观察,Ag NPs紧密吸附在细菌表面;通过对E.coli的SERS峰归属研究,658、732和1330cm-1三处峰的出现表明Ag NPs与细菌的细胞壁之间能够紧密结合。这表明细菌和Ag NPs之间可能形成了某种复合物。④基于较优培养条件的SERS方法对三种大肠杆菌菌株E. coli DSM498/1116/5695进行检测和鉴别。随机各取15条SERS光谱进行归一化处理,结合判别分析的化学计量学方法建立分类模型,结果表明三种大肠杆菌菌株可以被成功区分出来。⑤基于较优培养条件的SERS方法可以成功的检测出单个大肠杆菌的拉曼峰,其出峰位置与溶液中细菌的出峰位置相同,这为SERS拉曼成像的实施提供了试验基础。⑥获得在较优培养条件下的不同浓度的大肠杆菌,分别对其进行拉曼成像分析。结果表明,SERS成像能够检测到大肠杆菌的最低浓度为1×105cells/mL。结果表明,基于较优培养条件的大肠杆菌免标记SERS方法与之前报道的简单混合方法相比,SERS光谱重复性更好,检测的灵敏度更高,实现了不同浓度大肠杆菌的检测。
     (4)构建了一种基于免标记表面增强拉曼光谱技术快速抓取固定细菌的芯片。通过对玻璃片进行聚氧乙烯二胺修饰,使玻璃片表面带氨基,然后使用稀盐酸对玻片进行质子化处理使其带正电,因细菌带负电,根据静电吸附的原理,此种方法构建的芯片可以实现快速抓取固定细菌的目的。此芯片用细菌培养0.5h后继而用Ag NPs溶液孵育0.5h,用去离子水清洗后对细菌进行SERS检测。结合判别分析的化学计量学方法,探索了基于此芯片对三种不同的UTI细菌(CFT, PSAE,和PRM1)鉴别分类的可行性。结果表明:①细菌能够被牢固的抓紧在修饰的芯片上,与Ag NP胶体溶液混合孵育后,能够在5min内获得重复性较好的细菌SERS光谱。②结合判别分析的化学计量学方法进行建模,结果表明此芯片能够成功区分三种不同的UTI细菌。本方法构建的芯片,可携带,成本低,能够快速抓取固定和检测细菌,可以作为一种用于细菌快速检测的芯片。
Food contaminants are substances that have not been intentionally added to food. But they may be present in food as a result of the various stages of its production (including cereal cultivation, animal grooming, and veterinary drug use), processing, treatment, packaging, transport, or holding. They also might result from environmental contamination. Such contamination, including chemical contaminant and microorganism contaminant, generally has a negative impact on the quality of food and may imply a risk to human health. Ethyl carbamate (EC) is one kind of chemical contaminant, which is produced in food processing. It is a by-product naturally formed in fermented foodstaff especially in alcoholic beverages, posing a potential threaten to human health, which can cause cancer. E.coli is one of the most important species in foodborne pathogens, some of which can lead people to illness even to death.
     Adopting surface-enhanced Raman spectroscopy (SERS), combined with latest research results of nanotechnology, quantum physics, optics, molecular biology, and chemometrics, this project, aimed to develop a series of new methods for rapid detection of ethyl carbamate and bacteria in beverages.
     The main contents and results are summarized as follows.
     (1) A rapid method for ethyl carbamate detection based on density functional theory (DFT) and surface-enhanced Raman spectroscopy (SERS) was established. Firstly, the optimized geometry structure of EC molecule was operated based on DFT calculation. Secondly, the combination of DFT, Raman spectroscopy (RS), and SERS was used to analyze the bands of EC molecule and assign the Raman vibrational modes of EC. In addition, the EC adsorption geometry on the SERS-substrate silver nanoparticle surface was discussed via molecular electrostatic potential (MEP). Based on theoretical and experimental results, the feasibility of SERS technique for qualitative and quantitative detection of EC in aqueous solution was investigated. The characteristic peak for quantitative detection was then chosen, and the limit of detection based on this method was found in the study. The results indicated that:①The calculated results of EC molecule based on DFT using B3LYP/6-31G (d) and aug-cc-pVTZ basis level were found to be in good agreement with experimental Raman data. The characteristic Raman bands observed for EC molecule are396,512,672,854,996,1076,1127,1150,1273,1346,1440,1457,1622,1688,2934,2965,2991, and3414cm-1, which are mostly assigned to carbonyl group, C-C, C-H and N-H stretching and deformation vibarations.②According to the surface selection rules of SERS, MEP3D contour map and SERS vibrational modes were used to discuss the EC molecule adsorption geometry on the silver nanoparticle surface, which indicated that the EC molecule may be absorbed on the silver nanoparticle surface via amide group, C-C and C-H vibrational bands. The bands assigned to the amide group which existed in the SERS spectrum were not strongly enhanced however. It is supposed that the EC molecule arranged in a way that the amide group stayed almost parallel to the surface. The C-C bond became oriented perpendicular to the surface and the vibrations specific to this bond were highly enhanced.③The Raman band at1006cm-1assigned to νs(CC)+ω(CH) was the highest and best reproducible peak in SERS spectrum of EC, which could be chosen as the characteristic peak for quantitative detection of EC in aqueous solution. It was found that Raman signal had a good linear relationship with EC concentration ranging from1×10-6M to1×10-3M with a corresponding correlation coefficient0.9253. The limit of detection (LOD) is2×10-7M (17.8μg/L). The method established here provided reference for Raman fingerprint bank, furthermore confirmed the feasibility of SERS technique for qualitative and quantitative detection of EC. The LOD obtained was lower than the standard value set up in every country, which opened a new possibility of EC rapid evaluation.
     (2) A quantitative method for ethyl carbamatc detection based on Au@Ag NPs-dependent SERS technique was contructed. Au@Ag NPs with different thicknesses of Ag shell were synthesized through seed-growing method. The performance of Au@Ag NPs with different Ag shell thicknesses at different laser was evaluated. The Au@Ag NPs with optimized condition was used as SERS amplifier to detect EC with different concentrations in aqueous solution. Based on the assignment result of SERS characteristic peaks of EC molecule, the optimized peak was chosen for quantitative analysis of EC in aqueous solution and alcoholic beverages. The LOD of EC in alcoholic beverages was investigated based on this method. The results indicated that:①The SERS performance of Au@Ag NPs with different thicknesses of Ag shell at different wavelength lasers was evaluated by a dye molecule rhodamine6G (R6G) and EC molecule, which indicated Au@Ag NPs with7-nm Ag shell thickness at633nm laser possessed the best SERS effect.②The SERS method based on Au@Ag NPs was used to detect EC with different concentrations (from1×10-9M to1×10-4M) in aqueous solution. It was found that three characteristic bands at1003cm-1,1083cm-1, and1117cm-1, assigned to vibrational modes of us(CC)+ω(CH),δ(NH)+νs(OC)+δ(CH2), and δ(NH2+CH3) respectively, were strongly enhanced. The linear relationship between SERS signal and EC concentration was found in the range of1×10-9M to1×10-7M, with a good value of R2(0.9682,0.9428, and0.9679). The band at1003cm-1represented the best reproducibility and linear relationship, could be chosen as the characteristic peak for quantitative analysis of EC in alcoholic beverages.③EC solution with different concentrations spiked into three kinds of alcoholic beverages (Vodka, White rum, and a fruit snack Obstler) were detected by SERS method. A linear relationship between SERS signal and EC concentration was found from1×10-9M to1×10-7M, with a good value of R2(0.8065,0.9106, and0.9283, respectively). LOD of9.0×10-9M (0.8μg/L),1.3×10-7M (11.6), and7.8×10-8M (6.9μg/L) for such three alcoholic beverages was obtained. The total assay time of the method was only15min, and only a small volume was required in a real-world sample without any complicated sample preparation. The result indicated that this sensitive Au@Ag NPs-dependent SERS method could successfully fulfill the detection of trace amount of EC in alcoholic beverages, which may offer an intersting alternative for simple, rapid assessment of EC in the alcoholic beverage industry.
     (3) A rapid label-free SERS detection method of E.coli in aqueous solution was established. In this case, E.coli DSM1116was chosen as model E.coli bacteria for the study. The bacteria were cultivated in silver nanoparticle colloids with different growing conditions including shaking speed, cultivated time, and cultivated temperature. An optimized cultivated condition was picked up to help construct a rapid SERS method. The feasibility of rapid detection of E.coli and classification of three E.coli strains (E. coli DSM498/1116/5695) based on SERS was investigated. Finally, a SERS mapping method for single bacterium and bacteria with different concentrations was construced. The results indicated that:①When E.coli DSM1116grew in Ag NP colloids for3h with100rpm shaking speed at37℃, the optimized cultivated condition was obtained. Raman signal at732cm-1of bacteria with1×108cells/mL concentration could be reached to the largest value of18000cps.②Compared to previous reported simply mixing method, the SERS reproducibility of bacteria was improved, and the Raman signal was raised to3.5fold.③The color of Ag NP colloids was obviously observed from yellow-green to grass-green. Meanwhile, a new broad absorbance band from500to700nm in UV-vis spectrum was shown. A close-linked structure seen in TEM image indicated that a new complex compound between Ag NPs and bacteria was supposed to form. According to the SERS assignment, the appearance of three bands at658,732and1330cm-1indicated a close adsorption between the Ag NPs and cell wall of bacteria.④Fifteen SERS spectra for three different E.coli strains (E. coli DSM498/1116/5695) were obtained, normalized and used for the establishment of the classified model using discriminant analysis (DA) method. The three E.coli strains could be successfully discriminated.⑤A single bacterium could be successfully spotted and detected by SERS method, with the same Raman shift of bacteria in aqueous solution, which provided experimental foundation for SERS mapping.⑥Different concentrations of bacteria were detected by SERS method with Raman mapping. The lowest concentration can be obtained at1×105cells/mL. The method can provide higher sensitity and reproduciblity of SERS spectra of E. coli compared to previous reported simply mixing method.
     (4) A rapid grasping bacteria chip based on label-free SERS was established. The normal glass slide was modified with diamino-PEG method to make the surface covered with diamino group. The diamino-PEG-glass slide was then protonized with HC1which could enable the glass slide with NH3+. As the bacteria possess negetive charge and the glass slide gives a positve one, the NH3+modified glass slide can trap and grasp bacteria due to the electrostatic adsorption principle. The modified glass slide was incubed with bacteria for half an hour followed by Ag NP colloids for another half an hour. Then bacteria were detected by SERS based on such chip. In addition, the feasibility of discriminating three different UT1bacteria was investigated using this method. The results indicated that:①The rapid grasping chip possessed positive charge can tightly adsorb negative-charged bacteria via electrostatic adsorption principle. When the chip was incubated with concentrated Ag NP colloid, good reproducible SERS spectra of bacteria can be obtained with recognizable bacteria characteristic peaks in5min.②Three kinds of bacteria (CFT, PSAE, and PRM1) extracted from urinary tract infection (UTI) can be discriminated using SERS and DA method. The rapid grasping bacteria chip based on SERS is easily prepared and disposed, which can provide a rapid portable detection method of bacteria.
引文
1. Wikipedia. Processing contaminants. Acessed [2013-10-10]. Http://en.wikipedia.org/wiki/Food_contaminant.
    2. Zimmerli, B., Schlatter, J. Ethyl carbamate:Analytical methodology, occurrence, formation, biological activity and risk assessment. Mutation Reseach.1991,259:325-350.
    3. Ubeda, C., Balsera, C., Troncoso, A.M., Callejon, R.M., Morales, M.L. Validation of an analytical method for the determination of ethyl carbamate in vinegars. Talanta.2012,89:178-182.
    4. Ye, C.W., Zhang, X.N., Gao, Y.L., Wang, Y.L., Pan, S.Y., Li, X.J. Multiple headspace solid-phase microextraction after matrix modification for avoiding matrix effect in the determination of ethyl carbamate in bread. Analytica Chimica Acta.2012,710:75-80.
    5. Lachenmeier, D.W., Schehl, B., Kuballa, T., Frank, W., Senn, T. Retrospective trends and current status of ethyl carbamate in german stone-fruit spirits. Food Additives and Contaminants.2005,22(5):397-405.
    6. IARC. International agency for research on cancer monographs on the evaluation of the carcinogenic risk of chemicals to man:Some anti-thyroid and related substances, nitrofurans and industrial chemicals. World Health Organization:Lyon.1974.
    7. Paterson, E., Haddon, A., Thomas, I.A., Watkinson, J.M. Leukemia treated with urethane compared to deep X-ray therapy. Lancet.1946,1(6407):677-683.
    8. Guidelines for selection and use of anesthetics and sedatives. Irvine.University of California.2003.
    9. Nettleship, A., Henshaw, P.S., Meyer, H.L. Induction of pulmonary tumors in mice with ethyl carbamate. Journal of the National Cancer Institute.1943,4:309-331.
    10.高年发,宝菊花.氨基甲酸乙酯的研究进展.中国酿造.2006,9:1-4.
    11. Conacher, H.B.S., Page, B.D. Proceedings of euro food tox ii. European Society of Toxicology: Schwerzenbach.1986.
    12.2012年食品安全热点多数不属食品安全事件.Assessed http://http://news.xinhuanet.com/fortune/2013-01/06/c_124191865_4.htm.
    13. Salmon, A.G., Painter, P., Dunn, A.J., Wu-Williams, A., Monserrat, L., Zeise, L. Risks of carcinogenesis from urethane exposure. CRC Press Inc.:Florida.1991.
    14. IARC. Monographs on the evaluation of carcinogenic risks to humans:Alcohol consumption and ethyl carbamate. World Health Organization:Lyon.2010.
    15. National Toxicology Program (U.S.). NTP technical report on the toxicology and carcinogenesis studies of urethane, ethanol, and urethane/ethanol (urethane, cas no.51-79-6; ethanol, cas no.64-17-5) in b6c3fl mice (drinking water studies). Washington DC:National Toxicology Program, U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health.2004.
    16. FAO/WHO. Safety evaluation of certain contaminants in food. Food and Agriculture Organisation of the United Nations/World Health Organisation.2006.
    17. Beland, F.A., Benson, R.W., Mellick, P.W., Kovatch, R.M., Roberts, D.W., Fang, J.L., Doerge, D.R. Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in b6c3f(1) mice. Food and Chemical Toxicology.2005,43(1):1-19.
    18. Cha, S.W., Gu, H.K., Lee, K.P., Lee, M.H., Han, S.S., Jeong, T.C. Immunotoxicity of ethyl carbamate in female BALB/C mice:Role of esterase and cytochrome P450. Toxicology Letters.2000,115(3):173-181.
    19. Hoffler, U., El-Masri, H.A., Ghanayem, B.I. Cytochrome P450 2E1 (CYP2E1) is the principal enzyme responsible for urethane metabolism:Comparative studies using CYP2E1-null and wild-type mice. Journal of Pharmacology and Experimental Therapeutics.2003,307(3):1243-1243.
    20. Park, K.K., Liem, A., Stewart, B.C., Miller, J.A. Vinyl carbamate epoxide, a major strong electrophilic, mutagenic and carcinogenic metabolite of vinyl carbamate and ethyl carbamate (urethane). Carcinogenesis. 1993,14(3):441-450.
    21. Sakano, K., Oikawa, S., Hiraku, Y., Kawanishi, S. Metabolism of carcinogenic urethane to nitric oxide is involved in oxidative DNA damage. Free Radical Biology and Medicine.2002,33(5):703-714.
    22. Delledonne, D., Rivetti, F., Romano, U. Developments in the production and application of dimethylcarbonate. Applied Catalysis A-General.2001,221(1-2):241-251.
    23. Francis, P.S., Lewis, S.W., Lim, K.F. Analytical methodology for the determination of urea:Current practice and future trends. Trac-Trends in Analytical Chemistry.2002,21(5):389-400.
    24. Larsen, J.C. Risk assessment of chemicals in european traditional foods. Trends in Food Science & Technology.2006,17(9):471-481.
    25. Stevens, D.F., Ough, C.S. Ethyl carbamate formation-reaction of urea and citrulline with ethanol in wine under low to normal temperature conditions. American Journal of Enology and Viticulture.1993,44(3): 309-312.
    26. Hoffler, U., Ghanayem, B.I. Increased bioaccumulation of urethane in CYP2E1-/-versus CYP2E1+/+ mice. Drug Metabolism and Disposition.2005,33(8):1144-1150.
    27. Haque, M.R., Bradbury, J.H. Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chemistry.2002,77(1):107-114.
    28. Balcerek M, S.J. Ethyl carbamate content in fruit distillates. Zywnosc, Nauka, Technologia, Jakosc.2006, 1(46):91-101.
    29. Bruno, S.N.F., Vaitsman, D.S., Kunigami, C.N., Brasil, M.G. Influence of the distillation processes from rio de janeiro in the ethyl carbamate formation in brazilian sugar cane spirits. Food Chemistry.2007, 104(4):1345-1352.
    30. Carley, A.F., Chinn, M., Parkinson, C. Adsorption and reaction of CN+O=OCN on Cu(100) surface:A density functional theory study. Surface Science.2003,537:64-74.
    31. Risk assessment studies:Ethyl carbamate in local fermented foods. The Centre for Food Safety of the Food and Environmental Hygiene Department of the Government of the Hong Kong Special Administrative Region. Hongkong.2009.
    32. Canas, B.J., Joe, F.L., Diachenko, G.W., Burns, G. Determination of ethyl carbamate in alcoholic beverages and soy-sauce by gas-chromatography with mass-selective detection-collaborative study. Journal of AOAC International.1994,77(6):1530-1536.
    33. EFSA. Ethyl carbamate and hydrocyanic acid in food and beverages.Scientific opinion of the panel on contaminants. EFSA Journal.2007,551:1-44.
    34. Uthurry, C.A., Lepe, J.A.S., Lombardero, J., Del Hierro, J.R.G. Ethyl carbamate production induced by selected yeasts and lactic acid bacteria in red wine. Food Chemistry.2007,105(2):666.
    35. Hasnip, S., Crews, C., Potter, N., Christy, J., Chan, D., Bondu, T., Matthews, W., Walters, B., Patel, K. Survey of ethyl carbamate in fermented foods sold in the united kingdom in 2004. Journal of Agricultural and Food Chemistry.2007,55(7):2755-2759
    36. Hesford F, S.K. Validation of a simple method for the determination of ethyl carbamate in stone fruit brandies by GC-MS. Mitteilungen aus Lebensmitteluntersuchung und Hygiene.2001,92(3):250-259
    37. Lee, K.G. Analysis and risk assessment of ethyl carbamate in various fermented foods. European Food Research and Technology.2013,236(5):891-898
    38. Abreu, S.d.M., Alves, A., Oliveira, B., Herbert, P. Determination of ethyl carbamate in alcoholic beverages: An interlaboratory study to compare HPLC-FLD with GC-MS methods. Analytical and Bioanalytical Chemistry.2005,382(2):498-503.
    39. Madrera, R.R., Valles, B.S. Determination of ethyl carbamate in cider spirits by HPLC-FLD. Food Control. 2009,20(2):139-143.
    40. Park, S.K., Kim, C.T., Lee, J.W., Jhee, O.H., Om, A.S., Kang, J.S., Moon, T.W. Analysis of ethyl carbamate in korean soy sauce using high-performance liquid chromatography with fluorescence detection or tandem mass spectrometry and gas chromatography with mass spectrometry. Food Control.2007,18(8): 975-982.
    41. Chung, S.W.C., Kwong, K.P., Chen, B.L.S. Determination of ethyl carbamate in fermented foods by GC-HRMS. Chromatographia.2010,72(5-6):571-575.
    42. Manley, M., van Zyl, A., Wolf, E.E.H. The evaluation of the applicability of fourier transform near-infrared (FT-NIR) spectroscopy in the measurement of analytical parameters in must and wine. South African Journal of Enology and Viticulture.2001,22(2):93-100.
    43. Lachenmeier, D.W. Rapid screening for ethyl carbamate in stone-fruit spirits using ftir spectroscopy and chemometrics. Analytical and Bioanalytical Chemistry.2005,382(6):1407-1412.
    44.被曝氨基甲酸乙酯超标,沃尔玛超市下架三款绍兴黄酒.Accessed [2012-6-20]. http://news.cnnb.com.cn/system/2012/06/20/007357822.shtml.
    45.刘红丽,张榕杰,卢素格.酒中氨基甲酸乙酯的测定分析.中国卫生工程学2010,9(4):299-300.
    46.高年发,宝菊花,孙晓雯,张健,郭雨婷.HPLC测定白兰地中的氨基甲酸乙酯.中国酿造.2008,13:84-87.
    47.高年发,刘欠欠,王伟,王方.葡萄酒中氨基甲酸乙酯含量的HS-SPME/MPS结合GC/MS(?)动检测方法的研究.中国酿造.2009,12:107-111.
    48. Zhou, N.D., Gu, X.L., Tian, Y.P. Isolation and characterization of urethanase from penicillium variabile and its application to reduce ethyl carbamate contamination in chinese rice wine. Applied Biochemistry and Biotechnology.2013,170(3):718-728.
    49.谭文渊,袁东,付大友,李艳清,王蓉.HPLC测定白酒中的氨基甲酸甲酯和氨基甲酸乙酯.食品研究与开发.2013,34(5):87-89.
    50.刘秀梅.我国食品卫生微生物学30年来的热点研究及主要进展.中国食品卫生杂志.2009,21(4): 289-295.
    51. Michael, T.M., John, M.M., David, A.S., David, P.C. Brock biology of microorganisms. San Francisco: Benjamin Cummings.2010.
    52. Madigan, M., Martinko, J. Brock biology of microorganisms. New Jersey:Prentice-Hall Inc.2005.
    53. Chen, S.L., Wu, M., Henderson, J.P., Hooton, T.M., Hibbing, M.E., Hultgren, S.J., Gordon, J.I. Genomic diversity and fitness of e. Coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Science Translational Medicine.2013,5(184):184ra60.
    54.王一娴.快速检测农产品中大肠杆菌o157:H7的生物传感器方法与仪器研究[博士论文].杭州:浙江大学.2013.
    55. Porter, M. All about E.coli bacteria. Accessed [2012].Http://melpor.hubpages.com/hub/Understanding-The-E-Coli-Bacteria#.
    56. Hugo, W.B., Russell, A.D. Pharmaceutical microbiology. Oxford:Blackwell.1998.
    57. Adams, M.R., Moss, M.O. Food microbiology. Cambridge:Royal Society of Chemistry.2000.
    58.张伟,袁耀武.现代食品微生物检测技术.北京:化学工业出版社.2007.
    59. Pasteris, J.D., Freeman, J.J., Goffredi, S.K., Buck, K.R. Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria. Chemical Geology.2001, 180(1-4):3-18.
    60. Mazenko, R.S., Reiders, F., Brewster, J.D. Filtration capture immunoassay for bacteria:Optimization and potential for urinalysis. Journal of Microbiological Methods.1999,36:157.
    61. Harrigan, W.F. Laboratory methods in food microbiology. San Diego:Academic Press.1998.
    62. Maughan, N.J., Lewis, F.A., Smith, V. An introduction to arrays. Journal of Pathology.2001,195:3.
    63. Vershigora, A.I., Khranovs'kii, V.A. On the technic of studying bacteria and their separate chemical fractions by infrared spectroscopy. Mikrobiolohichnyi zhurnal.1967,29(6):523-7.
    64. Maity, J.P., Kar, S., Lin, C.M., Chen, C.Y., Chang, Y.F., Jean, J.S., Kulp, T.R. Identification and discrimination of bacteria using fourier transform infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.2013,116:478-484.
    65. Mello, C., Ribeiro, D., Novaes, F., Poppi, R.J. Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis. Analytical and Bioanalytical Chemistry.2005,383(4):701-706.
    66. Kemmler, M., Rodner, E., Rosch, P., Popp, J., Denzler, J. Automatic identification of novel bacteria using Raman spectroscopy and gaussian processes. Analytica Chimica Acta.2013,794:29-37.
    67. Escoriza, M.F., VanBriesen, J.M., Stewart, S., Maier, J., Treado, P.J. Raman spectroscopy and chemical imaging for quantification of filtered waterborne bacteria. Journal of Microbiological Methods.2006, 66(1):63-72.
    68. Krause, M., Radt, B., Rosch, P., Popp, J. The investigation of single bacteria by means of fluorescence staining and Raman spectroscopy. Journal of Raman Spectroscopy.2007,38(4):369-372.
    69. Smekal, A. Contribution to my work "remarks on the quantisation of nondetermined periodic system. Zeitschrift Fur Physik.1923,15:58-60.
    70. Raman, C.V., Krishnan, K.S. A new type of secondary radiation. Nature.1928,121:501-502.
    71. Colthup, N.B., Daly, L.H., Wiberley, S.E. Introduction to infrared and Raman spectroscopy (third edition). Harcourt Brace Jovanovich:Academic press, Inc.1990.
    72. Jancke, H., Malz, F., Haesselbarth, W. Structure analytical methods for quantitative reference applications. Accreditation and Quality Assurance.2005,10(8):421-429.
    73. Yang, D., Ying, Y. Applications of Raman spectroscopy in agricultural products and food analysis:A review. Applied Spectroscopy Reviews.2011,46(7):539-560.
    74. Zhang, Y., Huang, Y, Zhai, F., Du, R., Liu, Y., Lai, K. Analyses of enrofloxacin, furazolidone and malachite green in fish products with surface-enhanced Raman spectroscopy. Food Chemistry.2012,135: 845-850.
    75. Fleischm, M., Hendra, P.J., Mcquilla, A.J. Raman-spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters.1974,26(2):163-166.
    76. Jeanmaire, D.L., Vanduyne, R.P. Surface Raman spectroelectrochemistry.1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. Journal of Electroanalytical Chemistry.1977, 84(1):1-20.
    77. Albrecht, M.G., Creighton, J.A. Anomalously intense Raman-spectra of pyridine at a silver electrode. Journal of the American Chemical Society.1977,99(15):5215-5217.
    78. Guerrini, L., Graham, D. Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chemical Society Reviews.2012,41(21):7085-7107.
    79.董鹍.纳米银增强基底制备及分子的拉曼光谱解析[博士论文].昆明:昆明理工大学.2011.
    80.李佳伟,白莹,莫育俊,Wachter, P.天线共振子理论对吡啶分子在铁钴镍衬底上SERS增强因子的计算.光谱学与光谱分析.2006,26(3):463-466.
    81. Campion, A., Kambhampati, P. Surface-enhanced Raman scattering. Chemical Society Reviews.1998, 27(4):241-250.
    82. Kim, N.H., Lee, S.J., Moskovits, M. Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification. Nano Letters.2010,10(10):4181-4185.
    83. Guerrini, L., Aliaga, A.E., Carcamo, J., Gomez-Jeria, J.S., Sanchez-Cortes, S., Campos-Vallette, M.M., Garcia-Ramos, J.V. Functionalization of ag nanoparticles with the bis-acridinium lucigenin as a chemical assembler in the detection of persistent organic pollutants by surface-enhanced Raman scattering. Analytica Chimica Acta.2008,624(2):286-293.
    84. Otto, A., Mrozek, I., Grabhorn, H., Akemann, W. Surface-enhanced Raman-scattering. Journal of Physics-Condensed Matter.1992,4(5):1143-1212.
    85. Myers, A.B. Resonance Raman intensities and charge-transfer reorganization energies. Chemical Reviews. 1996,96(3):911-926.
    86. Fang, Y. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science.2008,322(5909):1790-1790.
    87. Power, A.C., Betts, A.J., Cassidy, J.F. Non aggregated colloidal silver nanoparticles for surface enhanced resonance Raman spectroscopy. Analyst.2011,136(13):2794-2801.
    88. McHugh, C.J., Keir, R., Graham, D., Smith, W.E. Selective functionalisation of TNT for sensitive detection by SERRS. Chemical Communications.2002(6):580-581.
    89. Li, J.F., Huang, Y.F., Ding, Y., Yang, Z.L., Li, S.B., Zhou, X.S., Fan, F.R., Zhang, W., Zhou, Z.Y, Wu, D.Y, Ren, B., Wang, Z.L., Tian, Z.Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature.2010, 464(7287):392-395.
    90. Chaudhuri, R.G., Paria, S. Core/shell nanoparticles:Classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews.2012,112(4):2373-2433.
    91. Dieringer, J.A., McFarland, A.D., Shah, N.C., Stuart, D.A., Whitney, A.V., Yonzon, C.R., Young, M.A., Zhang, X.Y., Van Duyne, R.P. Surface enhanced Raman spectroscopy:New materials, concepts, characterization tools, and applications. Faraday Discussions.2006,132:9-26.
    92. Tao, A.R., Huang, J.X., Yang, P.D. Langmuir-blodgettry of nanocrystals and nanowires. Accounts of Chemical Research.2008,41(12):1662-1673.
    93. Gao, M.X., Lin, X.M., Ren, B. Surface-enhanced Raman scatting substrates fabricated by combining chemical assembly and electrodeposition methods. Chemical Journal of Chinese Universities-Chinese. 2008,29(5):959-962.
    94. Lin, X.M., Cui, Y., Xu, Y.H., Ren, B., Tian, Z.Q. Surface-enhanced Raman spectroscopy:Substrate-related issues. Analytical and Bioanalytical Chemistry.2009,394(7):1729-1745.
    95. Nie, S.M. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Abstracts of Papers of the American Chemical Society.2001,221:U244-U244.
    96. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Science.1973,241:20-22.
    97. Creighton, J.A., Blatchford, C.G., Albrecht, M.G. Plasma resonance enhancement of Raman-scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society-Faraday Transactions Ii.1979,75:790-798.
    98. Sun, Y.G., Xia, Y.N. Shape-controlled synthesis of gold and silver nanoparticles. Science.2002,298(5601): 2176-2179.
    99. Sherry, L.J., Jin, R.C., Mirkin, C.A., Schatz, G.C., Van Duyne, R.P. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Letters.2006,6(9):2060-2065.
    100. Fan, F.R., Liu, D.Y., Wu, Y.F., Duan, S., Xie, Z.X., Jiang, Z.Y., Tian, Z.Q. Epitaxial growth of heterogeneous metal nanocrystals:From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society.2008,130(22):6949.
    101. Niu, W.X., Zheng, S.L., Wang, D.W., Liu, X.Q., Li, H.J., Han, S.A., Chen, J., Tang, Z.Y., Xu, G.B. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. Journal of the American Chemical Society.2009,131(2):697-703.
    102. Zhu, Y.Y., Kuang, H., Xu, L.G., Ma, W., Peng, C.F., Hua, Y.F., Wang, L.B., Xu, C.L. Gold nanorod assembly based approach to toxin detection by SERS. Journal of Materials Chemistry.2012,22(6): 2387-2391.
    103. Liu, J.W., Wang, J.L., Huang, W.R., Yu, L., Ren, X.F., Wen, W.C., Yu, S.H. Ordering Ag nanowire arrays by a glass capillary:A portable, reusable and durable SERS substrate. Scientific Reports.2012,2.
    104. Lu, W.T., Singh, A.K., Khan, S.A., Senapati, D., Yu, H.T., Ray, P.C. Gold nano-popcom-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. Journal of the American Chemical Society.2010, 132(51):18103-18114.
    105. Wang, D.S., Chew, H., Kerker, M. Enhanced Raman-scattering at the surface (SERS) of a spherical-particle. Applied Optics.1980,19(14):2256-2257.
    106. Sr, E., Haskins, W.E., Nie, S.M. Direct observation of size-dependent optical enhancement in single metal nanoparticles. Journal of the American Chemical Society.1998,120(31):8009-8010.
    107. Krug, J.T., Wang, G.D., Sr, E., Nie, S.M. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. Journal of the American Chemical Society.1999,121(39): 9208-9214.
    108. Wang, Y., Wan, D., Xie, S., Xia, X., Huang, C.Z., Xia, Y. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. Acs Nano.2013,7(5):4586-4594.
    109. Parker, W.L., Hexter, R.M., Siedle, A.R. Raman-spectroscopy as a probe of adsorption on rhodium particles. Chemical Physics Letters.1984,107(1):96-98.
    110. Tian, Z.Q., Ren, B., Li, J.F., Yang, Z.L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing sers activity strategy. Chemical Communications.2007(34):3514-3534.
    111. Tian, Z.Q., Yang, Z.L., Ren, B., Li, J.F., Zhang, Y, Lin, X.F., Hu, J.W., Wu, D.Y. Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape. Faraday Discussions.2006,132:159-170.
    112. Brus, L. Noble metal nanocrystals:Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Accounts of Chemical Research.2008,41(12):1742-1749.
    113. Kneipp, K., Kneipp, H., Kartha, V.B., Manoharan, R., Deinum, G., Itzkan, I., Dasari, R.R., Feld, M.S. Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering '(SERS). Physical Review E.1998,57(6):R6281-R6284.
    114. Meyer, M.W., Smith, E.A. Optimization of silver nanoparticles for surface enhanced Raman spectroscopy of structurally diverse analytes using visible and near-infrared excitation. Analyst 2011,1363542-3549.
    115. Sileikaite, a., Prosycevas, i., Puiso, j., Juraitis, a., Guobiene, A. Analysis of silver nanoparticles produced by chemical reduction of silver salt solution Material Science.2006,12:287-291.
    116. Ma, Y.Y., Li, W.Y., Cho, E.C., Li, Z.Y., Yu, T.K., Zeng, J., Xie, Z.X., Xia, Y.N. Au@ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. Acs Nano. 2010,4(11):6725-6734.
    117. Treguer, M., de Cointet, C., Remita, H., Khatouri, J., Mostafavi, M., Amblard, J., Belloni, J., de Keyzer, R. Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution. Journal of Physical Chemistry B.1998,102(22):4310-4321.
    118. Liu, M.Z., Guyot-Sionnest, P. Synthesis and optical characterization of Au/Ag core/shell nanorods. Journal of Physical Chemistry B.2004,108(19):5882-5888.
    119. Pande, S., Chowdhury, J., Pal, T. Understanding the enhancement mechanisms in the surface-enhanced Raman spectra of the 1,10-phenanthroline molecule adsorbed on a Au@Ag bimetallic nanocolloid. Journal of Physical Chemistry C.2011,115(21):10497-10509.
    120. Xing, S.X., Feng, Y.H., Tay, Y.Y., Chen, T., Xu, J., Pan, M., He, J.T., Hng, H.H., Yan, Q.Y., Chen, H.Y. Reducing the symmetry of bimetallic Au@Ag nanoparticles by exploiting eccentric polymer shells. Journal of the American Chemical Society.2010,132(28):9537-9539.
    121. Park, G., Seo, D., Jung, J., Ryu, S., Song, H. Shape evolution and gram-scale synthesis of gold@silver core-shell nanopolyhedrons. Journal of Physical Chemistry C.2011,115(19):9417-9423.
    122. Yang, Y, Shi, J.L., Kawamura, G., Nogami, M. Preparation of Au-Ag, Ag-Au core-shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scripta Materialia.2008,58(10):862-865.
    123. Liu, B.H., Han, G.M., Zhang, Z.P., Liu, R.Y., Jiang, C.L., Wang, S.H., Han, M.Y. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Analytical Chemistry.2012,84(1):255-261.
    124. Zhang, J.Z., Noguez, C. Plasmonic optical properties and applications of metal nanostructures. Plasmonics. 2008,3(4):127-150.
    125. Sarma, T.K., Chowdhury, D., Paul, A., Chattopadhyay, A. Synthesis of Au nanoparticle-conductive polyaniline composite using H2O2 as oxidising as well as reducing agent. Chemical Communications. 2002(10):1048-1049.
    126. Zhou W, ZL, W. Scanning microscopy for nanotechnology (1 st edition). New York:Springer.2007.
    127. Wang, Z.L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. Journal of Physical Chemistry B.2000,104(6):1153-1175.
    128.凌剑.银纳米粒子的局域表面等离子体共振散射在生化药物分析中的应用研究[博士论文].重庆: 西南大学.2009.
    129. Shah, N.C., Lyandres,O., Walsh, J.T., Glucksberg, M.R., Van Duyne, R.P. Lactate and sequential lactate-glucose sensing using surface-enhanced Raman spectroscopy. Analytical Chemistry.2007,79(18): 6927-6932.
    130. Haynes, C.L., Yonzon, C.R., Zhang, X.Y., Van Duyne, R.P. Surface-enhanced Raman sensors:Early history and the development of sensors for quantitative biowarfare agent and glucose detection. Journal of Raman Spectroscopy.2005,36(6-7):471-484.
    131. Shafer-Peltier, K.E., Haynes, C.L., Glucksberg, M.R., Van Duyne, R.P. Toward a glucose biosensor based on surface-enhanced Raman scattering. Journal of the American Chemical Society.2003,125(2):588-593.
    132. Bell, S.E.J., Sirimuthu, N.M.S. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. Journal of the American Chemical Society.2006,128(49): 15580-15581.
    133. Huh, Y.S., Chung, A.J., Erickson, D. Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluidics and Nanofluidics.2009,6(3):285-297.
    134. Wu, P., Gao, Y., Zhang, H., Cai, C. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Analytical Chemistry.2012,84(18):7692-7699.
    135. Jiang, L., Qian, J., Cai, F.H., He, S.L. Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells. Analytical and Bioanalytical Chemistry.2011,400(9): 2793-2800.
    136. Piorek, B.D., Lee, S.J., Moskovits, M., Meinhart, CD. Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives. Analytical Chemistry.2012,84(22): 9700-9705.
    137. Dasary, S.S.R., Singh, A.K., Senapati, D., Yu, H.T., Ray, P.C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. Journal of the American Chemical Society.2009,131(38):13806-13812.
    138. Habouti, S., Solterbeck, C.H., Es-Souni, M. Synthesis of silver nano-fir-twigs and application to single molecules detection. Journal of Materials Chemistry.2010,20(25):5215-5219.
    139. Lim, D.K., Jeon, K.S., Kim, H.M., Nam, J.M., Suh, Y.D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Materials.2010,9(1):60-67.
    140. Weissenbacher, N., Lendl, B., Frank, J., Wanzenbock, H.D., Mizaikoff, B., Kellner, R. Continuous surface enhanced Raman spectroscopy for the detection of trace organic pollutants in aqueous systems. Journal of Molecular Structure.1997,410:539-542.
    141. Li, D., Li, D.W., Fossey, J.S., Long, Y.T. Portable surface-enhanced Raman scattering sensor for rapid detection of aniline and phenol derivatives by on-site electrostatic preconcentration. Analytical Chemistry. 2010,82(22):9299-9305.
    142. Zheng, X., Chen, Y.H., Chen, Y., Bi, N., Qi, H.B., Qin, M.H., Song, D., Zhang, H.Q., Tian, Y. High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering. Journal of Raman Spectroscopy.2012,43(10):1374-1380.
    143. Lee, Y.H., Farquharson, S. Rapid chemical agent identification by surface-enhanced Raman spectroscopy. 2001.
    144. Xie, Y.F., Zhu, X.Y., Sun, Y.Y., Wang, H.Y., Qian, H., Yao, W.R. Rapid detection method for nitrofuran antibiotic residues by surface-enhanced Raman spectroscopy. European Food Research and Technology. 2012,235(3):555-561.
    145. Fan, C., Hu, Z.Q., Riley, L.K., Purdy, G.A., Mustapha, A., Lin, M.S. Detecting food-and waterborne viruses by surface-enhanced Raman spectroscopy. Journal of Food Science.2010,75(5):M302-M307.
    146. Knauer, M., Ivleva, N.P., Niessner, R., Haisch, C. Optimized surface-enhanced Raman scattering (SERS) colloids for the characterization of microorganisms. Analytical Sciences.2010,26(7):761-766.
    147. Lee, S.Y., Ganbold, E.O., Choo, J., Joo, S.W. Detection of melamine in powdered milk using surface-enhanced Raman scattering with no pretreatment. Analytical Letters.2010,43(14):2135-2141.
    148. Zhang, X.F., Zou, M.Q., Qi, X.H., Liu, F., Zhu, X.H., Zhao, B.H. Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy. Journal of Raman Spectroscopy.2010,41(12): 1655-1660.
    149. Cheng, J., Su, X.O. Rapid determination of melamine in pet food by surface enhanced Raman spectroscopy in combination with Ag nanoparticles. Spectroscopy and Spectral Analysis.2011,31(1): 131-135.
    150. Cheng, Y., Dong, Y.Y. Screening melamine contaminant in eggs with portable surface-enhanced Raman spectroscopy based on gold nanosubstrate. Food Control.2011,22(5):685-689.
    151. Lin, M., He, L., Awika, J., Yang, L., Ledoux, D.R., Li, H., Mustapha, A. Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC. Journal of Food Science.2008,73(8):T129-T134.
    152. Hu, H.B., Wang, Z.H., Pan, L., Zhao, S.P., Zhu, S.Y. Ag-coated Fe3O4@SiO2 three-ply composite microspheres:Synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering. Journal of Physical Chemistry C.2010,114(17):7738-7742.
    153. Lou, T.T., Wang, Y.Q., Li, J.H., Peng, H.L., Xiong, H., Chen, L.X. Rapid detection of melamine with 4-mercaptopyridine-modified gold nanoparticles by surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry.2011,401(1):333-338.
    154. Robinson, A.M., Harroun, S.G., Bergman, J., Brosseau, C.L. Portable electrochemical surface-enhanced Raman spectroscopy system for routine spectroelectrochemical analysis. Analytical Chemistry.2012, 84(3):1760-1764.
    155. Kim, A., Barcelo, S.J., Williams, R.S., Li, Z.Y. Melamine sensing in milk products by using surface enhanced Raman scattering. Analytical Chemistry.2012,84(21):9303-9309.
    156. Yazdi, S.H., White, I.M. Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants. Analytical Chemistry.2012,84(18):7992-7998.
    157. Peica, N., Pavel, I., Pinzaru, S.C., Rastogi, V.K., Kiefer, W. Vibrational characterization of E102 food additive by Raman and surface-enhanced Raman spectroscopy and theoretical studies. Journal of Raman spectroscopy.2005,36(6-7):657-666.
    158. Peica, N., Lehene, C., Leopold, N., Cozar, O., Kiefer, W. Raman and surface-enhanced Raman studies of the food additive sodium benzoate. Journal of Optoelectronics and Advanced Materials.2007,9(9): 2943-2948.
    159. Podstawka, E., Swiatlowska, M., Borowiec, E., Proniewicz, L.M. Food additives characterization by infrared, Raman, and surface-enhanced Raman spectroscopies. Journal of Raman Spectroscopy.2007,38: 356-363.
    160. Di Anibal, C.V., Marsal, L.F., Callao, M.P., Ruisanchez, I. Surface enhanced Raman spectroscopy (SERS) and multivariate analysis as a screening tool for detecting sudan-1 dye in culinary spices. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy.2012,87:135-141.
    161. Zhang, Z.M., Liu, R., Xu, D.M., Liu, J.F. In situ detection of acid orange Ⅱ in food based on shell-isolated Au@SiO2 nanoparticle-enhanced Raman spectroscopy. Acta Chimica Sinica.2012,70(16):1686-1689.
    162. Xie, Y.F., Li, Y., Niu, L., Wang, H.Y., Qian, H., Yao, W.R. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite. Talanta.2012,100:32-37.
    163. Costa, J.C.S., Ando, R.A., Sant'Ana, A.C., Corio, P. Surface-enhanced Raman spectroscopy studies of organophosphorous model molecules and pesticides. Physical Chemistry Chemical Physics.2012,14(45): 15645-15651.
    164. Gao, R., Choi, N., Chang, S.I., Kang, S.H., Song, J.M., Cho, S.I., Lim, D.W., Choo, J. Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Analytica Chimica Acta.2010,681(1-2):87-91.
    165. Guerrini, L., Sanchez-Cortes, S., Cruz, V.L., Martinez, S., Ristori, S., Feis, A. Surface-enhanced Raman spectra of dimethoate and omethoate. Journal of Raman Spectroscopy.2011,42(5):980-985.
    166. He, Q.A., Li, S., Yu, D.N., Zhou, G.M., Ji, F.Y., Subklew, G. The study of dimethoate by means of vibrational and surface enhanced Raman spectroscopy on Au/Ag core-shell nanoparticles. Spectroscopy and Spectral Analysis.2010,30(12):3249-3253.
    167. Xie, Y.F., Mukamurezi, G., Sun, Y.Y., Wang, H.Y., Qian, H., Yao, W.R. Establishment of rapid detection method of methamidophos in vegetables by surface enhanced Raman spectroscopy. European Food Research and Technology.2012,234(6):1091-1098.
    168. Liu, B., Zhou, P., Liu, X.M., Sun, X., Li, H., Lin, M.S. Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food and Bioprocess Technology.2013,6(3):710-718.
    169. Tang, H.R., Fang, D.M., Li, Q.Q., Cao, P., Geng, J.P., Sui, T., Wang, X., Iqbal, J., Du, Y.P. Determination of tricyclazole content in paddy rice by surface enhanced Raman spectroscopy. Journal of Food Science. 2012,77(5):T105-T109.
    170. Clarke, S.J., Littleford, R.E., Smith, W.E., Goodacre, R. Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy. Analyst.2005,130(7):1019-1026.
    171. Li, Y.T., Qu, L.L., Li, D.W., Song, Q.X., Fathi, F., Long, Y.T. Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Biosensors & Bioelectronics.2013,43:94-100.
    172. Sowers, R. High-tech tactic may newly expose steathy salmonella. Agricutural Research 2012,60:8-9.
    173. Holt, R.E., Cotton, T.M. Surface-enhanced resonance Raman and electrochemical investigation of glucose oxidase catalysis at a silver electrode. Washington DC:American Chemical Society.1989.
    174. Wilson, R., Monaghan, P., Bowden, S.A., Parnell, J., Cooper, J.M. Surface. Enhanced Raman signatures of pigmentation of cyanobacteria from within geological samples in a spectroscopic-microfluidic flow cell. Analytical Chemistry.2007,79(18):7036-7041.
    175. Temur, E., Boyaci, I.H., Tamer, U., Unsal, H., Aydogan, N. A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia Coli enumeration. Analytical and Bioanalytical Chemistry.2010,397(4):1595-1604.
    176. Kneipp, J., Kneipp, H., Rajadurai, A., Redmond, R.W., Kneipp, K. Optical probing and imaging of live cells using SERS labels. Journal of Raman Spectroscopy.2009,40(1):1-5.
    177. Premasiri, W.R., Moir, D.T., Klempner, M.S., Krieger, N., Jones, G., Ziegler, L.D. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. Journal of Physical Chemistry B.2005,109(1): 312-320
    178. Patel, I.S., Premasiri, W.R., Moir, D.T., Ziegler, L.D. Barcoding bacterial cells:A SERS-based methodology for pathogen identification. Journal of Raman Spectroscopy.2008,39(11):1660-1672.
    179. Jarvis, R.M., Goodacre, R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Analytical Chemistry.2004,76(1):40-47.
    180. Laucks, M.L., Sengupta, A., Junge, K., Davis, E.J., Swanson, B.D. Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy. Applied Spectroscopy.2005,59(10):1222-1228.
    181. Fan, C., Hu, Z.Q., Mustapha, A., Lin, M.S. Rapid detection of food-and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates. Applied Microbiology and Biotechnology.2011,92(5):1053-1061.
    182. Ivleva, N.P., Wagner, M., Horn, H., Niessner, R., Haisch, C. In situ surface-enhanced Raman scattering analysis of biofilm. Analytical Chemistry.2008,80(22):8538-8544.
    183. Ivleva, N.P., Wagner, M., Szkola, A., Horn, H., Niessner, R., Haisch, C. Label-free in situ SERS imaging of biofilms. Journal of Physical Chemistry B.2010,114(31):10184-10194.
    184. Walter, A., Marz, A., Schumacher, W., Rosch, P., Popp, J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab on a Chip.2011, 11(6):1013-1021.
    185. Yang, X., Gu, C., Qian, F., Li, Y., Zhang, J.Z. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Analytical Chemistry.2011, 83(15):5888-5894.
    186. Zeiri, L., Bronk, B.V., Shabtai, Y, Eichler, J., Efrima, S. Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Applied Spectroscopy.2004,58(1):33-40.
    187. Kahraman, M., Yazici, M.M., Sahin, F., Bayrak, O.F., Topcu, E., Culha, M. Towards single-microorganism detection using surface-enhanced Raman spectroscopy. International Journal of Environmental Analytical Chemistry.2007,87(10-11):763-770.
    188. Kahraman, M., Yazici, M.M., Sahin, F., Culha, M. Convective assembly of bacteria for surface-enhanced Raman scattering. Langmuir.2008,24(3):894-901.
    189. Efrima, S., Zeiri, L. Understanding SERS of bacteria. Journal of Raman Spectroscopy.2009,40(3): 277-288.
    190. Eyrich, V.A., Friesner, R.A., Standley, D.M. Ab initio protein structure prediction using a size-dependent tertiary folding potential. Computational Methods for Protein Folding.2002,120:223-263.
    191. Jothi, A. Principles, challenges and advances in ab initio protein structure prediction. Protein and Peptide Letters.2012,19(11):1194-1204.
    192. Xu, D., Zhang, Y. Ab initio structure prediction for Escherichia coli:Towards genome-wide protein structure modeling and fold assignment. Scientific Reports.2013,3.
    193. Henssge, E., Dumont, D., Fischer, D., Bougeard, D. Analysis of infrared and Raman spectra calculated by molecular dynamics. Journal of Molecular Structure.1999,482:491-496.
    194. Motamarri, P., Nowak, M.R., Leiter, K., Knap, J., Gavini, V. Higher-order adaptive finite-element methods for kohn-sham density functional theory. Journal of Computational Physics.2013,253:308-343.
    195. Caracas, R., Banigan, E.J. Elasticity and raman and infrared spectra of MGAL2O4 spinel from density functional perturbation theory. Physics of the Earth and Planetary Interiors.2009,174(1-4):113-121.
    196. Kohn, W. Theory of insulating state. Physical Review.1964,133(1A):A171-A181.
    197.庄志萍.吡啶系列化合物振动光谱和表面增强拉曼光谱的理论研究[博士论文].吉林:吉林大学.2009.
    198. Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Physical Review A.1988,38(6):3098-3100.
    199. Lee, C.T., Yang, W.T., Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Physical Review B.1988,37(2):785-789.
    200. Suchkova, G.G., Maklakov, L.I. Amide bands in the ir spectra of urethanes. Vibrational Spectroscopy. 2009,51(2):333-339.
    201. Furer, V.L. Hydrogen bonding in ethyl carbamate studied by ir spectroscopy Journal of Molecular Structure 449.1998,449:53-59
    202. Wong, M.W. Vibrational frequency prediction using density functional theory. Chemical Physics Letters. 1996,256(4-5):391-399.
    203. Kalincsak, F., Pongor, G. Extension of the density functional derived scaled quantum mechanical force field procedure. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy.2002,58(5): 999-1011.
    204. Zhou, X.F., Liu, R.F. Density functional theory study of vibrational spectra-assignment of fundamental vibrational frequencies of benzene isomers:Dewar benzene, benzvalene, trimethylenecyclopropane, prismane, and 3,4-dimethylenecyclobutene. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy.1997,53(2):259-269.
    205. Jurasekova, Z., Domingo, C., Garcia-Ramos, J.V., Sanchez-Cortes, S. In situ detection of flavonoids in weld-dyed wool and silk textiles by surface-enhanced Raman scattering. Journal of Raman Spectroscopy. 2008,39(10):1309-1312.
    206. Blum, C., Schmid, T., Opilik, L., Weidmann, S., Fagerer, S.R., Zenobi, R. Understanding tip-enhanced Raman spectra of biological molecules:A combined Raman, SERS and TERS study. Journal of Raman Spectroscopy.2012,43(12):1895-1904.
    207. Ock, K., Jeon, W.I., Ganbold, E.O., Kim, M., Park, J., Seo, J.H., Cho, K., Joo, S.W., Lee, S.Y. Real-time monitoring of glutathione-triggered thiopurine anticancer drug release in live cells investigated by surface-enhanced Raman scattering. Analytical Chemistry.2012,84(5):2172-2178.
    208. Cowcher, D.P., Xu, Y., Goodacre, R. Portable, quantitative detection of bacillus bacterial spores using surface-enhanced Raman scattering. Analytical Chemistry.2013,85(6):3297-3302.
    209. Zhao, Y.H., Luo, W.Q., Kanda, P., Cheng, H.W., Chen, Y.Y., Wang, S.P., Huan, S.Y. Silver deposited polystyrene (PS) microspheres for surface-enhanced Raman spectroscopic-encoding and rapid label-free detection of melamine in milk powder. Talanta.2013,113:7-13.
    210. Braun, G., Pavel, I., Morrill, A.R., Seferos, D.S., Bazan, G.C., Reich, N.O., Moskovits, M. Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots. Journal of the American Chemical Society.2007,129(25):7760-7761.
    211. Leopold, N., Lendl, B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. Journal of Physical Chemistry B.2003,107(24):5723-5727.
    212. M.J. Frisch, G.W.T., H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H.Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox. Gaussian 09, revision a.l. Wallingford CT:Gaussian, Inc.2009.
    213. Becke, A.D. Density-functional thermochemistry-The role of exact exchange. Journal of Chemical Physics. 1993,98(7):5648-5652.
    214. Kendall, R.A., Dunning, T.H., Harrison, R.J. Electron-affinities of the 1st-row atoms revisited-systematic basis-sets and wave-functions. Journal of Chemical Physics.1992,96(9):6796-6806.
    215. Marstokk, K.M., Mollendal, H. Microwave spectrum, conformational equilibrium and quantum chemical calculations of urethane (ethyl carbamate). Acta Chemica Scandinavica.1999,53(5):329-334.
    216. Williams, S.D., Johnson, T.J., Gibbons, T.P., Kitchens, C.L. Relative Raman intensities in C6H6, C6D6, and C6F6:A comparison of different computational methods. Theoretical Chemistry Accounts.2007, 117(2):283-290.
    217. W.J. Hehre, L.R., Pv.R. Schleyer, J.A. Pople. About initio melecular orbital theory. New York:John Wiley & Sons.1989.
    218. Scott, A.P., Radom, L. Harmonic vibrational frequencies:An evaluation of hartree-fock, moller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. Journal of Physical Chemistry.1996,100(41):16502-16513.
    219. Goubet, M., Motiyenko, R.A., Real, F., Margules, L., Huet, T.R., Asselin, P., Soulard, P., Krasnicki, A., Kisiel, Z., Alekseev, E.A. Influence of the geometry of a hydrogen bond on conformational stability:A theoretical and experimental study of ethyl carbamate. Physical Chemistry Chemical Physics.2009,11(11): 1719-1728.
    220. Bracher, B.H., Small, R.W.H. Crystal structure of ethyl carbamate. Acta Crystallographica.1967,23:410.
    221. Bonaccorsi, R., Pullman, A., Scrocco, E., Tomasi, J. The molecular electrostatic potentials for the nucleic acid bases:Adenine, thymine, and cytosine. Theoretica Chimica Acta.1972,24(1):51-60.
    222.王智广.蛋白质分子表面构建与静电势分析[硕士论文].杭州:浙江大学.2010.
    223. P.Politzer, J.S.M. Theoretical biochemistry, and molecular biophysics:A comprehensive survey. Schenectady, NY,:Adenine Press.1991.
    224. Creighton, J.A. Surface Raman electromagnetic enhancement factors for molecules at the surface of small isolated metal spheres-the determination of adsorbate orientation from SERS relative intensities. Surface Science.1983,124(1):209-219.
    225. Moskovits, M., Suh, J.S. The geometry of several molecular-ions adsorbed on the surface of colloidal silver. Journal of Physical Chemistry.1984,88(7):1293-1298.
    226. Bengter, H., Tengroth, C., Jacobsson, S.P. New light on Ag-colloid preparation for surface-enhanced FT-Raman spectroscopy:The role of aggregation. Journal of Raman Spectroscopy.2005,36(11): 1015-1022.
    227. Knauer, M. SERS-based label-free microarray readout for the detection of microorganisms [Doctroral Dissertation]. Munich:Technical University of Munich.2011.
    228. AOAC.Official methods for analysis.2009.
    229. Baffa Junior, Jose Carlos, Santos Mendonca, Regina Celia, Teixeira Kluge Pereira, Joesse Maria de Assis, Marques Pereira, Jose Antonio, Ferreira Soares, Fatima, N.d. Ethyl-carbamate determination by gas chromatography-mass spectrometry at different stages of production of a traditional brazilian spirit. Food Chemistry.2011,129(4):1383-1387.
    230. Xu, X., Gao, Y., Cao, X., Wang, X., Song, G., Zhao, J., Hu, Y. Derivatization followed by gas chromatography-mass spectrometry for quantification of ethyl carbamate in alcoholic beverages. Journal of Separation Science.2012,35(7):804-810.
    231. Brumley, W.C., Canas, B.J., Perfetti, G.A., Mossoba. M.M., Sphon, J.A., Corneliussen. P.E. Quantitation of ethyl carbamate in whiskey, sherry, port, and wine by gas-chromatography tandem mass-spectrometry using a triple quadrupole mass-spectrometer. Analytical Chemistry.1988.60(10):975-978.
    232. Lachenmeier. D.W., Frank, W., Kuballa, T. Application of tandem mass spectrometry combined with gas chromatography to the routine analysis of ethyl carbamate in stone-fruit spirits. Rapid Communications in Mass Spectrometry.2005,19(2):108-112.
    233. Fu. M.L., Liu, J., Chen, Q.H., Liu, X.J., He, G.Q., Chen, J.C. Determination of ethyl carbamate in chinese yellow rice wine using high-performance liquid chromatography with fluorescence detection. International Journal of Food Science and Technology.2010,45(6):1297-1302.
    234. Ajtony, Z., Szoboszlai, N., Bencs, L., Viszket. E., Mihucz, V.G. Determination of ethyl carbamate in wine by high performance liquid chromatography. Food Chemistry.2013,141(2):1301-1305.
    235. Deak. E., Gyepes, A., Stefanovits-Banyai, E., Dernovics. M. Determination of ethyl carbamale in palinka spirits by liquid chromatography-electrospray tandem mass spectrometry after derivatization. Food Research International.2010,43(10):2452-2455.
    236. Hao. E., Li, S.Y., Bailey, R.C., Zou, S.L., Schatz, G.C., Hupp, J.T. Optical properties of metal nanoshells. Journal of Physical Chemistry B.2004,108(4):1224-1229.
    237. Baker. G.A., Moore. D.S. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Analytical and Bioanalytical Chemistry.2005,382(8):1751-1770.
    238. Sanchez-Iglesias, A., Carbo-Argibay, E., Glaria, A., Rodriguez-Gonzalez. B., Perez-Justc, J.. Pastoriza-Santos, I.. Liz-Marzan, L.M. Rapid epitaxial growth of Ag on Au nanoparticles:From Au nanorods to core-shell Au@Ag octahedrons. Chemistry-a European Journal.2010.16(19):5558-5563.
    239. Shen, A.G., Guo, J.Z., Xie, W., Sun, M.X., Richards, R., Hu, J.M. Surface-enhanced Raman spectroscopy in living plant using triplex Au-Ag-C core-shell nanoparticles. Journal of Raman Spectroscopy.2011, 42(4):879-884.
    240. Frens, G. Controlled nucleation for regulation of particle-size inmonodisperse gold suspensions. Nature Physical Science.1973.241:20-22.
    241. Liu. B., Han, G., Zhang. Z., Liu, R., Jiang, C., Wang, S., Han, M.Y. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Analytical Chemistry. 2011,84(1):255-261.
    242. Constantino, C.J.L., Lemma, T., Antunes, P.A., Aroca, R. Single-molecule detection using surface-enhanced resonance Raman scattering and langmuir-blodgett monolayers. Analytical Chemistry. 2001,73:3674-3678.
    243. Yang, D., Mircescu, N.E., Zhou, H., Leopold, N., Chis, V., Oltean, M., Ying, Y, Haisch, C. DFT study and quantitative detection by surface-enhanced Raman scattering (SERS) of ethyl carbamate. Journal of Raman Spectroscopy.2013,44(11):1491-1496.
    244. Keskin, S., Culha, M. Label-free detection of proteins from dried-suspended droplets using surface enhanced Raman scattering. Analyst.2012,137(11):2651-2657.
    245. He, S., Liu, K.-K., Su, S., Yan, J., Mao, X., Wang, D., He, Y., Li, L.-J., Song, S., Fan, C. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Analytical Chemistry.2012,84(10):4622-4627.
    246. Harper, M.M., Dougan, J.A., Shand, N.C., Graham, D., Faulds, K. Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles. Analyst.2012,137(9):2063-2068.
    247. Xu, J., Turner, J.W., Idso, M., Biryukov, S.V., Rognstad, L., Gong, H., Trainer, V.L., Wells, MX., Strom, M.S., Yu, Q. In situ strain-level detection and identification of vibrio parahaemolyticus using surface-enhanced Raman spectroscopy. Analytical Chemistry.2013,85(5):2630-2637.
    248. Zhou, H.B., Zhang, Z.P., Jiang, C.L., Guan, G.J., Zhang, K., Mei, Q.S., Liu, R.Y., Wang, S.H. Trinitrotoluene explosive lights up ultrahigh Raman scattering of nonresonant molecule on a top-closed silver nanotube array. Analytical Chemistry.2011,83(18):6913-6917.
    249. Kahraman, M., Keseroglu, K., Culha, M. On sample preparation for surface-enhanced Raman scattering (SERS) of bacteria and the source of spectral features of the spectra. Applied Spectroscopy.2011,65(5): 500-506.
    250. Jarvis, R.M., Brooker, A., Goodacre, R. Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discussions.2006,132:281-292.
    251. Bell, S.E.J., Mackle, J.N., Sirimuthu, N.M.S. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid-towards rapid anthrax endospore detection. Analyst.2005,130(4):545-549.
    252. Abell, J.L., Garren, J.M., Driskell, J.D., Tripp, R.A., Zhao, Y.P. Label-free detection of micro-RNA hybridization using surface-enhanced Raman spectroscopy and least-squares analysis. Journal of the American Chemical Society.2012,134(31):12889-12892.
    253. Sztainbuch, I.W. The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement. Journal of Chemical Physics.2006,125(12).
    254. Jurasekova, Z., Sanchez-Cortes, S., Tamba, M., Torreggiani, A. Silver nanoparticles active as surface-enhanced Raman scattering substrates prepared by high energy irradiation. Vibrational Spectroscopy.2011,57:42-48.
    255. Stephen, K.E., Homrighausen, D., DePalma, G., Nakatsu, C.H., Irudayaraj, J. Surface enhanced Raman spectroscopy (SERS) for the discrimination of arthrobacter strains based on variations in cell surface composition. Analyst.2012,137(18):4280-4286.
    256. Wolter, A., Niessner, R., Seidel, M. Preparation and characterization of functional poly(ethylene glycol) surfaces for the use of antibody microarrays. Analytical Chemistry.2007,79(12):4529-4537.
    257. Gao, D.M., Wang, Z.Y., Liu, B.H., Ni, L., Wu, M.H., Zhang, Z.P. Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of tnt. Analytical Chemistry.2008,80(22):8545-8553.
    258. Kahraman, M., Yazici, M.M., Sahin, F., Bayrak, O.F., Culha, M. Reproducible surface-enhanced Raman scattering spectra of bacteria on aggregated silver nanoparticles. Applied Spectroscopy.2007,61(5): 479-485.
    259. Schuster, K.C., Reese, I., Urlaub, E., Gapes, J.R., Lendl, B. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Analytical Chemistry.2000, 72(22):5529-5534.
    260. Chen, T.T., Kuo, C.S., Chou, Y.C., Liang, N.T. Surface-enhanced Raman-scattering of adenosine-triphosphate molecules. Langmuir.1989,5(4):887-891.
    261. Maruyama, Y., Ishikawa, M., Futamata, M. Surface-enhanced Raman scattering of single adenine molecules on silver colloidal particles. Chemistry Letters.2001(8):834-835.
    262. Kneipp, K., Kneipp, H., Rentsch, M. SERS on a 1,1'-diethyl-2,2'cyanine dye adsorbed on colloidal silver. Journal of Molecular Structure.1987,156(3-4):331-340.
    263. Gearheart, L.A., Ploehn, H.J., Murphy, C.J. Oligonucleotide adsorption to gold nanoparticles:A surface-enhanced Raman spectroscopy study of intrinsically bent DNA. Journal of Physical Chemistry B. 2001,105(50):12609-12615.
    264. Flemming, J., Kneipp, K. Surface-induced renaturation of DNA as revealed by SERS spectroscopy. Studia Biophysica.1989,130(1-3):45-50.
    265. El Badawy, A.M., Silva, R.G., Morris, B., Scheckel, K.G., Suidan, M.T., Tolaymat, T.M. Surface charge-dependent toxicity of silver nanoparticles. Environmental Science & Technology.2011,45(1): 283-287.
    266. Xu, F.G., Zhang, Y., Sun, Y.J., Shi, Y., Wen, Z.W., Li, Z. Silver nanoparticles coated zinc oxide nanorods array as superhydrophobic substrate for the amplified SERS effect. Journal of Physical Chemistry C.2011, 115(20):9977-9983.
    267. Radovic-Moreno, A.F., Lu, T.K., Puscasu, V.A., Yoon, C.J., Langer, R., Farokhzad, O.C. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. Acs Nano. 2012,6(5):4279-4287.
    268. Cam, D.K., K; Kahraman, M; Sahin, F; Culha, M. Multiplex identification of bacteria in bacterial mixtures with surface-enhanced Raman scattering. Journal of Raman Spectroscopy.2010,41(5):484.
    269.吕璞.表面增强拉曼技术检测环境中病原微生物的研究[硕士论文].长沙:湖南大学.2011.
    270. Liu, Y.L., Chen, Y.R., Nou, X.W., Chao, K.L. Potential of surface-enhanced Raman spectroscopy for the rapid identification of Escherichia Coli and listeria monocytogenes cultures on silver colloidal nanoparticles. Applied Spectroscopy.2007,61(8):824-831.
    271. Goeller, L.J., Riley, M.R. Discrimination of bacteria and bacteriophages by Raman spectroscopy and surface-enhanced Raman spectroscopy. Applied Spectroscopy.2007,61(7):679-685.
    272. van Loosdrecht MC, Lyklema J, Norde W, Schraa G, AJ., Z. Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Applied and Environmental Microbiology. 1987,53(8):1898-1901.
    273. Dickson, J.S., Koohmaraie, M. Cell surface charge charateristics and their relationship to bacterial attachment to meat surfaces. Applied and Environmental Microbiology.1989,55:832-836.
    274. Berry, V., Rangaswamy, S., Saraf, R.F. Highly selective, electrically conductive monolayer of nanoparticles on live bacteria. Nano Letters.2004,4(5):939-942.
    275. Dujardin, E., Peet, C., Stubbs, G., Culver, J.N., Mann, S. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Letters.2003,3(3):413-417.
    276. Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S.K., Paknikar, K.M. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 2003,14(1):95-100.
    277. Berry, V, Gole, A., Kundu, S., Murphy, C.J., Saraf, R.F. Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. Journal of the American Chemical Society.2005, 127(50):17600-17601.
    278. Wilson, W.W., Wade, M.M., Holman, S.C., Champlin, F.R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. Journal of Microbiological Methods. 2001,43(3):153-164.
    279. Berry, V., Saraf, R.F. Self-assembly of nanoparticles on live bacterium:An avenue to fabricate electronic devices. Angewandte Chemie-International Edition.2005,44(41):6668-6673.
    280. Kahraman, M., Zamaleeva, A.I., Fakhrullin, R.F., Culha, M. Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry.2009, 395(8):2559-2567.
    281. Bures, P., Huang, Y.B., Oral, E., Peppas, N.A. Surface modifications and molecular imprinting of polymers in medical and pharmaceutical applications. Journal of Controlled Release.2001,72(1-3):25-33.
    282. Sigal, G.B., Bamdad, C., Barberis, A., Strominger, J., Whitesides, G.M. A self-assembled monolayer for the binding and study of histidine tagged proteins by surface plasmon resonance. Analytical Chemistry. 1996,68(3):490-497.
    283. Peluso, P., Wilson, D.S., Do, D., Tran, H., Venkatasubbaiah, M., Quincy, D., Heidecker, B., Poindexter, K., Tolani, N., Phelan, M., Witte, K., Jung, L.S., Wagner, P., Nock, S. Optimizing antibody immobilization strategies for the construction of protein microarrays. Analytical Biochemistry.2003,312(2):113-124.
    284. Hunter, R.J. Zeta potential in colloid science:Principles and applications. London:Academic Press.1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700