用户名: 密码: 验证码:
基于不同长度的COI和COII基因片段分子鉴定嗜尸性双翅目昆虫
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1季节性演替实验鉴定法医学重要节肢动物
     背景
     法医昆虫学(forensic entomology)研究内容主要是对在尸体内、尸体表面或尸体附近采集到的昆虫标本,进行检验、鉴定、分类后,明确昆虫种类或确定某一昆虫生长发育状态,结合昆虫在尸体上的生态群落演替,帮助法医完成死亡时间(postmortem interval, PMI)的推断。昆虫在尸体上是按一定的次序出现并繁殖。目前,在埃及有关不同腐败阶段的动物区系演替实验和他们在法律上应用报道还很少。而且,也没有埃及东北部有关法医重要意义昆虫的数据报道。
     目的
     1.第一次在埃及东北部(32015'E,30°36'N)调查法医重要性意义的昆虫。
     2.调查冬夏季节动物尸体上的主要昆虫类群,并分析尸体分解速度的季节性差异。
     3.观察最早到达尸体的双翅目种类及嗜尸性昆虫的演替规律。
     方法:
     1.连续2年(2011/2012)的冬夏季节用动物尸体进行实验。
     2.在每次观察中,检查尸体的腐败阶段,采集不同发育阶段的有代表性的样本(死的和活着的样本),并记录温度和相对湿度等环境变量。
     3.请分类专家依据本地物种的形态学特征对物种行形态学鉴定。
     结果
     1.夏季在动物尸体上取得了3目7科10种的物种,而冬季在动物尸体上获得了4目8科12种的物种。虽然在冬季可以收集到更丰富的样本物种,但在夏季每个物种的样本数量更多。
     2.一般情况下,蝇科和厕蝇科在夏季研究中占主导地位而麻蝇科在冬季占主导地位。
     3.冬季动物尸体的分解的速度明显慢于在夏季的速度。
     4.相比夏季,在冬季双翅目到达尸体明显延迟。夏季最先到达尸体的类群是家蝇,而在冬季最先到达的白头裸金蝇。
     5.通过分析所收集到的样本,构建了夏季和冬季的物种的共生矩阵表。
     结论
     本研究结果提示开展地域性昆虫演替规律调查研究是十分重要的,在不同的区域范围内确定最有可能出现的昆虫种类对于法医学案例也至关重要。演替实验也是评估分子标记鉴定能力的一个基本步骤。
     2细胞色素氧化酶基因Ⅰ (COⅠ):利用短片段和长片断鉴定嗜尸性双翅目昆虫
     背景
     在法医学领域,正确的鉴定是一个关键性的问题,因为有缺陷的法医学证据可能导致审判不公。在以被准确评估后的遗传标记为指导的鉴定工具包中,以分子为基础的方法被认为是一个重要工具。本文第一次使用线粒体细胞色素氧化酶基因Ⅰ (COⅠ)的272-bp和1173-bp两个片断对来自埃及的嗜尸性昆虫进行评估。并且,由于现有中国的相关数据全部来自对短片段的研究,本文也第一次使用COI的长片断对中国的嗜尸性昆虫进行评估。因此,这些研究对于确定以上片断的适用性是非常有意义的。从两个地区收集到的样本对于使用这些分子标记鉴定物种和种群具有重要意义。
     目的
     -确定COI长、短两个片断对于鉴定嗜尸性双翅目昆虫的鉴别效力,并且通过以下三个方面评估和比较这两个片断:
     1、种内及种间差异
     2、所研究物种的单系分离
     3、通过邻接法建立于与分类学一致的系统发育树
     -确定这些片断在种群水平上鉴定同种的鉴别效力。
     方法
     1、形态学鉴定来自18个物种的50个样本。
     2、DNA提取。
     3、使用两个片断的引物进行PCR扩增,之后产物直接用于测序。
     4、使用Kimura双参数距离模型(K2P)对核苷酸序列的分歧进行计算,通过邻接法(NJ)建立系统发育树。
     结果
     1、在种内和种间差异中两个片断显示了类似的结果。
     2、长片断能够以高的自举值完整地区分单系物种,明显优于短片段。
     3、使用长片断对这些物种建立的NJ系统发育树与分类学结果较为一致,远远优于短片段。
     结论
     1、COI长片段的鉴定结果更为可靠和安全,因为它能够优化分歧,特别是对那些具有低水平分歧的物种。
     2、长片断另外一个优点是除了能够得到与形态学分类相一致的结果之外,还特别适用于鉴定已建立本地数据库中的新物种。
     3、在种群水平上COI基因不能区分同种昆虫。
     3细胞色素氧化酶基因Ⅱ:利用短片段鉴定嗜尸性双翅目昆虫
     背景
     由于相对较高的变异度,细胞色素氧化酶基因Ⅱ可以成功用于进化学研究、群体遗传学和分类学。然而,仅有少数文献报道使用该基因进行嗜尸性蝇类鉴定。在将任何遗传学标记用于实际案例之前,需要对这些标记进行评估。为了作为可用的法医学工具,这些标记必须含有有效的变异区能在种及种群水平上产生唯一的标识。由于短片段具有简单、低成本和很好的应用前景,最近有文献报道使用一个189-bp COⅡ片段鉴定来自中国的3种麻蝇。目前,在埃及没有使用该片断发表的数据。因此,本研究利用该片断鉴定来自两个不同地区的三科昆虫(家蝇科、麻蝇科和蝇科)14种蝇类,进而评估该片断的实用性。
     目的
     通过以下方法评估长度小于200-bp小片段的使用性:
     1、测量种内及种间差异。
     2、在科水平上证实所研究物种的单系分离及正确归类。
     方法
     1、形态学鉴定来自14个物种的53个样本。
     2、DNA提取。
     3、使用该片断的引物进行PCR扩增,之后产物直接用于测序。
     4、使用Kimura双参数距离模型(K2P)对核苷酸序列的分歧进行计
     算,通过邻接法(NJ)建立系统发育树。
     结果
     1、同种蝇类无种内差异,种间差异为2%~25%。
     2、除了H. melanura和秋家蝇M. autumnalis,所有样品都正确的归类。
     结论
     尽管分子生物学对于鉴定嗜尸性昆虫是一种有效的方法,然而我们建议小于小于200-bp小片段用于鉴定仅仅是对传统方法的补充。
     4章基于COI和COⅡ基因利用PCR-RFLP技术鉴定嗜尸性麻蝇
     背景
     利用麻蝇进行死亡时间推断是十分有限的,因为麻蝇的形态学鉴定十分困难,无论是在幼虫、蛹还是成虫阶段,它们都具有相似的特征。几乎所有可用的PCR-RFLP数据都来自丽蝇科昆虫。并且,对使用PCR-RFLP技术进行物种鉴定仍存在争议。目前,尚无来自中国或埃及有关被检验的物种和分子标记的数据。
     目的
     1、评估部分COI-COII基因的使用性;基于直接测序鉴定四种常见的嗜尸性麻蝇。
     2、评估该PCR-RFLP技术的实用性;基于COI-COII片断,PCR-RFLP作为一种简单、快速和低成本的技术鉴定四种常见的嗜尸性麻蝇。
     方法
     1、形态学鉴定4个麻蝇物种。
     2、DNA提取。
     3、使用该片断的引物进行PCR扩增,之后产物直接用于测序。
     4、使用限制性内切酶Hinfl和MfeI对PCR产物进行酶切,使用电泳确定条带图谱。
     5、使用Kimura双参数距离模型(K2P)对核苷酸序列的分歧进行计算,通过邻接法(NJ)建立系统发育树。
     结果
     1、所有被检测样品都正确的归类。
     2、联合使用限制性内切酶Hinfl和MfeI产生了不同的限制性片断长度多态性(RFLP)图谱,并且对3种同地区的麻蝇同样有效。
     结论
     本研究证实了基于部分COI-COII基因的PCR-RFLP技术可以正确的鉴定嗜尸性麻蝇。
1Seasonal succession studies for identification of forensically important arthropods
     Background
     Forensic entomology, the study of insects pertaining to legal investigations, is primarily concerned with estimations of post mortem interval (PMI). Insect colonization of carrion has been demonstrated to occur in a predictable sequence. There are few available Egyptian studies on the faunal succession related to stages of decomposition and their application in legal medicine. However, there are no published data on the forensically important insects in northeastern Egypt.
     Objectives
     1. To identify forensically important species in northeastern Egypt (32°15'E and30°36'N) for the first time.
     2. To document the arthropod succession pattern (record their presentation at different stages of decomposition).
     3. To assess rate of decomposition in the2studied seasons.
     4. To document the early arriving of Diptera (time of arriving and first colonizer).
     5. To identify the dominant arthropods in each season.
     Methods
     1. The2seasonal experiments had been conducted in2consecutive years (2011/2012) by using exposed animal carcasses.
     2. At each visit, examination of carcasses had been performed to assess the stage of decomposition. Representative samples (dead and still alive) of different life stages have been collected. Environmental variables such as ambient temperature and relative humidity were recorded during each sampling.
     3. Morphological identification has been conducted by taxonomy experts with using local published keys.
     Results
     1. Carcasses yielded3-4orders representing7-9families with11-12collected species in summer and winter experiments respectively. Interestingly, although more species have been collected in winter study but the abundance of each species was much more in summer study.
     2. To analyze succession patterns of collected species, occurrence matrices were constructed in the summer and winter studies.
     3. As expected, the rate of decomposition in winter was significantly slower than in summer study.
     4. There was significance delay in early arriving of Diptera in winter than in summer. The initial colonizers in summer were Musca domestica and Sarcophaga argyrostoma while the initial colonizer in winter was Chrysomya albiceps.
     5. In general, Muscidae and Fanniidae were the dominant in summer study and Sarcophagidae was the dominant in winter.
     Conclusion
     The results of present study affirms that local surveys are critical in identifying what species are present in various areas, and therefore, what species can be expected to be most important in a medico-legal case. It also constitutes a mandatory and primary step to assess the utility of any molecular markers in identification.
     2Cytochrome oxidase I gene:utility of short versus long fragments in identification of forensically significant Diptera
     Background
     Correct identification is an important issue from a forensic perspective because flawed forensic evidence may lead to miscarriages of justice. Molecular based method is considered as an important tool in identification toolkit guided with accurate evaluation of the chosen genetic marker. This is the first time to assess and provide molecular data of forensically important species from Egypt either by using short "272-bp"or long "1173-bp" fragment of the mitochondrial cytochrome oxidase I (COI) gene. Moreover, it is considered also the first time to assess and provide data about long fragment of COI from China because up to our knowledge up to date all available studies from china extracted from short fragment. Thus, assessment will be valuable to determine the suitability of these fragments. The collection of some species from2geographical regions is important to evaluate the dual role of these markers in identification of species and population.
     Objectives
     -To determine the power of short and long COI fragment in discrimination of Diptera of forensic relevance then compare between
     2investigated fragments by assessing:
     1. Intra and interspecific variations.
     2. Monophyletic separation of investigated species.
     3. NJ tree has been constructed consistent with taxonomic classification.
     -To determine the ability of these fragment to discriminate within same species on population level.
     Methods
     1. Morphological identification (50specimens belonging to18species).
     2. DNA extraction was performed for all examined specimens.
     3. The2investigated markers were amplified by polymerase chain reaction (PCR) followed by direct sequencing.
     4. Nucleotide sequence divergences were calculated using the Kimura two-parameter (K2P) distance model and neighbour-joining (NJ) phylogenetic trees generated.
     Results
     1. Both tested fragment displayed overlapping between intra and interspecific variations.
     2. Long marker outperforms short one in completeness of monophyletic separation with high bootstrap support.
     3. NJ tree based on long fragment clustered species more in accordance with their taxonomic classification than in short fragment.
     Conclusion
     1. Identification based on long COI fragment is more reliable and safer because it has the ability to optimize divergence particularly for species characterized by low levels of divergence.
     2. The other advantage of using long fragment is obtaining phylogenetic data that in accordance with that based on morphological taxonomy. That will help in correct identification even new cryptic species when local databases had been constructed.
     3. COI gene displayed inability to discriminate within same species on population level.
     3Cytochrome oxidase Ⅱ gene:identification of forensically significant Diptera based on short fragment
     Background
     Although it has been reported that cytochrome oxidase Ⅱ (COII) gene is useful in evolution studies, population genetics and systematics due to the relatively high degree of variation in the region, but there are few publications about identification of forensically relevant flies based on COII alone. Before introducing any genetic marker to practice on real cases, we need to assess that marker. In order to be useful as a forensic tool, it must contain enough variation to generate unique identifiers. Because of the value of short DNA fragment as being simple and cheap as well as promising result of recent study which assessed189-bp COII in discrimination between3Sarcophagidae species in China. There is no data up to date about that fragment from Egypt. Based on these circumstances, the present study assessed the utility of189-bp COII fragment in identification of14species; belonging to Calliphoridae, Sarcophagidae and Muscidae, originating from2different geographical areas.
     Objectives
     To evaluate the utility of too small fragment (<200-bp in length) by assessmg:
     1. Intra and interspecific variations.
     2. Monophyletic separation of investigated species and correct assignment on family level.
     Methods
     1. Morphological identification (53specimens belonging to14species).
     2. DNA extraction was performed for all examined specimens.
     3. The investigated marker was amplified by polymerase chain reaction (PCR) followed by direct sequencing.
     4. Nucleotide sequence divergences were calculated using the Kimura two-parameter (K2P) distance model and neighbour-joining (NJ) phylogenetic trees generated.
     Results
     1. No intraspecific variation within same species (0%), while interspecific variation ranged from2%to25%.
     2. All specimens were properly assigned into correct species and families apart from H. melanura and M. autumnalis.
     Conclusion
     Although molecular methods are very useful to identify forensically important insect, we propose to use this fragment (too small fragment<200-bp) only in addition to the conventional methods.
     4Applicability of PCR-RFLP in identification of forensically important Sarcophagidae (Diptera) based on COI and COII genes
     Background
     The use of Sarcophagidae (Diptera) for PMI estimation is limited since morphological determination is often hampered due to similar characteristics in the larval, pupal and even adult stage. Almost all available PCR-RFLP data extracted from Calliphoridae. Furthermore, there is a debate about the usefulness of PCR-RFLP technique in identification. Therefore, we aimed to assess the utility PCR-RFLP; as simple and inexpensive technique, based on partial COI-COII genes in identification of4common forensically important Sarcophagidae (Flesh flies) in Egypt and China.
     Objectives
     1. To assess the utility of partial COI-COII genes; based on direct sequencing, in identification of4common forensically important Sarcophagidae (Flesh flies).
     2. To assess the utility of PCR-RFLP; as simple, fast and inexpensive technique based on partial COI-COII genes in identification of4common forensically important Sarcophagidae.
     Methods
     1. Morphological identification of4species belong to Sarcophagidae.
     2. DNA extraction was performed for all examined specimens.
     3. The investigated marker was amplified by polymerase chain reaction (PCR) followed by direct sequencing.
     4. Both restriction enzymes Hinfl and MfeI has been used on amplified PCR products then electrophoresis to determine the banding profile.
     5. Nucleotide sequence divergences were calculated using the Kimura two-parameter (K2P) distance model and neighbour-joining (NJ) phylogenetic trees generated.
     Results
     1. All examined specimens were assigned to the correct species.
     2. Combinations of the restriction enzymes Hinfl and MfeI provide4different restriction fragment length polymorphism (RFLP) profiles even among3sympatric species belong to Sarcophaga genus.
     Conclusion
     This study demonstrates that PCR-RFLP based on partial mt COI-COII genes was accurate to identify forensically important flesh fly species.
引文
[1]Catts EP. Problems in estimating the postmortem interval in death investigations. J Agric Entomol 1992; 9(4):245-55.
    [2]Byrd JH, Castner JL. Forensic entomology:the utility of arthropods in legal investigations. Boca Raton:CRC,2009.
    [3]Matuszewski S, Bajerlein D, Konwerski S, et al. An initial study of insect succession and carrion decomposition in various forest habitats of central Europe. Forensic Sci Int 2008;180(2/3):61-9.
    [4]Ortloff A, Pena P, Riquelme M. Preliminary study of the succession pattern of necrobiont insects, colonising species and larvae on pig carcasses in Temuco (Chile) for forensic applications. Forensic Sci Int 2012;222(1/3):e36-41.
    [5]Goff ML. Estimation of postmortem interval by arthropod succession:three case studies from the Hawiian islands. Am J Forensic Med Pathol 1988;9(3):220-5.
    [6]Gullan PJ, Cranston PS. The insects:an outline of entomology. Malden:Blackwell, 2005.
    [7]Campobasso CP, Di Vella G, Introna F. Factors affecting decomposition and Diptera colonization. Forensic Sci Int 2001;120(1/2):18-27.
    [8]Tabor KL, Fell RD, Brewster CC. Insect fauna visiting carrion in southwest Virginia. Forensic Sci Int 2005; 150(1):73-80.
    [9]Tuzun A, Dabiri F, Yuksel S. Preliminary study and identification of insects' species of forensic importance in Urmia, Iran. Afr J Biotechnol 2010;9(24):3649-58.
    [10]Al-Mesbah H, Moffatt C, El-Azazy OM, et al. The decomposition of rabbit carcasses and associated necrophagous Diptera in Kuwait. Forensic Sci Int 2012;217(1/3):27-31.
    [11]Abd El-bar MM, Sawaby RF. A preliminary investigation of insect colonization and succession on remains of rabbits treated with an organophosphate insecticide in El Qalyubiya governorate of Egypt. Forensic Sci Int,2011,208(1/3):e26-30.
    [12]Tantawi TI, El-Kady EM, Greenberg B, et al. Arthropod succession on exposed rabbit carrion in Alexandria, Egypt. J Med Entomol 1996;33(4):566-80.
    [13]Bourel B, Martin-Bouyer L, Hedouin V, et al. Necrophilous insect succession on rabbit carrion in sand dune habitats in northern France. J Med Entomol 1999;36(4):420-5.
    [14]De Jong GD, Chadwick JW. Decomposition and arthropod succession on exposed rabbit carrion during summer at high altitudes in Colorado, USA. J Med Entomol 1999, 36(6):833-45.
    [15]Arnaldos MI, Romera E, Presa JJ, et al. Studies on seasonal arthropod succession on carrion in the southeastern Iberian Peninsula. Int J Legal Med 2004;118(4):197-205.
    [16]Moura MO, de Carvalho CJ, Monteiro-Filho EL. A preliminary analysis of Insects of medico-legal importance in Curitiba, state of Parana. Mem Inst Oswaldo Cruz 1997;92(2):269-74.
    [17]Galal LAA, Abd-El-hameed SY, Attia RAH, et al. An initial study on arthropod succession on exposed human tissues in Assuit, Egypt. Mansoura J Forensic Med Clin Toxicol 2009;17(1):55-74.
    [18]Valdes-Perezgasga MT, Sanchez-Ramos FJ, Garcia-Martinez O, et al. Arthropods of forensic importance on pig carrion in the Coahuilan semidesert, Mexico. J Forensic Sci 2010;55(4):1098-101.
    [19]Shaumar N, Mohammad S. Keys for identification of species of family Sarcophagidae (Diptera) in Egypt. Bull Soc Entomol Egypt 1983;64:121-35.
    [20]Shaumar NF, Mohammad SK, Mohammad SA. Keys for identification of species of family Calliphoridae (Ditpera) in Egypt. J Egypt Soc Parasitol 1989;19(2):669-81.
    [21]Shaumar NF, Mohammad SK, Salem NM. Taxonomic studies of Dermestidae (Coleoptera) in Egypt. Bull Soc Entomol Egypt 1990;69:11-29.
    [22]Oliveira TC, Vasconcelos SD. Insects (Diptera) associated with cadavers at the Institute of Legal Medicine in Pernambuco, Brazil:Implications for forensic entomology. Forensic Sci Int 2010;198(1/3):97-102.
    [23]Anton E, Niederegger S, Beutel RG. Beetles and flies collected on pig carrion in an experimental setting in Thuringia and their forensic implications. Med Vet Entomol 2011;25(4):353-64.
    [24]Wang J, Li Z, Chen Y, et al. The succession and development of insects on pig carcasses and their significance in estimating PMI in south China. Forensic Sci Int 2008;179(1):11-8.
    [25]Tantawi TI, Greenberg B. The effect of killing and preservative solutions on estimates of maggot age in forensic cases. J Forensic Sci 1993;38(3):702-7.
    [26]Bharti M, Singh D. Insect faunal succession on decaying rabbit carcasses in Punjab, India. J Forensic Sci 2003;48(5):1133-43.
    [27]Ignell R, Hansson B. Insect olfactory neuroenthology - an electrophysiological perspective. In:Christensen TA, ed. Methods in insect sensory neuroscience. Florida: CRC,2005, pp 319-48.
    [28]Greenberg B, Kunich JC. Entomology and the law:flies as forensic indicators. New York:Cambridge University Press,2005.
    [29]Hegazi E M, Shaaban M A, Sabry E. Carrion insect of the Egyptian western desert. J Med Entomol 1991;28(5):734-9.
    [1]Martin-Vega D. Skipping clues:Forensic importance of the family Piophilidae (Diptera). Forensic Sci Int 2011;212 (1/3):1-5.
    [2]Baz A, Cifrian B, Martin-Vega D, et al. Phytophagous insects captured in carrion-baited traps in central Spain. B Insectol 2010;63:21-30.
    [3]Velasquez Y, Magana CA, Martinez-Sanchez A, et al. Diptera of forensic importance in the Iberian Peninsula:larval identification key. Med Vet Entomol 2010; 24 (3):293-308.
    [4]Byrd JH, Castner JL. Insects of forensic importance. In:Byrd JH, Castner JL, eds. Forensic entomology:the utility of arthropods in legal investigations. Boca Raton: CRC Press,2009:39-127.
    [5]Wallman JF, Donnellan SC. The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera:Calliphoridae) in southeastern Australia. Forensic Sci Int 2001; 120:60-7.
    [6]Meiklejohn KA, Wallman JF, Dowton M. DNA-based identification of forensically important Australian Sarcophagidae (Diptera). Int J Legal Med 2011;125:27-32.
    [7]Harvey ML, Dadour IR, Gaudieri S. Mitochondrial DNA cytochrome oxidase I gene:potential for distinction between immature stages of some forensically important fly species (Diptera) in western Australia. Forensic Sci Int 2003;131:134-9.
    [8]Boehme P, Amendt J, Zehner R. The use of COI barcodes for molecular identification of forensically important fly species in Germany. Parasitol Res 2012;110(6):2325-32.
    [9]Ames C, Turner B, Daniel B. The use of mitochondrial cytochrome oxidase I gene (COI) to differentiate two UK blowfly species-Calliphora vicina and Calliphora vomitoria. Forensic Sci Int 2006; 164:179-82.
    [10]Waugh J. DNA barcoding in animal species:progress, potential and pitfalls. Bioessays 2007;9(2):188-97.
    [11]Hebert PDN, Cywinska A, Ball SL, et al. Biological identifications through DNA barcodes. Proc Biol Sci 2003;270:313-21.
    [12]Nelson LA, Wallmann JF, Dowton M. Using COI barcodes to identify forensically and medically important blowflies. Med Vet Entomol 2007;21:44-52.
    [13]Frezal L, Leblois R. Four years of DNA barcoding:Current advances and prospects. Infect Genet Evol 2008;8:727-36.
    [14]Jordaens K, Sonet G, Richet R, et al. Identification of forensically important Sarcophaga species (Diptera:Sarcophagidae) using the mitochondrial COI gene. Int J Legal Med 2012; Doi:10.1007/s00414-012-0767-6.
    [15]Whitworth TL, Dawson RD, Magalon H, et al. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera:Calliphoridae). Proc Biol Sci 2007; 274 (1619):1731-9.
    [16]Zaidi F, Wei SJ, Shi M, et al. Utility of multi-gene loci for forensic species diagnosis of blowflies. J Insect Sci 2011; 11:59.
    [17]Dai QY, Gao Q, Wu CS, et al. Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus) in China with multiple gene markers. PLoS One 2012;7(4):e32544.
    [18]Hebert PDN, Cywinska A, Ball SL, et al. Biological identification through DNA barcodes. Proc R Soc Lond B 2003;270:313-21.
    [19]Ball SL, Hebert PDN, Burian SK, et al. Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. J North Am Benthol Soc 2005;24:508-24.
    [20]Harvey ML, Mansell MW, Villet MH, et al. Molecular identification of some forensically important blowflies of southern Africa and Australia. Med Vet Entomol 2003; 17:363-9.
    [21]Shaumar N, Mohammad S. Keys for identification of species of Family Sarcophagidae (Diptera) in Egypt. Bull Soc Entomol Egypt 1983; 64:121-35.
    [22]Shaumar NF, Mohammad SK, Mohammad SA. Keys for identification of species of Family Calliphoridae (Ditpera) in Egypt. J Egypt Soc Parasitol 1989; 19(2):669-81.
    [23]Shaumar NF, Mohamed SK, Shoukry IF. Flies of subfamily Muscinae (Muscidae-Diptera) in Egypt. J Egypt Soc Parasitol 1985; 15(2):513-23.
    [24]Xu WQ, Zha JM. Flies of China. Shenyang:Liaoning science and technology press, 1996.
    [25]Lu BL, Wu HY. Classification and identification of important medical insects of China. Zhengzhou:Henan science and technology publishing house,2003.
    [26]Liu Q, Cai J, Guo Y, et al. Identification of forensically significant calliphorids based on mitochondrial DNA cytochrome oxidase Ⅰ (COⅠ) gene in China. Forensic Sci Int 2011; 207(1/3):e64-5.
    [27]Sperling FAH, Anderson GS, Hickey DA. A DNA-based approach to the identification of insect species used for postmortem interval estimation. J Forensic Sci 1994; 39:418-27.
    [28]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 24:1596-9.
    [29]Saigusa K, Takamiya M, Aoki Y. Species identification of the forensically important flies in Iwate prefecture, Japan based on mitochondrial cytochrome oxidase gene subunit Ⅰ (COⅠ) sequences. Legal Med 2005; 7:175-8.
    [30]Aly SM, Wen J, Wang X, et al. Identification of forensically important arthropods on exposed remains during summer season in northeastern Egypt. J Cent South Univ (Med Sci) 2013; 38(1):1-6.
    [31]Ward RD, Zemlak TS, Innes BH, et al. DNA barcoding Australia's fish species. Philos Trans R Soc Lond B 2005;360:1847-57.
    [32]Nelson LA, Wallman JF, Dowton M. Identification of forensically important Chrysomya (Diptera:Calliphoridae) species using the second ribosomal internal transcribed spacer (ITS2). Forensic Sci Int 2008;177:238-47.
    [33]Aly SM, Wen J, Wang X, et al. Cytochrome oxidase Ⅱ gene "short fragments" applicability in identification of forensically important insects. Rom J Legal Med 2012; 20(3):231-6.
    [34]Aly SM, Wen J, Wang X. Identification of forensically important Sarcophagidae (Diptera) based on partial mitochondrial COI-COII genes. Am J Forensic Med Pathol 2013. Doi:10.1097/PAF.0b013e31828c390e
    [35]Wells JD, Sperling FAH. DNA-based identification of forensically important Chrysomyinae (Diptera:Calliphoridae). Forensic Sci Int 2001; 120:110-5.
    [36]Stevens J, Wall RL. Genetic relationships between blowflies (Calliphoridae) of forensic importance. Forensic Sci Int 2001; 120(1):116-23.
    [1]Smith KGV. A manual of forensic entomology. London:British Museum (Natural History); 1986.
    [2]Boehme P, Amendt J, Zehner R. The use of COI barcodes for molecular identification of forensically important fly species in Germany. Parasitol Res 2012;110(6):2325-32.
    [3]Park SH, Zhang Y, Piao, H, et al. Use of cytochrome c oxidase subunit I (COI) nucleotide sequences for identification of the Korean Luciliinae fly species (Diptera: Calliphoridae) in forensic investigations. J Korean Med Sci 2009;24(6):1058-63.
    [4]Wells JD, Sperling FA. Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera:Calliphoridae). J Med Entomol 1999;36(3):222-6.
    [5]Sperling FAH, Anderson GS, Hickey DA. A DNA-based approach to the identification of insect species used for postmortem interval estimation. J Forensic Sci 1994;39(2):418-27.
    [6]Wells JD, Stevens JR. Application of DNA-based methods in forensic entomology. Annu Rev Entomol.2008;53:103-20.
    [7]Benecke M, Wells JD. DNA techniques for forensic entomology analysis. In:Byrd JH, Castner JL, eds. Forensic entomology:utility of arthropods in legal investigations, Boca Raton:CRC press,2001, pp.341-52.
    [8]Wang X, Cai J, Guo Y, et al. The availability of 16SrDNA gene for identifying forensically important blowflies in China. Rom J Leg Med 2010;1(1):43-50.
    [9]Meier R, Shiyang K, Vaidya G, et al. DNA barcoding and taxonomy in Diptera:a tale of high intraspecific variability and low identification success. Syst Biol 2006;55:715-28.
    [10]Rojo S, Stahls G, Perez-Banon C, et al. Testing molecular barcodes:Invariant mitochondrial DNA sequences vs the larval and adult morphology of west Palaearctic Pandasyopthalmus species (Diptera:Syrphidae:Paragini). Eur J Entomol 2006;103:443-58.
    [11]Waugh J, Huynen L, Millar C, et al. DNA barcoding of animal species-response to DeSalle. Bioessays 2007;30:92-3.
    [12]Elias M, Hill RI, Willmott KR, et al. Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proc Biol Sci 2007; 274(1627):881-9.
    [13]Roe AD, Sperling FAH. Patterns of evolution of mitochondrial cytochrome coxidase I and II DNA and implications for DNA barcoding. Mol Phylogenet Evol 2007;44:325-45.
    [14]Luo A, Zhang A, Ho SYW, et al. Potential efficacy of mitochondrial genes for animal DNA barcoding:a case study using eutherian mammals. BMC Genomics 2011;12:84.Doi:10.1186/1471-2164-12-84.
    [15]Wallman JF, Donnellan SC. The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera:Calliphoridae) in southeastern Australia. Forensic Sci Int 2001;120:60-7.
    [16]Stevens JR, Wall R, Wells JD. Paraphyly in Hawaiian hybrid blowfly populations and the evolutionary history of anthropophilic species. Insect Mol Biol 2002;11(2):141-8.
    [17]Alessandrini F, Mazzanti M, Onofri V, et al. MtDNA analysis for genetic identification of forensically important insects. Forensic Sci Int Genet 2008;1:584-5.
    [18]Tan SH, Rizman-Idid M, Mohd-Aris E, et al. DNA-based characterisation and classification of forensically important flesh flies (Diptera:Sarcophagidae) in Malaysia. Forensic Sci Int 2010;199:43-9.
    [19]Preativatanyou K, Sirisup N, Payungporn S, et al. Mitochondrial DNA-based identification of some forensically important blowflies in Thailand. Forens Sci Int 2010;202:97-101.
    [20]Junqueira ACM, Lessinger AC, Azeredo-Espin AML. Methods for the recovery of mitochondrial DNA sequences from museum specimens of myiasis-causing flies. Med Vet Entomol 2002; 16:39-45.
    [21]Ying BW, Liu TT, Fan H, et al. The application of mitochondrial DNA cytochrome oxidase II gene for the identification of forensically important blowflies in western China. Am J Forensic Med Pathol 2007;28(4):308-13.
    [22]Guo YD, Cai JF, Li X, et al. Identification of the forensically important sarcophagid flies Boerttcherisca peregrina, Parasarcophaga albiceps and Parasarcophaga dux (Diptera:Sarcophagidae) based on COII gene in China. Trop Bio 2010;27(3):451-60.
    [23]Shaumar N, Mohammad S. Keys for identification of species of Family Sarcophagidae (Diptera) in Egypt. Bull Soc Entomol Egypt 1983;64:121-35.
    [24]Shaumar NF, Mohammad SK, Mohammad SA. Keys for identification of species of Family Calliphoridae (Ditpera) in Egypt. J Egypt Soc Parasitol 1989; 19(2):669-81.
    [25]Shaumar NF, Mohamed SK, Shoukry IF. Flies of subfamily Muscinae (Muscidae-Diptera) in Egypt. J Egypt Soc Parasitol 1985; 15(2):513-23.
    [26]Lu BL, Wu HY. Classification and identification of important medical insects of China. Zhengzhou, China:Henan science and technology publishing house; 2003.
    [27]Xu WQ, Zha JM. Flies of China. Shenyang, China:Liaoning science and technology press,1996.
    [28]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24:1596-99.
    [29]Hebert PDN, Penton EH, Burns JM, et al. Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 2004;101:14812-7.
    [30]Ward RD, Zemlak TS, Innes BH, et al. DNA barcoding Australia's fish species. Philos Trans R Soc Lond B 2005;360:1847-57.
    [31]Nelson LA, Wallmann JF, Dowton M. Using COI barcodes to identify forensically and medically important blowflies. Med Vet Entomol 2007;21:44-52.
    [32]Meiklejohn KA, Wallman JF, Dowton M. DNA-based identification of forensically important Australian Sarcophagidae (Diptera). Int J Legal Med 2011;125:27-32.
    [33]Crozier RH, Crozier YC. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization, Genetics 1993; 133:97-117.
    [34]Hebert PDN, Cywinska A, Ball SL, et al. Biological identifications through DNA barcodes. Proc Biol Sci 2003;270:313-21.
    [1]Hall RD. Medicocriminal entomology. In:Catts EP, Haskell NH, eds. Entomology and Death:A procedural guide. Clemson, SC:Joyce's Print Shop,1990:1-8.
    [2]Pape T. Catalogue of the Sarcophagidae of the world (Insecta:Diptera). Gainesville: Associated Publishers,1996.
    [3]Smith KGV. A Manual of Forensic Entomology. London:British Museum; 1986.
    [4]Byrd JH, Castner JL. Insects of forensic importance. In:Byrd JH, Castner JL, eds. Forensic entomology:the utility of arthropods in legal investigations. Boca Raton: CRC Press,2009, pp 39-127.
    [5]Wells JD, Pape T, Sperling FAH. DNA based identification and molecular systematics of forensically important Sarcophagidae (Diptera). J Forensic Sci 2001;46(5):1098-102.
    [6]Kamal AS. Comparative study of thirteen species of sarcosaprophagous Calliphoridae and Sarcophagidae (Diptera). Ann Entomol Soc Am 1958;51:261-71.
    [7]Zehner R, Amendt J, Schutt S, et al. Genetic identification of forensically important flesh flies (Diptera:Sarcophagidae). Int J Legal Med 2004;118(4):245-7.
    [8]Amendt J, Krettek R, Zehner R. Forensic entomology. Naturwissenschaften 2004; 91:51-65.
    [9]Catts EP. Problems in estimating the postmortem interval in death investigations. J Agric Entomol 1992; 9:245-55.
    [10]Catts EP, Goff ML. Forensic entomology in criminal investigations. Annu Rev Entomol 1992; 37:253-72.
    [11]Zaidi F, Wei S-j, Shi M, et al. Utility of multi-gene loci for forensic species diagnosis of blowflies. J Insect Sci 2011; 11:59. Doi:10.1673/031.011.5901.
    [12]Benecke M, Wells JD. DNA techniques for forensic entomology analysis. In:Byrd JH, Castner JL, eds. Forensic entomology:the utility of arthropods in legal investigations. Boca Raton:CRC Press,2009, pp 341-52.
    [13]Sperling FA, Anderson GS, Hickey DA. A DNA-based approach to the identification of insect species used for postmortem interval estimation. J Forensic Sci 1994; 39:418-27.
    [14]Rohdendorf BB. Fam. Sarcophagidae (part 1), Fauna of the USSR, new series (in Russian and German). Moscow and Leningrad:Academy of sciences,1937.
    [15]Bajpai N, Tewari RR. Mitochondrial DNA sequence-based phylogenetic relationship among flesh flies of the genus Sarcophaga (Sarcophagidae:Diptera). J Genet 2010; 89(1):51-4.
    [16]Tantawi T, El-Kady EM, Greenberg B, et al. Arthropod succession on exposed rabbit carrion in Alexandria. Egypt J Med Entomol 1996; 33(4):566-80.
    [17]Galal LAA, Abd-El-hameed SY, Attia RAH, et al. An initial study on arthropod succession on exposed human tissues in Assuit, Egypt. Mansoura J Forensic Med Clin Toxicol 2009; 17:55-74.
    [18]Guo YD, Cai JF, Chang YF, et al. Identification of forensically important sarcophagid flies (Diptera:Sarcophagidae) in China based on COI and 16S rDNA gene sequences. J Forensic Sci 2011; 56:1534-40.
    [19]Saigusa K, Takamiya M, Aoki Y. Species identification of the forensically important flies in Iwate prefecture, Japan based on mitochondrial cytochrome oxidase gene subunit I (COI) sequences. Legal Med 2005; 7:175-8.
    [20]Ying BW, Liu TT, Fan H, et al. The application of mitochondrial DNA cytochrome oxidase II gene for the identification of forensically important blowflies in western China. Am J Forensic Med Pathol 2007; 28(4):308-13.
    [21]Shaumar N, Mohammad S. Keys for identification of species of family Sarcophagidae (Diptera) in Egypt. Bull Soc Entomol Egypt 1983; 64:121-35.
    [22]Lu BL, Wu HY. Classification and identification of important medical insects of China, Zhengzhou:Henan science and technology publishing house,2003.
    [23]Sperling FAH, Anderson GS, Hickey DA. A DNA-based approach to the identification of insect species used for post-mortem interval estimation. J Forensic Sci 1994; 39:418-27.
    [24]Tan SH, Rizman-Idid M, Mohd-Aris E,et al. DNA-based characterisation and classification of forensically important flesh flies (Diptera:Sarcophagidae) in Malaysia. Forensic Sci Int 2010; 199:43-9.
    [25]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 24:1596-9.
    [26]Crozier RH, Crozier YC. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 1993; 133:97-117.
    [27]Wallman JF, Donnellan SC. The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera:Calliphoridae) in southeastern Australia. Forens Sci Int 2001; 120:60-7.
    [28]Wells JD, Sperling FAH. DNA-based identification of forensically important Chrysomyinae (Diptera:Calliphoridae). Forens Sci Int 2001; 120:110-5.
    [29]Schroeder H, Klotzbach H, Elias S, et al. Use of PCR-RFLP for differentiation of calliphorid larvae (Diptera, Calliphoridae) on human corpses. Forensic Sci Int 2003; 132:76-81.
    [30]Preativatanyou K, Sirisup N, Payungporn S, et al. Mitochondrial DNA-based identification of some forensically important blowflies in Thailand. Forensic Sci Int 2010; 202:97-101.
    [31]Zehner R, Zimmermann S, Mebs D. RFLP and sequence analysis of the cytochrome b gene of selected animals and man:methodology and forensic application. Int J Legal Med 1998; 111:323-7.
    [32]Wells JD, Wall R, Stevens JR. Phylogenetic analysis of forensically important Lucilia flies based on cytochrome oxidase I sequence:a cautionary tale for forensic species determination. Int J Legal Med 2007; 121:229-33.
    [33]Hebert PD, Cywinska A, Ball SL, et al. Biological identifications through DNA barcodes. Proc R Soc Lond B 2003; 270:313-21.
    [34]Meiklejohn KA, Wallman JF, Dowton M. DNA-based identification of forensically important Australian Sarcophagidae (Diptera). Int J Legal Med 2011; 125:27-32.
    [35]Harvey ML, Mansell MW, Villet MH, et al. Molecular identification of some forensically important blowflies of southern Africa and Australia. Med Vet Entomol 2003; 17:363-9.
    [36]Aly SM, Wen J, Wang X, et al. Cytochrome oxidase II gene "short fragments" applicability in identification of forensically important insects. Rom J Leg Med 2012; 20(3):231-6.
    [37]Wells JD, Stevens JR. Application of DNA-based methods in forensic entomology. Annu Rev Entomol 2008; 53:103-20.
    [1]Collins cobuild English dictionary for advanced learners. Glasgow:Harper Collins Publishers,2001; p.514,616.
    [2]Hall DR, Huntington TE. Introduction:perceptions and status of forensic entomology. In:Byrd JH, Castner JL, eds. Forensic entomology:the utility of arthropods in legal investigations. Boca Raton:CRC Press,2009, pp 1-13.
    [3]Lord WD, Stevenson JR. Directory of forensic entomologists. Washington DC: Defense Pest Management Information Analysis Center, Walter Reed Army Medical Center,1986.
    [4]Haskell NH, Williams RE, Catts D, et al. Entomology and death:A procedural guide. Clemson, SC:Joyce's Print Shop,2008.
    [5]Benecke M. A brief history of forensic entomology. Forensic Sci Int 2001;120:2-14.
    [6]Gennard DE. Forensic entomology:An introduction. Chichester, UK:John Wiley & Sons Ltd,2007.
    [7]Benecke M. A brief survey of the history of forensic entomology. Acta Biologica Benrodis 2008;14:15-38
    [8]Al-Mesbah HA. A study of forensically important necrophagous diptera in Kuwait. MSc thesis, University of Central Lancashire, UK,2010.
    [9]Amendt J, Campobasso CP, Goff ML, et al. Current concepts in forensic entomology. Springer Science+Business Media BV,2010.
    [10]Amendt J, Krettek R, Zehner R. Forensic entomology. Naturwissenschaften 2004; 91: 51-65.
    [11]Anderson GS. Factors that influence insect succession on carrion. In:Byrd JH, Castner JL, eds. Forensic entomology:The utility of arthropods in legal investigations. Boca Raton:CRC Press,2009, pp.201-50.
    [12]Debry RW, Timm A, Wong ES, et al. DNA-based identification of forensically important Lucilia (Diptera:Calliphoridae) in the continental United States. J Forensic Sci 2013;58(1):73-8.
    [13]Goff ML. Early postmortem changes and stages of decomposition. In:Amendt J, Campobasso CP, Goff ML, et al, eds. Current concepts in forensic entomology. Springer Science+Business Media. BV,2010, pp.1-24.
    [14]Payne JA. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecol Soc Am 1965;46:592-602.
    [15]Parikh CK. Parikh's textbook of medical jurisprudence, forensic medicine and toxicology:for classrooms and courtrooms. New Delhi, India:CBS Publishers & Distributors,1999.
    [16]Vij K. Textbook of forensic medicine and toxicology:Principles and practice. India, New Delhi:Elsevier India Private limited, Churchill Livingstone,2001, pp 64-7.
    [17]Reed HB. A study of dog carcass communities in Tennessee, with special reference to the insects. Am Midland Nat 1958;59:213-45.
    [18]Oliveira TC, Vasconcelos SD. Insects (Diptera) associated with cadavers at the Institute of Legal Medicine in Pernambuco, Brazil:Implications for forensic entomology. Forensic Sci Int 2010; 198(1/3):97-102.
    [19]Aggarwal AD. Estimating the post-mortem interval with the help of entomological evidence. MD thesis, Baba Farid University of Health Sciences, India,2005.
    [20]Kreitlow KLT. Insect succession in a natural environment, In:Byrd JH, Castner JL, eds., Forensic entomology:The utility of arthropods in legal investigations. Boca Rotan, FL:CRC Press,2009, pp 251-269.
    [21]LeBlanc HN, Logan JG. Exploiting insect olfaction in forensic entomology. In: Amendt J, Campobasso CP, Goff ML, et al, eds. Current concepts in forensic entomology. Springer Science+Business Media. BV,2010, pp 205-21.
    [22]Knight B. Simpson's Forensic Medicine. London:Arnold,1997, pp 20-31.
    [23]Haskell NH, Catts EP. Entomology and Death:A Procedural Guide. Clemson, SC: Joyce's Print Shop Inc,1990.
    [24]Gunn A. Essential forensic biology. Chichester, England:John Wiley and Sons, Ltd, 2006.
    [25]Anderson GS, VanLaerhoven SL. Initial studies on insect succession on carrion in Southwestern British Columbia. J Forensic Sci 1996;41:617-25.
    [26]Catts EP. Problems in Estimating the Postmortem Interval in Death Investigations. Journal of Agricultural Entomology,1992;9(4):245-55.
    [27]Smith KGV. A Manual of Forensic Entomology. The Trustees of British Museum of Natural History, London and Comstock Publishing Associates,1986.
    [28]Byrd JH, Castner JL. Forensic entomology:The utility of arthropods in legal investigations. Roca Raton, FL:CRC Press LLC,2001.
    [29]Kelly JA. The influence of clothing, wrapping and physical trauma on carcass decomposition and arthropod succession in central South Africa. PhD thesis, University of the Free State, South Africa,2006.
    [30]Komar D, Beattie O. Postmortem insect activity may mimic perimortem sexual assault clothing patterns. J Forensic Sci 1998;43(4):792-6.
    [31]Stirman B, Fujikawa A, Baksdale L, et al. Alternation of expirated bloodstain patterns by Calliphora vicina and Lucilia sericata (Diptera:Calliphoridae) through ingestion and deposition of artifacts. J Forensic Sci 2011;56(S1):S123-7. Doi:10.1111/j.1556-4029.2010.01575.x.
    [32]Fujikawa A, Barksdale L, Higley LG, et al. Changes in the morphology and presumptive chemistry of impact and pooled bloodstain patterns by Lucilia sericata (Meigen) (Diptera:Calliphoridae). J Forensic Sci 2011;56(5):1315-8.
    [33]Byrd JH, Lord WD, Wallance JR, et al. Collection of entomological evidence during legal investigations. In:Byrd JH, Castner JL, eds. Forensic entomology:The utility of arthropods in legal investigations. Boca Raton:CRC Press,2009, pp.127-77.
    [34]Tantawi, TI, Greenberg B. The effect of killing and preservative solutions on estimates of maggot age in forensic cases. J Forensic Sci 1993;38:702-7.
    [35]Sanford MR, Pechal JL, Tomberlin JK. Rehydration of forensically important larval Diptera specimens. J Med Entomol 2011;48(1):118-25.
    [36]Grassberger and Reiter. Atypical arthropod succession on pig carrion in a central European urban habitat. In:Proceedings of 1st European forensic entomology meeting. Rosany Sous Bios, France,2002.
    [37]Kamal AS. Comparative study of thirteen species of sarco-saprophagous Calliphoridae and Sarcophagidae (Diptera) bionomics. Ann Entomol Soc Am 1958;51:261-71.
    [38]Tantawi TI, El-Kady EM, Greenberg B, et al. Arthropod succession on exposed rabbit carrion in Alexandria, Egypt. J Med Entomol 1996; 33(4):566-80.
    [39]Staerkeby M. Dead larvae of Cynomya mortuorem as indicators of postmortem interval-a case history from Norway. Forensic Sci Int 2001; 120:77-8.
    [40]Wooldridge J, Scrase L, Wall R. Flight activity of the blowflies Calliphora vomitoria and Lucilia sericata in the dark. Forensic Sci Int 2007; 172:94-7.
    [41]Wyss C, Cherix D. Beyond the limits, the case of Calliphora species (Diptera, Calliphoridae). Proceedings of the 1st Meeting of the European association for forensic entomology. Rosny sous Bois, France,2002.
    [42]Centano N, Maldonado M, Oliva A. Seasonal patterns of arthropods occurring on sheltered and unsheltered pig carcasses in Buenos Aires Province (Argentina). Forensic Sci Int 2002;126:63-70.
    [43]Abd El-bar MM, Sawaby RF. A preliminary investigation of insect colonization and succession on remains of rabbits treated with an organophosphate insecticide in El-Qalyubiya governorate of Egypt. Forensic Sci Int 2011;208(1/3):e26-30.
    [44]Yan-Wei S, Xiao-Shan L, Hai-Yang W, et al. Effects of malathion on the insect succession and the development of Chrysomya megacephala (Diptera:Calliphoridae) in the field and implications for estimating postmortem interval. Am J Forensic Med Pathol.2010;31(1):46-51.
    [45]Charabidze D, Bourel B, Hedouin V, et al. Repellent effect of some household products on fly attraction to cadavers. Forensic Sci Int 2009;189 (1/3):28-33.
    [46]El-Samad LM, El-Maty ZA, Makemer HM. Effects of tramadol on the development of Lucilia sericata (Diptera:Calliphoridae) and detection of the drug concentration in postmortem rabbit tissues and larvae. J Entomol 2011; 8(4):353-64.
    [47]de Carvalho LM, Linhares AX, Badan Palhares FA. The effect of cocaine on the development rate of immatures and adults of Chrysomya albiceps and Chrysomya putoria (Diptera:Calliphoridae) and its importance to postmortem interval estimate. Forensic Sci Int 2012;220(1/3):27-32.
    [48]Green PWC, Simmonds MSJ, Blaney WM. Diet nutriment and rearing density affect the growth of the black blowfly larvae, Phormia regina (Diptera:Calliphoridae). European J Entomol 2003; 100:39-42.
    [49]Singh D, Bala M. The effect of starvation on the larval behavior of two forensically important species of blow flies (Diptera:Calliphoridae). Forensic Sci Int 2009;193:118-21.
    [50]Williams RE. Case histories of the use of insects in investigations. In:Haskell NH, Williams RE, Catts D, Adkins J, Haskell C, eds. Entomology and death:A procedural guide. Clemson, SC:Joyce's Print Shop,2008, pp 10-39.
    [51]Ortloff A, Pena P, Riquelme M. Preliminary study of the succession pattern of necrobiont insects, colonising species and larvae on pig carcasses in Temuco (Chile) for forensic applications. Forensic Sci Int 2012;222(1/3):e36-41.
    [52]Anton E, Niederegger S, Beutel RG. Beetles and flies collected on pig carrion in an experimental setting in Thuringia and their forensic implications. Med Vet Entomol 2011;25(4):353-64.
    [53]Valdes-Perezgasga MT, Sanchez-Ramos FJ, Garcia-Martinez O, et al. Arthropods of forensic importance on pig carrion in the Coahuilan semidesert, Mexico. J Forensic Sci 2010;55(4):1098-101.
    [54]Voss SC, Spafford H, Dadour IR. Annual and seasonal patterns of insect succession on decomposing remains at two locations in western Australia. Forensic Sci Int 2009:193(1/3):26-36.
    [55]Wang J, Li Z, Chen Y, et al. The succession and development of insects on pig carcasses and their significance in estimating PMI in south China. Forensic Sci Int 2008;179(1):11-8.
    [56]Matuszewski S, Bajerlein D, Konwerski S, et al. An initial study of insect succession and carrion decomposition in various forest habitats of central Europe. Forensic Sci Int 2008; 180(2/3):61-9.
    [57]Kocarek P. Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. European J Soil Bio 2003;39:31-45.
    [58]Arnaldos MI, Romera E, Presa JJ, et al. Studies on seasonal arthropod succession on carrion in the southeastern Iberian Peninsula. Int J Legal Med 2004;118(4):197-205.
    [59]Brundage A, Bros S, Honda JY. Seasonal and habitat abundance and distribution of some forensically important blow flies (Diptera:Calliphoridae) in central California. Forensic Sci Int 2011;212:115-20
    [60]Catts EP, Goff ML. Forensic entomology in criminal investigations. Annu Rev Entomol 1992;37:253-72.
    [61]Anderson GS. Forensic entomology in British Columbia:A brief history. J Entomol Soc British Columbia 2001;98:127-35.
    [62]Hewadikaram KA, Goff ML. Effect of carrion size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 1991;12:235-40.
    [63]de Pablo RR, Salona M, Sarasola E, et al. Molecular identification of Stearibia nigriceps:An example of the usefulness of Cytochrome b gene for the identification of entomofauna species. International Congress Series 2006;1288:864-6.
    [64]Wallman JF, Donnellan SC. The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera:Calliphoridae) in southeastern Australia. Forensic Sci Int 2001;120:60-7.
    [65]Park, SH, Zhang Y, Piao H, et al. Use of cytochrome c oxidase subunit I (CO1) nucleotide sequences for identification of the Korean Lucilinae fly species (Diptera: Calliphoridae) in forensic investigations. J Korean Med Sci 2009;24:1058-63.
    [66]Liu D, Greenberg B. Immature stages of some flies of forensic importance. Ann Entomol Soc Am 1989;82:80-93.
    [67]Wells JD, Byrd JH, Tantawi TI. Key to third-instar Chrysomyinae (Diptera: Calliphoridae) from carrion in the continental United States. J Med Entomol 1999;36: 638-41.
    [68]Benecke M, Wells JD. DNA techniques for forensic entomology. In:Byrd JH, Castner JL, eds. Forensic Entomology:The utility of arthropods in legal investigations. Boca Raton:CRC Press,2001, pp 341-52.
    [69]Caine LM, Real FC, Salona-Bordas MI, et al. DNA typing of Diptera collected from human corpses in Portugal. Forensic Sci Int 2009;184:e21-3.
    [70]Stevens J, Wall R. Genetic relationships between blowflies (Calliphoridae) of forensic importance. Forensic Sci Int 2001; 120:116-23.
    [71]Ames C, Turner B, Daniel B. The use of mitochondrial cytochrome oxidase I gene (COI) to differentiate two UK blowfly species-Calliphora vicina and Calliphora vomitoria. Forensic Sci Int 2006;64:179-82.
    [72]Smith JA, Baker NC. Molecular genetic identification of forensically important flies in the UK. Forensic Sci Int Genet 2008;1(1):620-2.
    [73]Desmyter S, Gosselin M. COI sequence variability between Chrysomyinae of forensic interest. Forensic Sci Int Genet 2009;3:89-95.
    [74]Preativatanyou K, Sirisup N, Payungporn S, et al. Mitochondrial DNA-based identification of some forensically important blowflies in Thailand. Forens Sci Int 2010;202:97-101.
    [75]Nelson LA, Lambkin CL, Batterham P, et al. Beyond barcoding:A mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae). Gene 2012; 511:131-42.
    [76]Harvey ML, Mansell MW, Villet MH, et al. Molecular identification of some forensically important blowflies of southern Africa and Australia. Med Vet Entomol. 2003; 17:363-9.
    [77]Ying BW, Liu TT, Fan H, et al. The application of mitochondrial DNA cytochrome oxidase II gene for the identification of forensically important blowflies in western China. Am J Forensic Med Pathol 2007;28(4):308-13.
    [78]Saigusa K, Takamiya M, Aoki Y. Species identification of the forensically important flies in Iwate prefecture, Japan based on mitochondrial cytochrome oxidase gene subunit I (COI) sequences. Legal Med 2005;7:175-8.
    [79]Jordaens K, Sonet G, Richet R, et al. Identification of forensically important Sarcophaga species (Diptera:Sarcophagidae) using the mitochondrial COI gene. Int J Legal Med 2013;127(2):491-504.
    [80]Wells JD, Stevens JR. Application of DNA-based methods in forensic entomology. Annu Rev Entomol 2008;53:103-20.
    [81]Sperling FAH, Anderson GS, Hickey DA. A DNA-based approach to the identification of insect species used for postmortem interval estimation. J Forensic Sci 1994;39:418-27.
    [82]Boehme P, Amendt J, Zehner R. The use of COI barcodes for molecular identification of forensically important fly species in Germany. Parasitol Res 2012;110:2325-32.
    [83]Chua TH, Chong YV. Role of polymerase chain reaction in forensic entomology. InTech Europe,2012.
    [84]Vincent S, Vian J, Carlotti MP. Partial sequencing of the cytochrome oxidase b subunit gene I:a tool for the identification of European species of blow flies for postmortem interval estimation. J Forensic Sci 2000;45(4):820-3.
    [85]Otranto D, Stevens JR. Molecular approaches to the study of myasis-causing larvae. Intl J Parasitol 2002;32:1345-60.
    [86]Wang X, Liu Q, Cheng YS, et al. The availability of 16SrDNA gene for identifying forensically important blowflies in China. Rom J Leg Med 2010;1:43-50.
    [87]Cameron SL, Whiting MF. Mitochondrial genomic comparisons of the subterranean termites from the Genus Reticulitermes (Insecta:Isoptera:Rhinotermitidae). Genome 2007;50:188-202.
    [88]Shao R, Barker SC. Chimeric mitochondrial minichromosomes of the human body louse, Pediculus humanus:Evidence for homologous and non-homologous recombination. Gene 2011,473:36-43.
    [89]Hurst GD, Jiggins FM. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies:the effects of inherited symbionts. Proc R Soc B 2005;272:1525-34.
    [90]McDonagh LM, Stevens JR. The molecular systematics of blowflies and screwworm flies (Diptera:Calliphoridae) using 28S rRNA, COX1 and EF-1 a:insights into the evolution of dipteran parasitism. Parasitology 2011;138(13):1760-77.
    [91]Toule R, Downie DA, Villet MH. Flies in the ointment:a morphological and molecular comparison of Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae) in South Africa. Med Vet Entomol 2009;23:6-14.
    [92]Whitworth TL, Dawson RD, Magalon H, et al. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera:Calliphoridae). Proceedings of Biological Sciences 2007;274:1731-9.
    [93]Boore JL. Animal mitochondrial genomes. Nucleic acid res 1999;27(8):1767-80.
    [94]Frati F, Simon C, Sullivan J, et al. Evolution of the mitochondrial cytochrome oxidase II gene in collembola. J Mol Evol 1997;44(2):145-58.
    [95]Hebert PDN, Cywinska A, Ball SL, et al. Biological identifications through DNA barcodes. Proc R Soc Lond B.2003; 270:313-21.
    [96]Harvey ML, Gaudieri S, Villet MH, et al. A global study of forensically significant calliphorids:implications for identification. Forensic Sci Int 2008;177:66-76.
    [97]Reibe S, Schmitz J, Madea B. Molecular identification of forensically important blowfly species (Diptera:Calliphoridae) from Germany. Parasitol Res 2009; 175:17-22.
    [98]Liu Q, Cai J, Guo Y, et al. Identification of forensically significant calliphorids based on mitochondrial DNA cytochrome oxidase I (COI) gene in China. Forensic Sci Int 2011; 207(1/3):e64-5.
    [99]Guo YD, Cai JF, Wang XH, et al. Identification of forensically important sarcophagid flies (Diptera:Sarcophagidae) based on COI gene in China. Rom J Legal Med 2010;18:217-24.
    [100]Guo YD, Cai JF, Xiong F, et al. The utility of mitochondrial DNA fragments for genetic identification of forensically important sarcophagid flies (Diptera:Sarcophagidae) in China. Trop Biomed.2012;29(1):51-60.
    [101]Liu QL, Cai J, Chang YF, et al. Identification of forensically important blow fly species (Diptera:Calliphoridae) in China by mitochondrial cytochrome oxidase I gene differentiation. Insect Sci 2011;18,554-64.
    [102]Wells JD, Sperling FAH. DNA-based identification of forensically important Chrysomyinae (Diptera:Calliphoridae). Forensic Sci Int 2001;120:110-5.
    [103]Nelson LA, Wallman JF, Dowton M. Using COI barcodes to identify forensically and medically important blowflies. Med Vet Entomol 2007; 21(1):44-52.
    [104]Meiklejohn KA, Wallman JF, Dowton M. DNA-based identification of forensically important Australian Sarcophagidae (Diptera). Int J Legal Med 2011; 125:27-32.
    [105]Debry RW, Timm AE, Dahlem GA, et al. MtDNA-based identification of Lucilia cuprina (Wiedemann) and Lucilia sericata (Meigen) (Diptera:Calliphoridae) in the continental United States. Forensic Sci Int 2010; 202(1/3):102-9.
    [106]Harvey ML, Mansell MW, Villet MH, et al. Molecular identification of some forensically important blowflies of southern Africa and Australia. Med Vet Entomol 2003;17(4):363-9.
    [107]Park, SH, Zhang Y, Piao H, et al. Use of cytochrome c oxidase subunit I (COI) nucleotide sequences for identification of Korean Luciliinae fly species (Diptera: Calliphoridae) in forensic investigations. J Korean Med Sci 2009; 24:1058-63.
    [108]Wells JD, Lunt N, Villet MH. Recent African derivation of Chrysomya putoria from C. chloropyga and mitochondrial DNA paraphyly of cytochrome oxidase subunit one in blowflies of forensic importance. Med Vet Entomol 2004; 18:445-8.
    [109]Guo YD, Cai JF, Li X, et al. Identification of the forensically important sarcophagid flies Boerttcherisca peregrina, Parasarcophaga albiceps and Parasarcophaga dux (Diptera:Sarcophagidae) based on COII gene in China. Trop Biomed 2010; 27:451-60.
    [110]Aly SM, Wen J, Wang X, et al. Cytochrome oxidase II gene "short fragments" applicability in identification of forensically important insects. Rom J Leg Med. 2012; 3:231-6.
    [111]Baharum SN, Nurdalila AA. Application of 16s rDNA and cytochrome b ribosomal markers in studies of lineage and fish populations structure of aquatic species. Mol Biol Rep 2012; 39(5):5225-32.
    [112]Smit S, Widmann J, Knight R. Evolutionary rates vary among rRNA structural element. Nucleic Acid Res 2007;35(10):3339-54.
    [113]Cameron S, Lambkin C, Barker S, et al. A mitochondrial genome phylogeny of Diptera:whole genome sequence data accurately resolve relationships over braod timescales with high precision. Systematic Entomology 2006;32(1):40-59.
    [114]Li X, Cai JF, Guo YD, et al. The availability of 16S rRNA for the identification of forensically important flies (Diptera:Muscidae) in China. Trop Biomed. 2010;27(2):155-66.
    [115]Shadel GS, DA Clayton. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 1997;66:409-35.
    [116]Hua JM, Li M, Dong PZ, et al. Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha (Insecta:Hemiptera:Heteroptera). BMC Genomics 2008;9:610. Doi:10.1186/1471-2164-9-610.
    [117]Zhao L, Zheng ZM, Huang Y, et al. Comparative analysis of the mitochondrial control region in Orthoptera. Zoological Studies 2011;50(3):385-93.
    [118]Bruhn T. Sequence and analysis of the mitochondrial DNA control region of nine Australian species of the genus Chrysomya (Diptera:Clliphoridae). MSc thesis, University of Wollongong, Australia,2011.
    [119]Roehrdanz RL, Degrugillier ME, Black WC. Novel rearrangements of arthropods mitochondrial DNA detected with long-PCR; applications to arthropod phylogeny and evolution. Mol Biol Evol 2002; 19(6):841-9.
    [120]Junqueira AC, Lessinger AC, Torres TT, et al. The mitochondrial genome of the blowfly Chrysomya chloropyga (Diptera:Calliphoridae). Gene 2004;339:7-15.
    [121]Wolstenholme DR, Clary DO. Sequence evolution of Drosophila mitochondrial DNA. Genetics 1985; 109:725-44.
    [122]Duarte GT, De Azeredo-Espin AML, Junqueira CM. The mitochondrial control regions of blowflies (Diptera:Calliphoridae):a hot spot for mitochondrial genome rearrangements. J Med Entomol 2008; 45(4):667-76.
    [123]Parson W, Pegoraro K, Niederstatter H, et al. Species identification by means of the cytochrome b gene. Int J Legal Med 2000; 114:23-8.
    [124]Zaidi F, Wei S-j, Shi M, et al. Utility of multi-gene loci for forensic species diagnosis of blowflies. J Insect Sci 2011;11:59.
    [125]Young I, Coleman AW. The advantages of the ITS2 region of the nuclear rDNA cistron for analysis of phylogenetic relationships of insects:a Drosophila example. Mol Phylogenet Evol 2004;30:236-42.
    [126]Song Z-K, Wang X-Z, Liang G-Q. Species identification of some common necrophagous flies in Guangdong province, southern China based on the rDNA internal transcribed spacer 2 (ITS2). Forensic Sci Int 2008; 175:17-22.
    [127]Stage DE, Eickbush TH. Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome res 2007;17:1888-97.
    [128]Ellegren H. Microsatellites:simple sequences with complex evolution. Nat Rev Genet.2004;5(6):435-45.
    [129]Rodrigues RA, de Azeredo-Espin AM, Torres TT. Microsatellite markers for population genetic studies of the blowfly Chrysomya putoria (Diptera: Calliphoridae). Mem Inst Oswaldo Cruz 2009;104(7):1047-50.
    [130]He L, Wang S, Miao X, et al. Identification of necrophagous fly species using ISSR and SCAR markers. Forensic Sci Int 2007;168(2/3):148-53.
    [131]Malewski T, Draber-Monko A, Pomorski A, et al. Identification of forensically important blowfly species (Diptera:Calliphoridae) by high-resolution melting PCR analysis. Int J Legal Med 2010;124:277-85.
    [132]McDonagh L, Thornton C, Wallman JF, et al. Development of an antigen-based rapid diagnostic test for the identification of blowfly (Calliphoridae) species of forensic significance. Forensic Sci Int Genet 2009;3(3):162-5.
    [133]Raupach MJ, Astrin JJ, Hannig K, et al. Molecular species identification of Central European ground beetles (Coleoptera:Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Front Zool.2010;7:26.
    [134]Kutty SN, Pape T, Wiegmann BM, et al. Molecular phylogeny of the Calyptratae (Diptera:Cyclorrhapha) with an emphasis on the superfamily Oestroidea and the position of Mystacinobiidae and McAlpine's fly. Syst Entomol 2010;35:614-35.
    [135]Mazzanti M, Alessandrini F, Tagliabracci A, et al. DNA Degradation and genetic analysis of empty puparia:Genetic identification limits in forensic entomology. Forensic Sci Int 2010;195:99-102.
    [136]Tan SH, Rizman-Idid M, Mohd-Aris E, et al. DNA-based characterisation and classification of forensically important flesh flies (Diptera:Sarcophagidae) in Malaysia. Forens Sci Int 2010; 199:43-9.
    [137]Zehner R, Amendt J, Schutt S, et al. Genetic identification of forensically important flesh flies (Diptera:Sarcophagidae) Int J Legal Med 2004;118(4):245-7.
    [138]Bajpai N, Tewari RR. Mitochondrial DNA sequence-based phylogenetic relationship among flesh flies of the genus Sarcophaga (Sarcophagidae:Diptera). J Genet 2010;89(1):51-4.
    [139]Wallman JF, Leyss R, Hogendoorn K. Molecular systematics of Australian carrion-breeding blowflies (Diptera:Calliphoridae) based on mitochondrial DNA. Invertebrate systematics 2005; 19:1-15.
    [140]Wells JD, Wall R, Stevens JR. Phylogenetic analysis of forensically important Lucilia flies based on cytochrome oxidase 1 sequence:a cautionary tale for forensic species determination. Int J Legal Med 2007; 121:229-33.
    [141]Will KW, Rubino D. Myth of the molecule:DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 2004;20:47-55.
    [142]Stevens JR, Wall R, Wells JD. Paraphyly in Hawaiian hybrid blowfly populations and the evolutionary history of anthropophilic species. Insect Mol Biol 2002;11(2),141-8.
    [143]Oliveira AR, Farinha A, Rebelo MT, Dias D. Forensic entomology:Molecular identification of blowfly species (Diptera:Calliphoridae) in Portugal. Forensic Sci Int Genet Supplement Series 2011;3(1):439-40.
    [144]Zehner R, Zimmermann S, Mebs D. RFLP and sequence analysis of the cytochrome b gene of selected animals and man:methodology and forensic application. Int J Legal Med 1998; 111:323-27.
    [145]Malgorna Y, Coquoz R. DNA typing for identification of some species of Calliphoridae:an interest in forensic entomology. Forensic Sci Int 1999; 102:111-9.
    [146]Schroeder H, Klotzbach H, Elias S, et al. Use of PCR-RFLP for differentiation of calliphorid larvae (Diptera:Calliphoridae) on human corpses. Forensic Sci Int 2003;132:76-81.
    [147]Ratcliffe ST, Webb DW, Weinzievr RA, et al. PCR-RFLP Identification of Diptera (Calliphoridae, Muscidae and Sarcophagidae)-A Generally Applicable Method. J Forensic Sci 2003;48(4):783-5.
    [148]Thysseni PJ, Lessinger C, Azeredo-Espin AML, et al. The value of PCR-RFLP molecular markers for the differentiation of immature stages of two necrophagous flies (Diptera:Calliphoridae) of potential forensic importance. Neotropical Entomology 2005;34(5):777-83.
    [149]Jian SK, Neekhra B, Pandey D, et al. RAPD marker system in insect study:A review. Ind J Biotechnol 2010;9:7-12.
    [150]Stevens J, Wall R. The use of random amplified polymorphic DNA (RAPD) analysis for studies of genetic variation in populations of the blowfly Lucilia sericata (Diptera:Calliphoridae) in southern England. Bull Entomol Res 1995;85:549-55.
    [151]Wells JD, Stevens JR. Molecular methods for forensic entomology. In:Byrd JH, Castner JL, eds. Forensic entomology:the utility of arthropods in legal investigations, Boca Raton:CRC press,2010, pp 437-52.
    [152]Beckert JC, Friedland DE, Wallac MM. Genotyping diptera using amplified fragment length polymorphism (AFLP):development of a genetic marker system for species in the families Calliphoridae and Sarcophagidae. Aust J Forensic Sci 2010;42(2):141-52.
    [153]Picard CJ, Wells JD. Survey of the genetic diversity of Phormia regina (Diptera: Calliphoridae) using amplified fragment length polymorphisms. J Med Entomol 2009;46(3):664-70.
    [154]Picard CJ, Wells JD. The population genetic structure of North American Lucillia sericata (Diptera:Calliphoridae), and the utility of genetic assessment methods for reconstruction of post-mortem corpse relocation. Forensic Sci Int 2010;195:63-7.
    [155]Wallman JF, Adams M. The forensic application of allozyme electrophoresis to the identification of blowfly larvae (Diptera:Calliphoridae) in southern Australia. J Forensic Sci 2000;46(3):681-8.
    [156]Higley LG, Haskell NH. Insect development and forensic entomology. In:Byrd JH, Castner JL, eds. Forensic entomology:the utility of arthropods in legal investigations, Boca Raton:CRC press,2001, pp 287-302.
    [157]Greenberg B, Kunich JC. Entomology and the law:flies as forensic indicators. Cambridge University Press,2002, p 356.
    [158]Martinez-Sanchez A, Magana C, Rojo S. First data about forensic importance of Protophormia terranovae (Robineau-Desvoidy,1830) in Spain (Diptera: Calliphoridae). In:Proceedings of the fifth meeting of the European association for forensic entomology. Brussels, EAFE,2007.
    [159]Byrd JH, Allen JC. Computer modeling of insect growth and its application to forensic entomology. In:Byrd JH, Castner JL, eds. Forensic entomology:the utility of arthropods in legal investigations. Boca Raton:CRC press,2001, pp 303-29.
    [160]Ieno EN, Amendt J, Fremdt H, et al. Analysing forensic entomology data using additive mixed effects modelling. In:Amendt J, Campobasso CP, Goff ML, eds. Current concepts in forensic entomology. Springer Science+Business Media BV, 2010,pp138-62.
    [161]Villet MH, Richards CS, Midgley JM. Contemporary Precision, Bias and accuracy of minimum post-mortem intervals estimated using development of carrion-feeding insects. In:Amendt J, Campobasso CP, Goff ML, eds. Current concepts in forensic entomology. Springer Science+Business Media. BV,2010, pp 109-37.
    [162]Richards CS, Simonsen TJ, Abel RL, et al. Virtual forensic entomology:Improving estimates of minimum post-mortem interval with 3D micro-computed tomography. Forensic Sci Int 2012; 220:251-64.
    [163]Tarone, AM, Jennings KC, Foran DR. Aging Blow Fly Eggs using Gene expression: A Feasibility Study. J Forensic Sci 2007;52(6):1350-4.
    [164]Tarone AM, Foran DR. Gene expression during blow fly development:improving the precision of age estimates in forensic entomology. J Forensic Sci 2011;56:S114-22.
    [165]Boehme P, Spahn P, Amendt J, et al. Differential gene expression during metamorphosis:a promising approach for age estimation of forensically important Calliphora vicina pupae (Diptera:Calliphoridae). Int J Legal Med 2013;127(1):243-9.
    [166]Zhu GH, Xu XH, Yu XJ, et al. Puparial case hydrocarbons of Chrysomya megacephala as an indicator of the postmortem interval. Forensic Sci Int 2007;169:1-5.
    [167]Roux O, Gers C, Legal L. Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Med Vet Entomol 2008;22(4):309-17.
    [168]Gaudry E, Blais C, Maria A, Dauphin-Villemant C. Study of steriodogenesis in pupae of the forensically important blow fly Protophormia terraenovae (Robineau-Desvoidy) (Diptera:Calliphoridae). Forensic Sci Int 2006; 160(1):27-34.
    [169]LeBlanc HN. Olfactory stimuli associated with the different stages of vertebrate decomposition and their role in the attraction of the blowfly Calliphora vomitoria (Diptera:Calliphoridae) to carcasses. PhD thesis, University of Derby, UK,2008.
    [170]Von Hoermann, Ruther J, Reibe S, et al. The importance of carcass volatiles as attractants for the hide beetle Dermestes maculatus (DeGeer). Forensic Sci Int 2011;212(1/3):137-9.
    [171]Frederickx C, Dekeirsschieter J, Verheggen FJ, et al. Responses of Lucilia sericata Meigen (Diptera:Calliphoridae) to Cadaveric Volatile Organic Compounds. J Forensic Sci 2012;57(2):386-90.
    [172]Beyer JC, Enos WF, Stajic M. Drug identification through analysis of maggots, J Forensic Sci 1980;25(2):411-2.
    [173]Gosselin M, Wille SMR, Fernandez MMR, et al. Entomotoxicology, experimental set-up and interpretation for forensic toxicologists. Forensic Sci Int 2011;208:1-9.
    [174]Roeterdink EM, Dadour IR, Watling RJ. Extraction of gunshot residues from the larvae of the forensically important blowfly Calliphora dubia (Macquart) (Diptera: Calliphoridae). Int J Legal Med 2004; 118(2):63-70.
    [175]Cruz AM, Crime Scene Intelligence an experiment in forensic entomology, Washington:National Defense Intelligence College,2006.
    [176]Campobasso CP, Linville JG, Wells JD, et al. Forensic genetic analysis of insect gut contents. Am J Forensic Med Pathol 2005;26(2):161-5.
    [177]Carvalho F, Dadour IR, Groth DM, et al. Isolation and detection of ingested DNA from the immature stages of Calliphora dubia (Diptera:Calliphoridae):a forensically important blowfly. For Sci Med Path 2005;1:261-5.
    [178]de Lourdes Chavez-Briones M, Hernandez-Cortes R, Diaz-Torres P, et al. Identification of human remains by DNA analysis of the gastrointestinal contents of fly larvae. J Forensic Sci 2013;58(1):248-50.
    [179]Clery JM. Stability of prostate specific antigen (PSA) and subsequent Y-STR typing of Lucilia (Phaenicia) sericata (Meigen) (Diptera:Calliphoridae) maggots reared from a simulated postmortem sexual assault. Forensic Sci Int 2001;120:72-6.
    [180]Zehner R, Amendt J, Krettek R. STR typing of human DNA from fly larvae fed on decomposing bodies. J Forensic Sci 2004;49(2):337-40.
    [181]Linville JG, Hayes J, Wells JD. Mitochondrial DNA and STR analyses of maggot crop contents:effect of specimen preservation technique. J Forensic Sci 2004;49(2):341-4.
    [182]Goff ML, Campobasso CP, Gherardi M. Forensic implications of myasis In:Amendt J, Campobasso CP, Goff ML, eds. Current concepts in forensic entomology. Springer Science+Business Media BV,2010, pp 313-25.
    [183]Zumpt F. Myasis in man and animals in the old world. Butherworths,1965.
    [184]Benecke M. Forensic entomology:the next step. Forensic Sci Int 2001;120:1.
    [185]Hoffman EA, Curran AM, Dulgerian N, et al. Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci Int 2009;186:6-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700