用户名: 密码: 验证码:
暗能量及其热力学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宇宙的加速膨胀是当代宇宙学的一个基本事实,它得到了来自Ia型超新星、宇宙微波背景辐射和基隆数字天宇测量以及宇宙大尺度等众多观测数据的证实,同时也成为宇宙学研究的一个重点和热点。对于当今宇宙加速膨胀的现象,一个得到普遍认同的解释是宇宙中均匀分布着一种称之为暗能量的特殊物质,它具有负压强,正是这种负压强推动了宇宙的加速膨胀。此外,也有修正的引力理论和额外维理论解释宇宙加速膨胀。
     本文首先介绍了宇宙学的相关基础知识(第二章),内容包括宇宙学原理、标准宇宙学模型和暴涨宇宙学模型以及解释宇宙加速膨胀的几种常见暗能量模型和修正的引力理论。接着介绍了我们的主要研究工作(第三章到第五章)。首先我们研究了修正可变Chaplygin Gas模型以及相互作用的修正可变Chaplygin Gas模型的演化行为(第三章)。具体分析了模型中宇宙学参量:暗能量状态参量wde、各物质能量密度比Ωi以及减速因子q。此外,鉴于增长指标f与哈勃参数H(z)的结合可以提供探索暗能量的性质以及宇宙结构形成的重要信息,我们还讨论了修正可变Chaplygin Gas模型中增长指标f的演化特性。最后,介绍了甄别暗能量模型的Statefinder参数诊断法,并利月(?)Statefinder参数对相互作用的VMCG模型进行了诊断。
     另一方面,宇宙在局域平衡下可以看作一个大的热力学系统,我们从热力学角度研究和探讨了暗能量的性质(第五章)。具体地,在参数化暗能量模型w=wo+w1(?),探讨表观视界和事件视界包络的宇宙中广义热力学定律是否成立;此外我们采用Markov Chain Monte Carlo方法,利用当前天文观测数据:SNIa超新星,重子声速振荡(BAO),观测的哈勃数据(OHD)以及宇宙微波背景辐射(CMB)限制了修正可变Chaplygin Gas模型的参数(第四章)。并利用这些限制参数值,探讨修正可变Chaplygin Gas模型中,表观视界、事件视界以及粒子视界包络的宇宙的广义热力学性质(第五章)。
     最后我们给出本论文的结论与展望部分。
It has been confirmed that the expansion of our universe is accelerating at present, through numerous cosmological observations, such as the type Ⅰa Supernova, the cosmic microwave background anisotropy, the Sloan Digital Sky Survey and the large scale structure. Therefore, it has been one of the most important issues in the research of cosmology to explain the accelerating universe. Up to now, the popular explanation is that the present universe is dominated by an exotic component, dubbed dark energy, which is introduced to explain the accelerating expansion through negative pressure. In addition, modified gravity theories (f(R)) and higher-dimensional theories are also studied to interpret the accelerating universe.
     A brief introduction of the background knowledge of cosmology are given at first (chapter1), which including the cosmological Principle, the standard cosmological model and the inflation cosmological model. Then we introduce some famous dark energy model and make some brief summary of their evolutions. Our work include in the chapters from3to5. Firstly we emphasized the evolution of Variable Modified Chaplygin Gas Model and the Variable Modified Chaplygin Gas Model with Interaction (chapter3). Specifically, the evolutions of related cosmological parameters such as the state parameter of dark energy wde, the fractional energy densities Ωi (i respectively denotes baryons, dark matter, dark energy), the deceleration parameter q. As the combination of the growth index f and the function H(z) can provide significant insight into the properties of dark energy and interpret the structure formation. We also discuss the growth index f in the VMCG model. Furthermore, the statefinder diagnostic is used to discuss the Variable Modified Chaplygin Gas Model with Interaction.
     On the other hand, when local thermodynamic equilibrium, universe can be considered as a thermodynamical system. In a general independent dark energy model ω=ω0+ω1z(1+z)/(1+z2), we investigate the thermodynamical properties on the apparent horizon and event horizon (chapter5). In Chapter4, by adopting Markov Chain Monte Carlo method, Variable Modified Chaplygin Gas Model is constrained on the basis of the current observed data (SNIa, CMB, BAO, OHD). By using the mean values of parameters, we also studied the thermodynamical properties of the Variable Modified Chaplygin Gas Model (Chapter5) on the apparent horizon, event horizon and particle horizon respectively.
     A conclusion is presented in the last section.
引文
[1]Einstein A. Einglish translation in The Principle of Relativity [M]. New York:Dover,1952, p.177.
    [2]Dicke R H. and Peebles P J E. General Relativity [M], England, Cambridge:Cambridge University, 1979, p.504.
    [3]Guth A H. Inflationary universe:A possible solution to the horizon and flatness problems [J]. Phys. Rev. D.,1981,23(2):347-356.
    [4]Linde A D. A new inflationary universe scenario:A possible solution of the horizon, flatness, homo-geneity, isotropy and primordial monopole problems [J]. Phys. Lett. B.,1982,108(6):389-393.
    [5]Riess A G, Filippenko A V, Challis P. Observational evidence from supernova for an acceler-ating universe and a cosmological constant [J]. Astrophys. J.,1998,116(3):1009-1038.
    [6]Bahall N, Ostriker J P. Perlmutter S. The cosmic triangle:Revealing the state of the universe [J]. Science,1999,284:1481-1488.
    [7]Perlmutter S, Aldering G, Goldhaber G. Measurements of Ω and A from 42 high-redshift supernova [J]. Astrophys. J..1999.517(2):565-586.
    [8]Spergel D N, Verde L, Peilis H V. First year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:Determination of cosmological parameters [J]. Astrophys. J. Suppl.,2003,148:175-194.[arXiv:astro-ph/0302209].
    [9]Pope A C, Matsubara T, Szalay A S. Cosmological parameters from eigenmode analysis of sloan digital sky survey galaxy redshifts [J]. Astrophys..J.,2004,607(2):655-660.[ar:astro-ph/0401249].
    [10]Carroll S M. The Cosmological Constant [J]. Living Rev. Rel,2001,3:1.
    [11]Peebles P J E and Ratra B. The Cosmological Constant and Dark Energy [J]. Rev. Mod. Phys., 2003,75:559-606.
    [12]Caldwell R R, Dave R, Steinhardt, P J. Cosmological Imprint of an Energy Component with General Equation of State [J]. Phys. Rev. Lett.,1998.80:1582-1585.
    [13]Liddle A R, Scherrer R J. A classification of scalar field potentials with cosmological scaling solutions [J]. Phys. Rev. D,1998,59:023509.
    [14]Caldwell R R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state [J]. Phys. Lett. B.,2002,545:23-29.
    [15]Caldwell R R, Katnionkowski M, Weinberg N N. Phantom Energy:Dark Energy with wi-1 Causes a Cosmic Doomsday [J]. Phys. Rev. Lett.,2003.91:071301
    [16]Feng B, Wang X L, Zhang X M. Dark energy constraints from the cosmic age and supernova [J]. Phys. Lett. B.,2005,607:35-41.
    [17]Guo Z K, Piao Y S, Zhang X M, Zhang Y Z. Cosmological evolution of a quintom model of dark energy [J]. Phys. Lett. B.,2005.608:177-182.
    [18]Armendariz-Picon C, Mukhanov V F and Steinhardt P J. Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration [J]. Phys. Rev. Lett.,2000. 85:4438-4141.
    [19]Chiba T. Tracking k-essence [J]. Phys. Rev. D..2002,66:063514.
    [20]Padmanabhan T. Accelerated expansion of the universe driven by tachyonic matter [J]. Phys. Rev. D., 2002, 66:021301.
    [21]Gibbons G W. Cosmological evolution of the rolling tachyon [J]. Phys. Lett. B., 2002, 537:1-4.
    [22]Sen A. Tachyon matter [J]. JHEP., 2002, 0207:065.
    [23]Kamenshchik A, Moschella U, Pasquier V. An alternative to quintessence [J]. Phys. Lett. B., 2001, 511:265-268.
    [24]Zhu Z H. Generalized Chaplygin gas as a unified scenario of dark matter/energy: Observational constraints [J]. Astron. Astrophys., 2004, 423:421-426.
    [25]Bento M C, Bertolami O and Sen A A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification [J]. Phys. Rev. D. 2002, 66:013507.
    [26]Gorini V, Kamenshchik A and Moschella U. Can the Chaplygin gas be a plausible model for dark energy [J]. Phys. Rev. D., 2003, 67:063509.
    [27]Alain U, Salmi V, Saini T D and Starobinsky A A. Exploring the Expanding Universe and Dark Energy using the Statefinder Diagnostic [J]. Mon. Not. Roy. Astron. Soc., 2003. 314:1057.
    [28]Benaoum H B. Accelerated Universe from Modified Chaplygin Gas and Tachyonic Fluid. [hep-th/0205140].
    [29]Wu Y. B. et, al. Phys. Lett. A. 22, 783 (2007).
    [30]Lu J B, et al. Constraints on modified Chaplygin gas from recent observations and a comparison of its status with other models [J]. Phys. Lett. B.. 2008. 662:87-91.
    [31]Li M. A Model of Holographic Dark Energy [J]. Phys. Left. 13, 2004. 603:(1-2):1-5.
    [32]Huang Q. G. and Li M. The Holographic Dark Energy in a Non-flat Universe [J]. JCAP, 2004, 0408:013.
    [33]Cai R G. A Dark Energy Model Characterized by the Age of the Universe [J]. Phys. Lett. B. 2007, 657(4-5): 228-231.
    |34] Wei H and Cai R G. A New Model of Agegraphic Dark Energy [J]. Phys. Lett. B 2008. 660(3): 113-117.
    [35]Carroll S M, Duvvuri V, Trodden M. Is cosmic speed-up due to new gravitational [J]. Phys. Rev. D, 2004, 70(4):()43528.[arⅩⅳ:astro-ph/0306438|.
    [36]Olmo G J. The gravity lagrangian according to solar system experiments [J]. Phys. Rev. Lett. 2005, 95(26):261102.[arⅩⅳ:gr-qc/0505101].
    |37] Salmi V, Shtanov Y, Viznyuk A. Cosmic mimicry: Is LCDM a araneworld in disguise [J]. .). Cosmol. Astropart. Phys., 2005, 0512:005.[arⅩⅳ:astro-ph/0505001].
    [38]Brevik I. Viscous modified gravity on a RS brane embedded in AdS5 [J]. Eur. Phys. J. C, 2008, 56(4):579-583.
    |39] Hamed N A, Dimopoulos S, Dvali G. The hierarchy problem and new dimensions at. a millimeter [J]. Phys. Lett. B. 1998, 129(3-4):263-272.[arⅩⅳ:hep-ph/98()3315].
    [ 10]Antoniadis I, Hamed N A, Dimopoulos S. New dimensions at a millimeter to a Fermi and Super-strings at a TeV [J]. Phys. Lett. 13. 1998, 436(3-4):257-263.[arⅩⅳ:hep-ph/9804398].
    [41]Randall L, Sundrum R. An alternative to compactification [J]. Phys. Rev. Lett.,1999,83(23):4690-4693. [arⅩⅳ:hep-th/9906064].
    [42]Randall L, Sundrum R. A large mass hierarchy from a small extra dime [J]. Phys. Rev. Lett.,1999, 83(17):3370-3373.[arⅩⅳ:hep-ph/9905221].
    [43]Dvali G, Gabadadze G, Porrati M.4D gravity on a brane in 5D minkowski space [J]. Phys. Lett. B.2000,485(1-3):208-214.[arⅩⅳ:hep-th/0005016].
    [44]Deffayet C, Dvali G, Gabadadze G. Accelerated universe from gravity leaking to extra dimensions [J]. Phys. Rev. D,2002,65(4):044023(1-9).[arⅩⅳ:astro-ph/0105068].
    [45]俞允强.物理宇宙学讲义[M].北京:北京大学出版社,2002.
    [46]李宗伟.天体物理学[M].北京:高等教育出版社,2000.
    [47]Liddle A R and Lyth D H, Cosmological Inflation and Large-scale Structure [M]. Cambridge:Cam-bridge University Press,2000.
    [48]Padmanabhan T, Theoretical Astrophysics [M]. Cambridge:Cambridge University Press,2000
    [49]Spergel D N. [WMAP Collaboration], First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:Determination of Cosmological Parameters [J]. Astrophys. J. Suppl.2003,148:175-194.
    [50]梁灿彬,周彬.微分几何入门与广义相对论(上册,第二版)[M],北京:科学出版社,2006.
    [51]俞允强.广义相对论引论[M],北京:北京大学出版社,1997.
    [52]Tegmark M. Strauss M, Blanton M. Cosmological parameters from SDSS and WMAP [J]. Phys. Rev. D,2004.69:103501
    53] Abazajian K. The Third Data Release of the Sloan Digital Sky Survey [J]. Astron. J,2005,129:1755-1759
    54] Hinshaw G, Weiland J L, Hill R S. Five-Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations:Data Processing, sky Maps, and Basic Results [J]. Astrophys. J. Suppl.2009.180:225-245
    [55]Kotnatsu E, Dunldey,J, Nolta M R. Five-Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations:Cosmological Interpretation [J]. Astrophys. J. Suppl,2009,180:330-376
    [56]Spergel D N. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations Determi-nation of osinological Parameters [J]. Astrophys. J. Suppl.2003,148:175-194.[astroph/0302209].
    [57]Peebles P J E. Bharat Ratra. The Cosmological Constant and Dark Energy [J]. Rev.Mod.Phycs., 2003.75:559-606.
    [58]Spergel D N etal. Wilkinson Microwave Anisotropy Probe(WMAP)Three Year results:Implications of Cosmology [J]. Astrophys. J. Suppl.2007,170:377. [a.stro-ph/0603449].
    [59]Riess A G. [Supernova Search Team Collaboration], Type Ia Supernova Discoveries at z> 1 From the Hubble Space Telescope:Evidence for Past Deceleration and Constraints on Dark Energy Evo-lution [J]. Astrophys. J.,2004,607(2):665-687[astro-ph/040251].
    [60]Weinberg S. The Cosmological Constant Problem [J]. Rev. Mod. Phys.,1989,61(1):1-23.
    [61]Ferreira P G. Joyce M. Cosmology with a Primordial Scaling Field [J]. Phys. Rev. D,1998, 58(2):023503(23).
    [62]Stefamic H. Dark Energy Transition Between Quintessence and Phantom Regines: An equation of State Analysics [J]. Phys. Rev. D, 2005, 71(6):124036-124045.
    [63]Barrow J D. Sudden Future Singularities [J]. Class. Quantum Grav., 2001, 21(11):L79-L82.
    [64]Nojiri S, Odintsov S D, Tsujikawa S. Properties of Signgularities in the (Phantom) Dark Energy Universe [J]. Phys. Rev. D, 2005, 71(6):063004.
    [65]Huterer D, Cooray A. Uncorrelated Estimates of Dark Energy Evolution [J]. Phys. Rev. D, 2005, 71(2):023506.[astro-ph/0404062].
    [66]Feng B, Wang X L and Zhang X M. Dark Energy Constrains from the Cosmic- Age and Supernova [J]. Phys. Lett. B, 2005, 607:35-41.
    [67]Copeland E J, Sami M, Tsujikawa S. Dynamics of dark energy [J]. Int. J. Mod. Phys. D, 2006, 15(11):1753-1935.
    [68]Gibbons G W. Cosmological Evolution of the Rolling Tachyon [J]. Phys. Lett. B, 2002, 537(l-2):l-4.
    [69]Piao Y S, Cai R G, Zhang X M. Assisted Tachyonic Inflation [J]. Phys. Rev. D. 2002. 66(12):121301.
    [70]Copeland E J, Garousi M R, Sami M. What is needed of a tachyon if it is to be the dark energy [J]. Phys. Rev. D. 2005, 71(4):043003.
    [71]Bordemann M, Hoppe J. The dynamics of relativistic membranes 1: Reduction to 2-dimensional fluid dynamics [J]. Phys. Lett. B, 1993, 317(3):315-320.[arⅩⅳ:hep-th/9307936].
    [72]Hoppe J. Supermembranes in 4 dimensions.[arⅩⅳ:hep-th/9311059].
    [73]Jackiw R, Polychronakos A P. Supersyrnmetric Fluid Mechanics [J]. Phys. Rev. D, 2000, 62(8):085019.[arⅩⅳ:hep-th/0004083].
    [74]Ogawa N. A note on classical solution of Chaplygin-gas as D-brane [J]. Phys. Rev. D, 2000, 62(8):085023.[arⅩⅳ:hep-th/0003288].
    [75]Bilic N, Tupper G B, Viollier R D. Unification of Dark Matter and Dark Energy: the Inhomogeneous Chaplygin Gas [J]. Phys. Lett. B, 2002, 535(l-4):17-21.[arⅩⅳ:astro-ph/0111325 .
    [76]Kamenshchik A. Moschella U, Pasquier V. An alternative to quintessence [J]. Phys. Lett. B, 2001, 511(2-4):265-268.
    [77]Bilic N, Tupper G B, Viollier R D. Born-Infeld Phantom Gravastars [J]. .J. Cosmol. Astropart. Phys., 2006, 02:013.
    [78]Bilic N, Tupper G B, Viollier R D. Unification of Dark Matter and Dark Energy: the Inhomogeneous Chaplygin Gas [J]. Phys. Left. B., 2002, 535:17-21.
    [79]Bento M C, Bertolami O, Sen A A. Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification [J]. Phys. Rev. D., 2002, 66:043507.
    [80]Guo Z K. Zhang Y Z. Cosmology with a variable Chaplygin gas [J]. Phys. Lett. B. 2007. 615:326-329.
    [81]Maldacena J M. The Large N Limit of Superconfomal Field Theories and Supergravitv [J]. Adv. Theor. Math. Phys., 1998, 2:231-252.
    [82]Fischler W, Susskind L. Holography and Costnology.(arⅩⅳ:hep-th/9806039].
    |83] Cohen A G. Kaplan D B, Nelson A E. Effective Field Theory, Black Holes and the Cosmological Constant [J]. Phys. Rev. Lett., 1999, 82, 1971-1974.
    [81]Hsu S D H. Entropy bounds and dark energy [J]. Phys. Lett. B. 2001. 594(1):13-16.
    [85]Capozziello S, Cardone V F, Carloni S and Troisi A, Curvature Quintessence Matched with obser-vational Data [J]. Int. J. Mod. Phys. D,2003,12(10):1969-1982.
    [86]Carroll S M, Duvvuri V, Trodden M and Turner M S, Is Cosmic Speed-up Due to New Gravitational Physics [J]. Phys. Rev. D 2004,70(4):043528.
    [87]Capozziello S. Curvature Quintessence [J]. Int. J. Mod. Phys. D:2002,11(4):483-491.[arⅩⅳ:gr-qc/0201033].
    [88]Allemandi G, Borowiec A, Francaviglia M. Accelerated Cosmological Models in First-Order Non-Linear Gravity [J]. Phys. Rev. D,2004,70(4):043524.
    [89]Brookfield A W, Bruck C van de, Hall L M H. Viability of f(R) Theories with Additional Powers of Curvature [J]. Phys. Rev. D,2006,74(6):064028.
    [90]Nojiri S, Odintsov S D. Modified f(R) gravity consistent with realistic cosmology:from matter dominated epoch to dark energy universe [J]. Phys. Rev. D,2006.74(8):086005(13).
    [91]Nojiri S, Odintsov S D. Modified gravity with negative and positive powers of the curvature:uni-fication of the inflation and of the cosmic acceleration [J]. Phys. Rev. D,2003.68(12):123512.
    [92]Nojiri S, Odintsov S D. Modified gravity with InR terms and cosmic acceleration [J]. Gen. Rel. Grav.,2004,36(8):1765-1780.
    [93]Amendola L, Polarski D and Tsujikawa S. Are f(R) Dark Energy Models Cosmologically Viable [J]. Phys. Rev. Lett.,2007,98:131302 [astro-ph/0603703].
    [94]Debnath U. Variable modified Chaplygin gas and accelerating universe [J]. Astrophys Space Sci., 2007,312:295-299.
    [95]Li X Z and Liu D J. Cosmic Microwave Background Radiation Constraints on a Modified Chaplygin Gas Model [J]. Chin. phys. Lett.,2005,22:1600-1603.
    [96]Wu P X and Yu H W. Generalized Chaplygin gas model:Constraints from Hubble parameter versus redshift data [J]. Phys. Lett. B.,2007.644:16-19.
    [97]Geetanjali S. Variable Chaplygin Gas:Constraints from CMBR and SNe Ia [J]. Int. J. Mod. Phys. D,2006,15:1089-1098.[astro-ph/0508491].
    [98]Knop R A et al., Ap. J.598,102 (2003).?
    [99]Feng B, Wang X L and Zhang X M. Dark energy constraints from the cosmic age and supernova [J]. Phys. Lett. B.,2005,607:35-41.
    [100]Liddle A R and Lyth D H, Cosmological Inflation ans Large-Scale Structure [M]. London:Cam-bridge University Press,2000.
    [101]Kamenshchik A, Moschella U and Pasquier V. An alternative to quintessence [J]. Phys. Lett. B., 2001,511:265-268.
    [102]Sahni V, Saini T D, Starobinsky A A. Statefinder-a new geometrical diagnostic of dark energy [J]. JETP Lett.2003,77(5):201-206.
    [103]Zimdahl W, Pavon D. Statefinder Parameters for Interacting Dark Energy [J]. Gen. Rel. Grav. 2001,36(6):1483-1491.
    [104]Wu P X, Yu H W. Statefinder Parameters for Quintom Dark Energy Model [J]. Int. J. Mod. Phys D,2005,14(11):1873-1881.
    [105]Zhang X. Statefinder Diagnostic for Coupled Quintessence [J]. Phys. Lett. B, 2005, 61l(1-2):l-7.
    [106]E. E. 0. Ishida. Statefinder Revisited [J]. Braz. J. Phys., 2005, 35:1172-1178.
    [107]Wei H, Cai R-G. Statefinder diagnostic and w.w' analysis for the agegraphic dark energy models without and with interaction [J]. Phys. Lett. B, 2007, 655:1-6.
    [108]Chang B, Liu H, Xu L. Statefinder Parameters for Five-Dimensional Cosmology [J]. Mod. Phys. Lett. A, 2008, 23:269-279.
    [109]Huang Z G, Song X M, Lu H Q, et al. Statefinder Diagnostic for Dilaton Dark Energy [J]. Astro-phys. Space Sci., 2008, 315:175-179.
    [110]Panotopoulos G. Statefinder parameters in two dark energy models [J]. Nucl. Phys. B, 2008, 796:66-76.
    [111]Shojai A, Shojai F. Statefinder diagnosis of nearly flat and thawing non-minimal quintessence [J]. Europhys. Lett., 2009, 88:30002.
    [112]Tong M L, Zhang Y. Cosmic age, statefinder, and Om diagnostics in the decaying vacuum cos-mology [J]. Phys. Rev. D, 2009, 80:023503.
    [113]Feng C-J. Statefinder diagnosis for Ricci dark energy [J]. Phys. Lett, B, 2008. 670:231-234.
    [114]Setare M R, Zhang J, Zhang X. Statefinder diagnosis in a non-flat universe and the holographic model of dark energy [J]. J. Cosmol. Astropart, Phys.. 2007, 03:007.
    [115]吕剑波.基于空间-时间-物质理论和膜世界模型的黑洞研究[D]:(博士学位论文).辽宁大连:大连理工大学,2010.
    [116]徐仁新.天体物理学导论[M].北京:北京大学出版社,2005.
    [117]Nesseris S, Perivolaropoulos L. Comparison of the legacy and Gold SNIa dataset constraints on dark energy models [J]. Phys. Rev. D, 2005. 72(12):123519.[arⅩⅳ:astro-ph/0511040].
    [118]Szydlowski M, Godlowski W. Which cosmological models - with dark energy or modified FRW dynamics [J]. Phys. Lett. B, 2006, 633(4-5):427-432.[arⅩⅳ:astro-ph/0509415].
    [119]Nesseris S and Perivolaropoulos L. Crossing the Phantom Divide: Theoretical Implications and Observational Status [J]. JCAP, 2007, 0701:018,[arⅩⅳ:astro-ph/0610092]
    [120]Perivolaropoulos L. Constraints on linear negative potentials in quintessence and phantom models from recent supernova data [J]. Phys. Rev. D, 2005. 71(8):063503.
    [121]Pietro E D, Claeskens J F. Future supernovae data and quintessence models [J]. Mon. Not, Roy. Astron. Soc., 2003, 341(4):1299-1310.[arⅩⅳ:astro-ph/0207332j.
    [122]Eisenstein D J, et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies [J]. Astrophys.J., 2005, 633(2):560-574.[arⅩⅳ:astro-ph/0501171].
    [123]Eisenstein D J. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies [J]. Astrophys. J. 2005, 633:560-574, astro-ph/0501171.
    [124]Alain U, Salmi V. Confronting braneworld cosmology with supernova data and baryon oscillations [J]. Phys. Rev. D, 2006, 73(8):084024.[arⅩⅳ:ast.ro-ph/0511173].
    [125]Wang Y, Mukherjee P. Observational Constraints on Dark Energy and Cosmic Curvature Phys. Rev. D, 2007, 76(10):103533.[arⅩⅳ:astro-ph/0703780].
    [126]Lu J B, Xu L X, Li J C. Constraints on modified Chaplygin gas from recent observations and a comparison of its status with other models [J]. Phys. Lett. B,2008,662(2):87-91.
    [127]Percival W J et al. Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample [J]. Mon. Not. Roy. Astron. Soc.,2010,401:2148-2168.[arXiv:0907.1660].
    [128]Percival W J et al. A deep AAOmega survey of low-luminosity galaxies in the Shapley supercluster: stellar population trends. [J]. Mon. Not. Roy. Astron. Soc.,2007,381:1053-1052.
    [129]Eisenstein D J and Hu W. Baryonic Features in the Matter Transfer Function [J]. Astrophys. J., 1998,496:605.[astro-ph/9709112].
    [130]Jimenez R and Loeb A. Constraining Cosmological Parameters Based on Relative Galaxy Ages [J]. Astrophys. J.,2002,573:37-42.[astro-ph/0106145].
    [131]Jimenez R, Verde L, Treu T, et al. Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB [J]. Astrophys.J.,2003,593(2):622-629.[arXiv:astro-ph/0302560].
    [132]Simon J, Verde L, Jimenez R. Constraints on the redshift dependence of the dark energy potential [J]. Phys. Rev. D,2005,71(12):123001(1-18).[arⅩⅳ:astro-ph/0412269].
    [133]Abraham R G, Glazebrook K, McCarthy P J. et al. The Gemini Deep Deep Survey:I. Introduction to the survey, catalogs and composite spectra [J]. Astron. J.,2004,127(5):2455-2483. [arⅩⅳ:astro-ph/0402436].
    [134]Treu T, Stiavelli M, Casertano S. The properties of field elliptical galaxies at intermediate red-shift-I. Empirical scaling laws [J]. Mon. Not. Roy. Astron. Soc.,1999.308(4):1037-1052.[arⅩⅳ:astro-ph/9904327].
    [135]Treu T, Stiavelli M, Moller P, et al. The properties of field elliptical galaxies at intermediate redshift. Ⅱ:photometry and spectroscopy of an HST selected sample [J]. Mon. Not. Roy. Astron. Soc.,2001,326(1):221-240.[arXiv:astro-ph/0104177].
    [136]Treu T. Stiavelli M, Casertano S The Evolution of Field Early-Type Galaxies to z 0.7 [J]. Astro-phys. J. Lett.,2002,564:L13.
    [137]Dunlop J, Peacock J, Spinrad H. A 3.5-Gyr-old galaxy at redshift,1.55 [J]. Nature.1996,381:581-584.
    [138]Spinrad H, Dey A, Stern D. LBDS53W091:An old red galaxy at z=1:552 [J]. Astrophys. J.. 1997,484(2):581-601.[arⅩⅳ:astro-ph/9702233].
    [139]Nolan L A, Dunlop J S. Jimenez R. F stars, metallicity, and the ages of red galaxies at z> 1 [J]. Mon. Not. Roy. Astron. Soc.,2003,341(2):464-474.[arⅩⅳ:a.stro-ph/0103450].
    [110]Samushia L, Ratra B, Cosmological constraints from Hubble parameter versus redshift data [J]. Astrophys. J.,2006,650(1):L5-L8.[arⅩⅳ:astro-ph/0607301].
    [141]Stern D. Jimenez R, Verde L. Cosmic Chronometers:Constraining the equation of state of dark energy. Ⅰ:H(z) measurements.[arⅩⅳ:astro-ph/0907.3149].
    142] Riess A G, Macri L, Casertano S. A redetermination of the Hubble constant with the Hub-ble Space Telescope from a differential distance ladder [J]. Astrophys. J,699:539-563[arⅩⅳ:ast,ro-ph/0905.0695].
    [143]Gaztanaga E, Cable A, Hui L. Clustering of luminous red galaxies Ⅳ: Baryon Acoustic Peak in the line-of-sight direction and a direct measurement of H(z).[arⅩⅳ:astro-ph/0807.3551].
    [144]Yi Z L, Zhang T J. Constraints on holographic dark energy models using the differential ages of passively evolving galaxies [J]. Mod. Phys. Lett. A, 2007, 22(l):41-53.[arⅩⅳ:astro-ph/0605596].
    [145]Lu J B, Gui Y X, Xu L X. Observational constraints on generalized Chaplygin gas model [J]. Eur. Phys. J. C, 2009, 63(3):349-354.
    [146]Komatsu E, Dunkley J, Nolta M R. Five-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological interpretation [J]. Astrophys. J. Suppl., 2009, 180(2):330-376. [arⅩⅳ:astro-ph/0803.0547].
    [147]Komatsu E, Smith K M, Dunkley J. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation [J]. Astrophys. J. Suppl, 2011, 192:18 [arⅩⅳ:astro-ph/1001.4538].
    [148]Bond J R, Efstathiou G, Tegmark M. Forecasting cosmic parameter errors from microwave back-ground anisotropy experiments [J]. Mon. Not. R. Astron. Soc., 1997, 291(3):L33-L41.[arⅩⅳ:astro-ph/9702100].
    [149]Hu W, Sugiyama N. Small-Scale Cosmological perturbations: An analytic approach [J]. Astrophys. J., 1996, 471(2):542-570.
    [150]Komatsu E. Astrophys. J. Suppl. 180, 330 (2009) [arⅩⅳ:astro-ph/0803.0517]:
    [151]Dunkley J. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data [J]. Astrophys. J. Suppl, 2009, 180:306-329.[arⅩⅳ:astro-ph/0803.0586].
    [152]Spergel D N, Bean R. Dore O. Wilkinson Microwave Anisotropy Probe (WMAP) t hree year results: Implications for cosmology [J]. Astrophys. J. Suppl., 2007, 170(2):377-408.[arⅩⅳ:astro-ph/0603449].
    [153]Wang Y, Mukherjee P. Robust dark energy constraints from supernovae. galaxy clustering, and three-year Wilkinson Microwave Anisotropy Probe Observations [J]. Astrophys. J., 200(5. (550(1): 1-6.[arⅩⅳ:astro-ph/0604051].
    [154]Elgarooy O, Multamaki T. On using the CMB shift parameter in tests of models of dark energy [J]. Astron. Astrophys, 2007, 471(l):65-70.[arⅩⅳ:astro-ph/0702343].
    [155]Lewis A, Bridle S. Cosmological parameters from CMB and other data: a Monte-Carlo approach [J]. Phys.Rev.D,2002,66(l()):103511(l-16). [arⅩⅳ:astro-ph/0205136].
    [156]Rapetti D, Allen S W and Weller J. Mon. Not, Roy. Astron. Soc. 2005, .360: 555. URL: http://www.stanford.edu/ drapetti/fgas-module/
    [157]Bardeen J M, Carter B and Hawking S W. The four laws of black hole mechanics. Commun. Math. Phys., 1973, 31:161-170.
    [158]T. Jacobson, Phys. Rev. Lett. 75, 1206 (1995).
    [159]Padmauabhan T. Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes. Class. Quantum Grav.,2002. 19:5387-5108.
    [160]Padmauabhan T. Gravity and the thermodynamics of horizons. Phys. Hep.. 2005. 106: 19-125.
    [161]R. G. Cai and S. P. Kim. First Law of Thermodynamics and Friedmann Equations of Friedmann Robertson Walker Universe. J. High Energy Phys.,2005,02,050.
    [162]Hawking S W. Particle creation by black holes. Commun. Math. Phys.,1975,43:199-220.
    [163]Bekenstein J D. Black Holes and Entropy. Phys. Rev. D.,1973,7:2333-2346.
    [164]Frolov A and Kofman L, Cosmol J. Astropart. Phys.05,09(2003).
    [165]Gibbons G W and Hawking S W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D.,1977,15:2738-2751.
    [166]Pollock M D and Singh T P. On the thermodynamics of de Sitter spacetime and quasi-de Sitter spacetime. Class. Quantum Grav.,1989,6:901-909.
    [167]Cai R G and Kim S P. J. High Energy Phys.0502,050 (2005).
    [168]Izquierdo G and Pavon D. Dark energy and the generalized second law. Phys. Lett. B,2006, 633:420-426.
    [169]Wang B, Gong Y and Abdalla E. Thermodynamics of an accelerated expanding universe. Phys. Rev. D.,2006,74,083520.
    [170]Barboza E M and Alcaniz J S. A parametric model for dark energy. Phys. Lett. B..2008,666:415-419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700