用户名: 密码: 验证码:
松阿扁叶蜂地理变异及其对寄主挥发物的反应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松阿扁叶蜂Acantholyda posticalis是一种重要的松树害虫。世界范围内主要分布于欧洲和亚洲东部,并且已经对大面积松林造成了严重危害。了解昆虫由于适应不同地理环境条件,在形态学、生物学等方面产生的地理变异,对于深入研究和管理害虫种群十分重要。本文对不同地理种群松阿扁叶蜂的形态学差异进行了研究,利用分子标记技术对我国不同地理种群的松阿扁叶蜂进行了遗传变异分析,并与欧洲地区报道的松阿扁叶蜂的遗传序列信息结合,研究揭示了各种群间的遗传分化及亲缘关系。另外,本文还针对遗传距离最远的两个地理种群进行了触角感器超微结构观察和寄主挥发物的主要成分及其对松阿扁叶蜂的生理活性研究。研究结果如下:
     (1)形态学观察发现不同地理种群松阿扁叶蜂在虫体大小,雄性生殖器和阳茎瓣大小,头部色斑,胸部盾片色斑,触角梗节色斑及雄性生殖器颜色方面均存在差异。其中中部种群的虫体最大,而西南部种群虫体最小,雌雄虫体长均随纬度增加而增加,符合Bergmann法则,同时雌虫体长随经度增加而增加,雌雄虫体长和翅展与海拔均无显著相关。雌雄虫展翅与经度均无显著相关。中部种群虫体长度和宽度的二型性指数最大,西南部种群最小,性体型二型性指数与纬度具有显著相关性。
     (2)8个采样点的138个松阿扁叶蜂样品中共检测到了56个单倍型。其中有4个单倍型是由多个地理种群共享的,有52个单倍型是单个地理种群所独享的。单倍型HT12和HT43是两个主要的单倍型,分别被3个采样点和2个采样点所共享。8个地理种群的单倍型多样度(h)为0.962±0.006;核苷酸多样度(π)为0.04365±0.00224。在区域内种群间(FSC=0.21046,p<0.001)和种群内个体间(FST=0.26826,p<0.001)两个层次均存在显著的遗传分化,其中种群内部的遗传变异率最高,为73.17%。8个采样点中西南部地区与中部地区种群的遗传距离最远(0.079-0.107),北部地区的抚顺种群与欧洲种群的亲缘关系最近,遗传距离为(0.016-0.021)。网络结构图显示56个单倍型明显分为三组,西南部地区的单倍型形成一组A,北部和东部地区的单倍型形成一组B,中部地区种群的单倍型形成一组C。其中A组以HT12为中心,其它单倍型均由HT12进化而来。
     (3)电镜观察发现松阿扁叶蜂的触角为丝状,包括32-35节,由柄节、梗节和鞭节组成。松阿扁叶蜂触角表面共分布有6种感受器,分别是刺形感器、毛形感器、锥形感器I、锥形感器II、腔锥形感器和钟形感器。刺形感器基部有臼状窝,外形刚直如刺,向顶部渐尖细,厚壁表面有明显的斜螺纹,内部没有神经树突;毛形感器呈毛状突起,表面有纵向平行的沟槽,顶部圆钝有一顶孔,内部有4个神经树突;锥形感器I呈拇指状突起,基部着生于垫状凸起,表面有纵向平行的沟槽,顶部有多个裂缝状开口,内部的树突鞘内有大量神经树突;锥形感器II呈短圆锥状突起,基部着生于触角表面较浅的圆形凹陷内,壁上布满小孔,顶端一侧有顶孔,内部有许多神经树突及分支;腔锥形感器表面光滑,着生于触角表面较深的圆形凹陷内,顶部中央有顶孔,四周分布纵向开裂,内部有多个神经树突;钟形感器着生于触角表面凹陷的圆形小穴内,顶端与触角表皮基本持平,顶部有一小孔,内部布满神经束。锥形感器I、锥形感器II、腔锥形感器和钟形感器集中分布于触角鞭节的腹侧面上,而刺形感器和毛形感器则广泛分布于整个触角的表面。雌虫触角显著长于雄虫触角。雄虫触角上锥形感器I的数量明显多于雌虫触角。两个地理种群之间进行比较,阳泉种群触角上的刺形感器和锥形感器II数量显著多于万荣种群,但锥形感器I的数量明显少于万荣种群。结合外部形态、内部结构特点以及相关文献对各种感器的功能进行了讨论。
     (4)两个地理种群所在的油松挥发物都包括11种主要的萜烯类物质:R-(+)-α-蒎烯、S-(-)-α-蒎烯、S-(-)-β-蒎烯、(+)-3-蒈烯、香叶烯、(+)-柠檬烯、(-)-柠檬烯、γ-萜品烯、α-萜品烯、崁烯和萜品油烯。其中R-(+)-α-蒎烯、S-(-)-α-蒎烯、香叶烯和(-)-柠檬烯为主要成分,S-(-)-β-蒎烯、(+)-3-蒈烯、(+)-柠檬烯的相对含量较少,γ-萜品烯、α-萜品烯、崁烯和萜品油烯为微量成分。两地理种群之间各个成分的含量没有显著性差异。EAG测试显示,两个地理种群的松阿扁叶蜂对(+)-3-蒈烯、香叶烯、γ-萜品烯、(+)-柠檬烯、(-)-柠檬烯、α-萜品烯和萜品油烯7种具有显著的生理活性,以(+)-柠檬烯活性最高。两个地理种群松阿扁叶蜂对11种寄主挥发物的反应均无显著性差异。剂量反应测试显示,两个地理种群的松阿扁叶蜂雌雄成虫对(+)-3-蒈烯、(-)-柠檬烯和香叶烯3种化合物的反应强度与化合物的剂量成正相关,对(+)-柠檬烯、γ-萜品烯和萜品油烯3种化合物的剂量反应在625ug达到最大饱和点,随后剂量增加时反应值下降,万荣种群雌雄成虫对α-萜品烯的剂量反应在625ug时达到最大饱和点,而阳泉种群雌雄成虫对α-萜品烯的剂量反应强度与化合物的剂量成正相关。
Acantholyda posticalis(Hymenoptera: Pamohiliidae) is an important pine pest andwidely distributed throughout the Europe and Asia. It had caused serious damage to largeexpanses of forests worldwide. Understanding geographical variation of insect in themorphology, biology and other aspects, to adapt to different environmental conditions, is veryimportant for further study and management of pest populations. In this paper, we studied themorphologiacl difference of A. posticalis from different populations. At the same time thegenetic variation between different geographical populations of A. posticalis was analized bymolecular marker technology. The genetic relationships were revealed between Chinapopulations and Europen population by combining the genetic sequence information of A.posticalis from Europen population. Meanwhile, ultrastructure of the antennal sensilla and themain components of host volatiles were investigated for two populations with farthest geneticdistance. Finally, respones of the two sawfly population to the volatiles of their host pines weretested. The main results are as follows:
     (1) Morphology study shows there were signification difference in the body size, hadpatch, antenna pedicel patch, scute patch and the size of the male genitalia. The largst body sizeoccured in the central population and the smallest body size in the southwest population. Bodylenth of both male and female incresed with the increse of latitude which follow theBengermann’s rule. The body lenth of female incresed with the increse of longgtitude as well.Body lenth, wing expanse of both male and female had no significant correlation with altitude.The wing expanses of both male and female had no significant correlation with longtitude.Sexual size dimorphism index (SSDI) of central popilation is the largest and which ofsouthwest population is smallest. There was significant correlation between SSDI and latitude.
     (2) There were56mitochondrial DNA haplotypes in138samples from8populations.There were4haplotypes shared by multi-populations and52haplotypes belongs a single population. The HT12and HT43were main haplotypes and occurred in3populations and2populations respectively. The haplotype and nucleotide diversity of the eight geographicpopulations were0.962±0.006and0.04365±0.00224respectively. Analyses of molecularvariance (AMOVA) revealed that eight populations exhibited significant genetic differentiationwithin population (FST=0.26826, p<0.001) and among populations from single region(FSC=0.21046,p<0.001). The variability within population was73.17%. The genetic distancebetween southwest region and the middle region was the farthest (0.079-0.107) while thegenetic distance betwenn European population and population in northern region was closest(0.016-0.021). In haplotype networks, all haplotyes divided into three groups obviously. GroupA was consisted of haplotyes from southwest region and with the haploty HT12as its centre.Group B was consisted of north and eastern region. Group C was consisted of middle region.All of other haploty were evolved from HT12.
     (3) The antennae of A. posticalis are filiform, comprised32–35flagellomeres, and consistof scape, pedicel and a distal multi-segmented flagellum. Six sensillum types were found.Sensilla chaetica were straight setae with sharply-pointed tips and without dendrite in thelumen. Sensilla trichodea were characterized by a parallel-grooved wall and one terminal pore,innerved by4dendrites at the base. Sensilla basiconica I possessed longitudinally-groovedsurfaces and multiple terminal pores,5dendrites in the lumen. Sensilla basiconica II not onlyhad a distinct terminal pore but also had numerous tiny wall pores, numerous dendriticbranches within the sensillum lymph. Sensilla coeloconica had deep longitudinal grooves andone terminal pore, innerved by6dendrites, while s. campaniformia were thick-walled with aterminal opening and sensory nerve bundles in the lumen. Sensilla chaetica and s. trichodeawere most abundant and distributed over the entire antennae, while s. basiconica I and II, s.coeloconica, and s. campaniformia were restricted to the ventral flagellar surfaces. Althoughthe shape and structure of antennae were similar in males and females, females hadsignificantly longer antennae than males, and males had significantly more s. basiconica I thanfemales. The Yangquan population had more s. chaetica and s. basiconica II than the Wanrong population but substantially fewer s. basiconica I. In the Wanrong population, the s.coeloconica of males were longer and those of females shorter than in the Yangquan population.We compared the morphology and structure of these sensilla to other Hymenoptera anddiscussed their possible functions.
     (4) There were11main monoterpenes in host from two areas of two populations. Theywere R-(+)-α-pinene, S-(-)-α-pinene, S-(-)-β-pinene,(+)-3-carene, myrcene,(+)-limonene,(-)-limonene, γ-terpinene, α-terpinene, camphene, terpinolene. R-(+)-α-pinene, S-(-)-α-pinene,myrcene,(-)-limonene were main components. There were relative less amount ofS-(-)-β-pinene,(+)-3-carene,(+)-limonene and the γ-terpinene, α-terpinene, camphene,terpinolene were trace components. There was no significant difference between the twopopulations in term of monoterpene components and their contents. A. posticalis showedintensive response to (+)-3-carene, myrcene, γ-terpinene,(+)-limonene,(-)-limonene,α-terpinene and terpinolene, with the most significant response to (+)-limonene. There were nosignificant difference in response of two sawfly populations to11monoterpenes. There werepositive correlation between the response intensity of A. posticalis and the dose of (+)-3-carene,(-)-limonene and myrcene. When the dose of (+)-limonene, γ-terpinene and terpinolene was625ug, the response of A. posticalis reached saturation point and soon descend when the dosefurther increased. The response of A. posticalis from Wanrong population reach saturationpoint when the dose of α-terpinene was625ug while there was positive correlation between theresponse intensity of A. posticalis to the dose of α-terpinene from Yangquan population.
引文
陈国华,王孔海等.抚顺市松阿扁叶蜂防治技术研究初报.中国森林病虫.2005,24(2):27-29.
    曹振来,崔本义等.中条山松阿扁叶蜂研究.森林病虫通讯.1993,(3):12-13.
    邓涛,薛祥煦.兽类在冰期的一种生存对策-贝格曼法则新解.兽类学报.1997,17(4):259-265.
    杜家玮.昆虫信息素及其应用.中国林业出版社,1988.
    杜家玮.植物-昆虫间的化学通讯及其行为控制.植物生理学报.2001,27(3):193-200.
    窦向梅,肖晖等.基因序列在小蜂总科分子系统发育研究中得应用.动物分类学报.2005,30(1):29-34.
    党政武,周书剑.松阿扁叶蜂生物学特性及防治技术研究.陕西林业科技.2010,(3):44-46.
    董帅伟,吕春霞.松阿扁叶蜂监测预报及防治技术探讨.科技信息.2007,29:379-380.
    冯怀亮,张东学等.蚂蚁触角感受器和复眼的扫描电镜观察.昆虫知识.1992,29(5):292-294.
    高锋,仲伟元等.不同颜色粘虫板诱捕松阿扁叶蜂技术研究.中国森林病虫.2011,30(3):33-35.
    郭存珍.阳泉地区油松食叶害虫松阿扁叶蜂的研究.山西农业大学学报(自然科学版).2009,29(5):433-436.
    贺虹,袁向群等.中国麦红吸浆虫Sitodiplosis mosellana (Gehin)线粒体DNACOII序列的遗传变异.昆虫分类学报.2004,26(1):53-58.
    黄立华,程遐年.棉铃虫与棉花相互作用研究进展.昆虫知识.2001,38(6):401-405.
    侯爱菊,娄巍等.松阿扁叶蜂天敌-富氏凹头蚁的初步研究.林业科学.1991,27(6):670-673.
    胡志昂,张亚平.中国动植物的遗传多样性.浙江科学技术出版社,1997.
    孔祥波.气相色谱与触角电位检测器联用技术及其应用.昆虫知识.2001,38(4):304-309.
    李婷,林文津等. ISSR技术在要用植物种质研究中的应用.药物研究.2010,1,41-42.
    李,曾鑫年等.信息化合物对昆虫行为的影响及其在害虫防治中的应用.广东农业科学.2008,7:85-89.
    李竹,陈力.触角感器特征应用于昆虫分类的研究进展.昆虫分类学报.2010,(32):114-118.
    路常宽,王晓勤等.苹毛丽金龟对植物挥发物成分的触角电位及行为反应.昆虫学报.2009,52(12):1379-1384.
    刘光华,梁广文等.三化螟对海芋挥发油的嗅觉和触角电位反应.华南农业大学学报.2011,32(1):35-38.
    刘玲,戈峰等.油松毛虫雌蛾对油松松针两种手性化合物的触角电位反应.昆虫学报.2007,50(8):858-862.
    刘静,孙启温等.松扁叶蜂生物学及防治效益综合评判的研究.山东林业科技.1990,(2):38-41.
    刘书平,何涛等.陕西南部松阿扁叶蜂发生规律及防治.植物检疫.2008,22(5):327-329.
    刘赢男.紫椴天然种群遗传需哦阳性和遗传分化的研究.哈尔滨:东北林业大学,2006.
    刘志荣,刘静.松扁叶蜂幼虫空间分布型及抽样技术的应用.山东林业科技.1993,(4):53-55.
    娄魏,侯爱菊等.松扁叶蜂管理技术的研究.防护林科技.1990,(2):49-58.
    梁中贵,许永玉等.泰安地区松阿扁叶蜂越冬幼虫抗寒性.生态学报.2005,25(12):3259-3263.
    梁中贵,李建军等.松阿扁叶蜂研究进展.中国植保导刊.2007,(5):14-17.
    马瑞燕,杜家玮.昆虫的触角感器.昆虫知识.2000,37(3):179-183.
    那杰,于维熙等.昆虫触角感器的种类及其生理生态学意义.沈阳师范大学学报(自然科学版).2008,26(2):213-216.
    钦俊德.昆虫与植物的关系.科学出版社,1987.
    曲建升,李延梅等.生物多样性研究发展态势与挑战.科学观察.2009,4(6):1-8.
    任竹梅,马恩波等.山稻蝗及相关物种Cytb基因序列及其遗传关系.遗传学报.2002,29(6):507-513.
    邵士瑞,刘云翠等.浅议庄河市松扁叶蜂发生规律及药物防治技术.黑龙江生态工程职业学院学报.2009,22(2):40-41.
    史荣跃,都建华等.松阿扁叶蜂防治技术的研究.太原师范学院学报(自然科学版).2004,(3):78-79.
    孙莉,何海敏等.昆虫滞育的地理变异.江西农业大学学报.2007,29(6):921-927.
    孙儒泳.动物生态学原理(第3版).北京师范大学出版社,2001.
    孙文杰,同金侠等.松阿扁叶蜂发生规律调查初报.西北农林科技大学学报(自然科学版).1997,(6):105-107.
    陶瑞松.昆虫触角感受器电位的研究进展.安徽农业科学.2012,40(16):8944-8946.
    涂小云,夏勤雯等.亚洲玉米螟体重和体型的地理变异.昆虫学报.2011,54(2):143-148.
    王备新,杨莲芳.线粒体DNA序列特点与昆虫系统学研究.昆虫知识.2002,39(2):88-92.
    王琛柱,黄玲巧.植食性昆虫对寄主植物的选择.孔垂华,娄永根.化学生态学前沿.北京:高等教育出版社,2010.143-173.
    王鸿斌,张真等.油松萜烯类挥发物释放规律与红脂大小蠹危害的关系.北京林业大学学报.2005,27(3):75-80.
    王建军,吴俊等.香樟ISSR技术体系的建立及应用评价.浙江林业科技.2009,29(6):32-34.
    王祎玲,赵桂仿.七筋菇自然居群的遗传结构分析.云南植物研究.2007,29(3):293-299.
    武建勇,薛达元等.中国生物多样性调查与保护研究进展.生态与农村环境学报.2013,29(2):146-151.
    武星煜,唐铭军等.甘肃叶蜂区系和生物地理研究.甘肃林业科技.2010,35(1):1-5.
    萧刚柔.中国扁叶蜂.中国林业出版社,2002.
    萧刚柔,黄孝运等.中国经济叶蜂志.天则出版社,1991.
    辛恒,武星煜.甘肃叶蜂种类调查及分类研究.甘肃林业科技.2010,35(1):9-11.
    徐汝梅.昆虫种群生态学.北京师范大学出版社,1987.
    阎凤鸣.化学生态学.科学出版社,2011.
    杨晖,王宇萍.岐山县油松扁叶蜂大发生原因与对策.植保技术与推广.2000,20(1):27-28.
    杨晖,王宇萍.松扁叶蜂生物特性与综合防治技术.陕西林业科技.2005,(2):47-48.
    杨桦,杨茂发等.竹横锥大象对寄主及虫体挥发物的行为和触角电位反应.昆虫学报.2010,53(3):286-292.
    余海忠,昆虫触角感受器研究进展.安徽农业科学.2007,35(14):4238-4240.
    游群,聂海燕.广西猫儿山沿海拔梯度的叶蜂多样性.应用生态学报.2007,18(9):2001-2005.
    杨维宇,陈国华等.松阿扁叶蜂4龄幼虫期空间分布型的研究.辽宁林业科技.2004,4:1-9.
    晏毓晨,魏美才.中国锤角叶蜂科一新纪录属及一新种(膜翅目,锤角叶蜂科).动物分类学报.2010,35(3):627-630.
    张桂筠,肖蔼详.蝇蛹俑小蜂和丽蝇蛹集金小蜂触角感器的扫描电镜观察.昆虫学报.1992,35(2):154-159.
    张海军.松阿扁叶蜂生物学特性及防治试验研究.科技情报开发与经济.2007,17(16):173.
    章金明,韩宝瑜.具信号功能的植物挥发物研究进展.浙江农业学报.2007,19(2):135-140.
    张龙娃,刘柱东等.油松萜烯成分变化与红脂大小蠹的反应特性.昆虫知识.2009,46(2):249-255.
    张民照,康乐.AFLP标记的特点及其在昆虫学研究中的应用.昆虫学报.2002,45(4):538-543.
    张尚卿,高占林等.触角电位技术和气相色谱-触角电位联用技术在昆虫信息物质鉴定和利用中的应用.河北农业科学.2010,14(8):159-161.
    张同心,崔为正等.松阿扁叶蜂对不同树种挥发物的触角电位反应.昆虫学报.2005,48(4):514-517.
    张新虎,沈慧敏.植物与昆虫化学生态学研究现状与展望.甘肃农业大学学报.2006,41(1):117-121.
    赵冬香,高景林.植食性昆虫对寄主植物的定向行为研究进展.热带农业科学.2004,24(2):62-68.
    赵瑞良,李仲明等.松扁叶蜂生物学及其防治的初步研究.林业科学.1979,(3):226-228.
    周琼,梁广文.植物挥发性次生物质对昆虫的行为调控及其机制.湘潭师范学院学报(自然科学版).2003,25(4):55-60.
    周兆澜,朱祯.植物抗虫基因工程研究进展.生物工程进展.1994,14(4):18-24.
    Akihiko S. Conifer-feeding Web spinning Sawflies of the Genus Acantholyda (Hymenoptera:Pamphiliidae)of Japan. Species Diversity.2001,6,23-63.
    Altner H. Insect sensillum specificity and structure: an approach to new typology. Olfaction Taste.1977,6,295-303.
    Altner H, Prillinger L. Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functionalsignifcance. Int. Rev. Cytol.1980,67,69-139.
    Altner H, Schaller-Selzer L, et al. Poreless sensilla with inflexible sockets. A comparative study of afundamental type of insect sensilla probably comprising thermo-and hygroreceptors. Cell Tissue Res.1983,234,279-307.
    Amornsak W, Cribb B, et al. External morphology of antennal sensilla of Trichogramma Australicum Girault(Hymenoptera: Trichogrammatidae). Int. J. Insect Morphol. Embryol.1998,27,67-82.
    Amy EA, Nicholas JG. Bergmann’s rule in the ant lion Myrmeleon immaculatus DeGeer (Neuroptera:Myrmeleontidae): geographic variation in body size and heterozygosity. Journal of Biogeography.1999,26,275-283.
    Anderbrant O, Hansson BS, et al. Electrophysiological and Morphological Characteristics of PheromoneReceptors in Male Pine Sawflies, Diprion pini (Hymenoptera: Diprionidae), and Behavioural Responseto some Compounds. J. Insect Physiol.1995,41,395-401.
    Attila Haris. Six New Species of Sawflies from Gansu and Qinghai Provinces of China(Hymenoptera:Tenthredinidae). Zoological Research.2009,30(3):319-326.
    Avise JC, Arnold J, et al. Interaspecific phylogeography: the mitochondrial DNA bridge between populationgenetics and systematics. Ann.Rev.Syst.1987,18,489-522.
    Baker TC, Domingue MJ, et al. Working Range of Stimulus Flux Transduction Determines Dendrite Sizeand Relative Number of Pheromone Component Receptor Neurons in Moths. Chem. Senses.2012,37,299-313.
    Baker TC, Ochieng′SA, et al. A comparison of responses from olfactory receptor neurons of Heliothissubflexa and Heliothis virescens to components of their sex pheromone. J. Comp Physiol A.2004,190,155-165.
    Basibuyuk HH, Quicke DLJ. Morphology of the antenna cleaner in the Hymenoptera with particularreference to non-aculcatc families (Insccta). Zoologica Scripta.1995,24(2):157-177.
    Battisti A., Rodeghiero M. Monitoring spruce web-spinning sawfies Cephalcia spp.: the correlation betweentrap catches and soil sampling, Entomologia Experimentaliset Applicata.1998,88,211-217.
    Benjamin DM. The biology and ecology of the red-headed pine sawfly. USDA Tech. Bull.No.1118.1955.
    Bergmann C. über die Verh ltnisse der Warme konomie der Thiere zu ihrer Grosse. G ttinger Studien,1847,pt.1:595-708.
    Bermingham E, Moritz C. Comparative phylogeography: concepts and applications. Molecular Ecology.1998,(7):367-369.
    Bidau CJ, Marti DA. Dichroplus vittatus (Orthoptera: Acrididae) follows the converse to Bergmann’s rulealthough male morphological variability increases with latitude. Bull Entomological Research.2007,97:67-79.
    Billany DJ, Brown RM. The Web-spinning Lareh Sawfly, Cephalcia lariciphila Wachtl.(Hymenoptera:Pamphiliidae) A New Pest of Larix in England and Wales. Forestry.1980,53(l):71-80.
    Bleeker MAK, Smid HM, et al. Antennal sensilla of two parasitoid wasps: A comparative scanning electronmicroscopy study. Microsc. Res. Techniq.2004,63,266-273.
    Borden JH, Billany DJ, et al. Pheromone response and sexual behavior of Cephalcia lariciphila Wachtl(Hymenoptera: Pamhiliidae). Ecol. Entomol.1978,3,13-23.
    Chapman RF. Chemoreception: The Significance of Receptor Numbers. Adv. Insect Physiol.1982,16,247-356.
    Chiappini E, Solinas C, et al. Antennal sensilla of Anagrus atomus (L.)(Hymenoptera: Mymaridae) femaleand their possible behavioural significance. Entomol.(Bari).2001,35,51-76.
    C nsoli FL, Kitajima EW, et al. Sensilla on the antenna and ovipositor of the parasitic wasps Trichogrammagalloi Zucchi and T. pretiosum Riley (Hym., Trichogrammatidae). Microsc Res Tech.1999,45,313-324.
    Cortney W, Volker S. Bergmann’s rule encompasses mechanism: a reply to Olalla-Tárraga (2011). Oikos.2011,120:1445-1447.
    Crook DJ, Kerr LM, et al. Sensilla on the Antennal Flagellum of Sirex noctilio (Hymenoptera: Siricidae).Ann. of Entomol. Soc. of Am.101,1094-1102.
    Crozier RH, Crozier YC.1993. The mitochondrial genome of the honeybee Apis mellifera: completesequence and genome organization. Genetics.133,97-117.
    Dahlsten, DL.1961. Life history of a pine sawfly, Neodiprion sp., at Willits, California (Hymenoptera:Diprionidae). Can. Entomol.2008,93,182-195.
    Dethier VG, Larson JR, et al. The fine structure of the olfactory receptors of the blowfly. In: Zottermann Y(Eds.), Symposium on Olfaction and Taste. Pergamon Press, Oxford,1963, pp.393.
    Ehab A, Daphne JF. A comparative analysis of allomentry for sexual size dimorphism: assessing renschs rule.The American Naturalist.1997,149(3):540-562.
    El-Sayed AM, Delisle J, et al. Geographic variation in pheromone chemistry, antennal electrophysiology, andpheromone-mediated trap catch of North American populations of the Obliquebanded Leafroller.Environ Entomol.2003,32,470-476.
    Erbilgin N, Mori SR, et al., Response to Host Volatiles by Native and Introduced Populations ofDendroctonus valens (Coleoptera: Curculionidae, Scolytinae) in North America and China. J ChemEcol.2007,33:131-146.
    Excoffier L., Laval G., et al. Arlequin ver.3.0: An integrated software package for population genetics dataanalysis. Evolutionary Bioinformatics Online2005,1:47-50.
    Fairbairn DJ. Allometry for sexual size dimorphism: pattern and process in the coevolution of body size inmales and females. Annual Review of Ecology and Systematics.1997,28:659-687.
    Faucheux MJ. Antennal sensilla of male Lophocorona pediasia Common1973and their phylogeneticimplications (Lepidoptera: Lophocoronidae). Ann. Soc. Entomol. Fr.(n.s.).2006,42,113-118.
    Forbes RS, Daviault L. The biology of the mountain-ash sawfly, Pristiphora geniculata (Htg)(Hymenoptera:Tenthredinidae), in eastern Canada. Can. Entomol.1964,96,1117-1133.
    Frankel OH, Soule ME. Conservation and Evolution.Cambridge University Press, Cambridge, England.1981.
    Futuyma DJ. Evolutionary Biology,3rdedn. Sinauer, Sunderland, Massachusetts,1998.
    Gao ZZ, Wu WJ, et al. Observation of the Antennal Sensilla of Campylomma chinensis (Hemiptera: Miridae)by Environmental Scanning Electron Microscope. J. South China Agric. Univ.2006,27,18-20.
    Gao Y, Luo LZ, et al. Antennal morphology, structure and sensilla distribution in Microplitis pallidipes(Hymenoptera: Braconidae). Micron.2007,38,684-693.
    Georbis R, Habue NGM. Field evaluation of Steinernema feltiae against the web-spirmin lareh SawflyCephaleia Iariciphila. Joumal of Nematology.1988,20,317-320.
    Ge XJ, Liu MH, et al. Population structure of wild bananas, Musa balbisiana, in China determined by SSRfingerprinting and cpDNA PCR-RFLP. Mol. Ecol.2005,14,933-944.
    Grant AJ, O′Connell RJ. Neurophysiological and morphological investigations of pheromone-sensitivesensilla on the antenna of male Trichoplusia ni. J Insect Physiol.1986,32,503-515.
    Grant AJ, Riendeau CJ, et al. Spatial organization of olfactory receptor neurons on the antenna of thecabbage looper moth. J Comp Physiol.1998,183,433-442.
    Gunnar B, Konrad F. Bergmanns rule does not apply to geometrid moths along an elevational gradient in anAndean nontane rain forest. Global Ecology and Biogeography.2004,13,7-14.
    Hallberg E. The fine structure of the antennal sensilla of the pine sawfly Neodiprion sertifer (Insecta:Hymenoptera). Protoplasma.1979,101,111-126.
    Hallberg E. Sensory organs in Ips typographus (Insecta: Coleoptera)–fine structure of antennal sensilla.Protoplasma.1982,111,206-214.
    Hansson BS, Hallberg E, et al. Correlation between dendrite diameter and action potential amplitude in sexpheromone specific receptor neurons in male Ostrinia nubilalis. Tissue Cell.1994,26,503-512.
    Hansson BS, Stensmyr MC. Evolution of Insect Olfaction. Neuron.2011,11,698-711.
    Hansson BS, van der Pers JNC, et al. Sex pheromone perception in male pine sawflies, Neodiprion sertljb(Hymenoptera: Diprionidae). J. Comp. Physiol. A.1991,168,533-538.
    Hara H. Life History of a Leaf-rolling sawfly, Pamphilius stramineipes (Hymenoptera, Pamphiliidae), inHokkaido. Japanese Journal of Entomology.1993,61(2):293-302.
    Huang YP, Takanashi T, et al. Female sex pheromone polymorphism in adzuki bean borer, Ostrinia scapulalis,is similar to that in European corn borer. O. nubilalis. J Chem Ecol.2002,28,533-539.
    Isidoro N, Bin F, et al. Morphology of antennal gustatory sensilla and glands in some parasitoidsHymenoptera with hypothesis on their role in sex and host recognition. J. Hym. Res.1996,5,206-239.
    Joachim R, Walther B. Antenna Patterns of Sensilla of the Hymenoptera-A Complex Character ofPhylogenetic Reconstruction. Verh. Naturwiss. Ver. Hamburg (NF).1983,26,373-392.
    John H. Evolution of the hymenopteran megaradiation. Molecular Phylogenetics and Evolution.2011,60:73-88.
    Josue S, Rogerio FPDS, et al. Olfactory reception of conspecific aggregation pheromone and plant odors bynymphs of the predator, Podisus maculiventris. Journal of Chemical Ecology.1999,25(8):1813-1826.
    Kapler JE, Benjamin DM. The biology and ecology of the red-pine sawfly in Wisconsin. For. Sci.1960,6,253-269.
    Keil TA. Fine structure of the pheromone sensitive sensilla on the antenna of the hawkmoth, Manduca sexta.Tissue Cell.1989,21,139-151.
    Keil TA. Morphology and development of the peripheral olfactory organs. In: Hansson, B.S.(Eds.), InsectOlfaction. Springer, Heidelberg,1999, pp.5-47.
    Kolaczkowski B, Thornton J W. Performance of maximum parsimony and likelihood phylogenetics whenevolution is heterogeneous. Nature.2004,431:980-984.
    Kumar SJ, Dudley MN, Tamura K. MEGA: A biologistcentric software for evolutionary analysis of DNAand protein sequences. Briefings in Bioinformatics.2008,9:299-306.
    Lars V. Phylogeny and classification of the extant basal lineages of the Hymenoptera (Insecta). ZoologicalJournal of the Linnean Society.2001,131(4):393-442.
    Lena KW, Alan H, et al. Do food-plant preferences of modern families of phytophagous insects and mitesrefect past evolution with plants? Biological Journal of the Linnean Society.2003,78,51-83.
    Li XR, Lu DG, et al. Ultrastructural Characterization of Olfactory Sensilla and Immunolocalization ofOdorant Binding and Chemosensory Proteins from an Ectoparasitoid Scleroderma guani (Hymenoptera:Bethylidae). Int. J. Biol. Sci.2011,7,848-868.
    Li ZB, Yang P, et al. Ultrastructure of antennal sensilla of female Ceratosolen solmsi marchali (Hymenoptera:Chalcidoidea: Agaonidae: Agaoninae). Can. Entomol.2009,141,463-477.
    Liu XL, Zhang Z, et al. Study of Sex Pheromone of Acantholyda posticalis Matsumura. Entomol. Knowl.2009,22,423-427.
    Masaki S,.Geographic variation and climatic adaptation in a field cricket (Orthoptera:Gryllidae). Evolution.1967,21:725-741.
    Merrell DJ. Ecological genetics. Longman,1981.
    Mousseau TA, Roff DA.1989. Adaptation to seasonality in a cricket: patterns of phenotypic and genotypicvariation in body size and diapause expression along a cline in season length. Evolution43:1483-1496.
    Navasero RC, Elzen GW. Sensilla on the antennae, fortarsi and palpi of Microplitis croceipes (Cresson)(Hymenoptera: Braconidae). Proc. Entomol. Soc. Wash.1991,93,737-747.
    Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals.Genetics Soc America.1978,89:583-590.
    Ochieng SA, Park KC, et al. Functional morphology of antennal chemoreceptors of the parasitoid Microplitiscroceipes (Hymenoptera: Braconidae). Arthropod Struct Develop.2000,29,231-240.
    O’Connell RJ, Grant AJ, et al. Differences in pheromone sensitivity have morphological correlates in insectsensilla. Science.1983,220,1408-1410.
    Olalla-Tárraga. Má,“Nullius in Bergmann” or the pluralistic approach to ecogeographical rules: a reply toWatt et al.(2010). Oikos.2011,120:1441-1444.
    Onagbola EO, Fadamiro HY. Scanning electron microscopy studies of antennal sensilla of Pteromaluscerealellae (Hymenoptera: Pteromalidae). Micron.2008,39,526-535.
    Piesik D, Weaver DK, et al. Behavioural responses of wheat stem sawflies to wheat volatiles. Agriculturaland Forest Entomology.2008,10,245-253.
    Prentice HC, Lonn M, et al. Associations between alleles frequencies in Festuca ovina and habitat variationin the alvar grasslands on the Baltic island of Oland. J.Ecol.1995,83:391-402.
    Pschorn-Walcher H. Unterordnung Symphyta, Pflanzenwespen. In: W. Schwenke (eds.), DieForstscha:dlinge Europas. Hamburg and Berlin,1982, pp.4-234.
    Rensch B. Bonner Zoologische Beitrage,1950,1,58-69.
    Renthal R, Velasquez D, et al. Structure and distribution of antennal sensilla of the red imported fire ant.Micron.2003,34,405-413.
    Rocha L, Moreira GRP, et al. Morphology and distribution of antennal sensilla of Gryon gallardoi(Brèthes)(Hymenoptera: Scelionidae) females. Neotropical entomol.2007,36,721-728.
    Rodeghiero M., Battisti A. Inter-tree distribution of the spruce web-spinning sawfly, Cephalcia abietis, atendemic density. Agricultual and Forest Entomology.2000,2,291-296.
    Rogers ME, Steinbrecht RA, Vogt RG. Expression of SNMP-1in olfactory neurons and sensilla of male andfemale antennae of the silkmoth Antheraea polyphemus. Cell Tissue Res.2001,303,433-446.
    Roux O, Van Baaren J, et al. Antennal structure and oviposition behavior of the Plutella xylostella specialistparasitoid: Cotesia plutellae. Microsc. Res. Techniq.2005,68,36-44.
    RüBL, Renard S, et al. Antennal sensilla and their possible functions in the host-plant selection behaviour ofPhenacoccus manihoti (Matile-Ferrero)(Homoptera: Pseudococcidae). Int J Insect Morphol Embryol.1995,24,375-389.
    Saitou N, Nei M,1987. The neighbor-joining method: a new method for reconstruction phylogenetic trees.Molecular Biology and Evolution,4:406-425.
    Scheiner SM. Genetics and evolution of phenotypic plasticity Annual review of ecology and systematics.1993.24:35-68.
    Schmidt S, Walter GH, et al. Sexual Communication and Host Plant Associations of Australian PergidSawfies (Hymenoptera: Symphyta: Pergidae). In: Blank SM, Schmidt S, Taeger A (eds.), RecentSawfy Research: Synthesis and Prospects.2006, pp.173-193.
    Schneider D. Insect antennae. Rev. Entomol.1964,9,103-122.
    Schulmeister S. Morphology and evolution of the tarsal plantulae in Hymenoptera (Insecta), focussing on thebasal lineages. Zoologica Scripta.2003,32:153-172.
    Schulmeister S, Ward CW, et al. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) usingsensitivity analysis. Cladistics.2002,18:455-484.
    Seheiner SM, Genetic and evolution of phenotypic plastieity. Annu. Rev. Eeol. Syst.1993,24:35-8.
    Slifer EH. The structure of arthropod chemorreceptors. Annu. Rev. Entomol.1970,15,121-142.
    Smith EL. Biosystematics and morphology of symphyta-III external genitalia of Euura (Hymenoptera:Tenthredinidae): sclerites, sensilla, musculature, development and oviposition behavior. Int. J. InsectMorphol. Embryol.1972,1,321-365.
    Steinbrecht RA. Arthropods: chemo-, thermo-, and hygro-receptors. In: Bereiter-Hahn, J., Matolsty, AG,Richards, KS (Eds.), Biology of the Intergument, Springer–Verlag, Berlin,1984, pp.523-553.
    Schulmeister S. Functional morphology of the male genitalia and copulation in lower Hymenoptera, withspecial emphasis on the Tenthredinoideas str.(Insecta, Hymenoptera,‘Symphyta’). Acta Zoologica(Stockholm).2001,82,331-349.
    Schulmeister S. Simultaneous analysis of basal Hymenoptera (Insecta). introducing robust-choice sensitivityanalysis. Biological Journal of the Linnean Society.2003,79,245-275.
    Schulmeister S. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivityanalysis. Cladistics.2002,18,455-484.
    Thompson JD, Hisgins DG, et al. Clustal W: Improving the sensitivity of progressive multiple sequencealignment through sequence weighting, positions-specific gap penalties and weight matrix choice.Nucleic Acids Res.,199422:4673-4680.
    Van Baaren J, Boivin G, et al. Comparison of antennal sensilla of Anaphes victus and A. listronoti(Hymenoptera, Mymaridae), egg parasitoids of Curculionidae. Zoomorphology1999,119,1-8.
    Vilhelmsen L. Phylogenyand classification of the extantbasal lineages of the Hymenoptera. Zool. J. LinneanSoc.2001,131,393-442.
    Visser JH. Hoet ordor perception in phytophagous insects. AnnRev Entomol.1998,31,121-144.
    Wassgren AB, Anderbrant O, et al. Pheromone related compounds in pupal and adult female pine sawflies,Neodiprion sertifer, of different age and in different parts of the body. J Insect Phys.1992,38,885-893.
    Zacharuk RY. Antennae and sensilla. In: Kerkut G.A., Gilbert L.I.(eds.), Comprehensive Insect Physiology,Biochemistry and Pharmacology, Pergamon Press, London,1985, pp.1-70.
    Zhang QH, Schlyter F, et al., Electrophysiological responses of Thaumetopoea pityocampa females to hostvolatiles: implications for host selection of active and inactive terpenes. J. Pest Science.2003,76:103-107.
    Zhelochovtzegv AN, Rasnitsyn AP. On Some Tertiary Sawflies (Hymenoptera, Symphyta) From Colorado.Psyche.1972,79(4):315-327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700