用户名: 密码: 验证码:
边值问题及脉冲效应在生物动力系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要在连续生物动力学模型的定性和稳定性理论基础上,利用脉冲微分方程及其边值问题、比较定理以及数值模拟等相关理论和方法来研究对种群的近远期脉冲控制策略的可行性及相关问题,其中利用边值问题来考虑种群的近期管理或有限时间控制的可行性,利用定时脉冲及状态脉冲对生物动力系统的影响来考虑对种群的长期控制策略,以期为实践中的种群控制提供一些理论参考.全文共分6章:
     第1章介绍了对种群进行有限时间控制和长期管理的背景及意义,并简要叙述了脉冲微分方程及其在生物动力系统应用的研究现状和本文的主要工作.
     第2章给出了脉冲微分方程及其边值问题的基本理论和相关知识.
     第3章主要讨论了边值问题在具有Allee效应单种群生物动力系统中的应用.按照物种的初始密度,本章提出了两类具有Allee效应的单种群有限时间管理模型:脉冲投放模型和脉冲收获模型.基于比较定理和上下解方法,分别获得了模型有解或无解的充分条件,估计了相关可控参数,即脉冲投放模型中的投放量以及脉冲收获模型中的脉冲收获次数.
     第4章考虑了边值问题在两种群脉冲生物动力系统中的应用.第1节提出了用以描述有限时间害虫控制问题的一类带有脉冲收获的Lotka-Volterra捕食系统的边值问题.利用比较定理,通过一系列上解获得了带有边值问题的模型有解的充分条件,并由一系列下解得到了模型无解的充分条件,进而估计了在有限时间内收获害虫的次数.第2节考虑了一类带有脉冲收获的Lotka-Volterra竞争系统的有限时间控制模型.同样地,利用比较定理和上下解方法获得了模型有解或无解的条件,并对这些条件的实际意义进行了解释和说明.作为应用的例子,估计了脉冲控制次数,并给出了数值模拟.
     第5章研究了三类定时周期脉冲控制对捕食系统的影响.第1节利用链变换、脉冲微分方程及其Floquet理论研究了脉冲收获控制对一类带有分布时滞的捕食系统的影响,获得了物种灭绝和系统持久性的条件,证明了脉冲控制周期和脉冲收获比例都将最终影响每一个物种的命运.最后通过数值模拟验证了理论结果.第2节讨论了脉冲投放对一类带有Ivlev及Beddington-DeAngelis功能性反应的两捕食者一食饵捕食系统的影响.利用Floquet理论和小振幅扰动方法,证明了当脉冲周期小于某个临界值时,食饵灭绝周期解是局部渐近稳定的.进一步地,获得了系统持久性的条件.最后,利用数值模拟显示了系统具有复杂动力学性质,包括周期解、倍周期分支、混沌等,并给出了关于连续控制系统和脉冲控制系统关系的简短讨论.第3节讨论了利用传染病动力学对一类杂食种群的脉冲控制问题,获得了易感捕食者灭绝和系统中各物种共存的充分条件.数值模拟验证了理论结果,并显示了系统具有复杂的动力学行为.
     第6章研究了脉冲状态反馈控制对一类具有Monod增长率的恒浊器模型周期解存在性的影响,通过研究周期解的存在性来讨论微生物连续培养的周期性.在定性分析的基础上,利用脉冲自治系统周期解的存在定理,获得了阶1周期解的存在条件,并指出系统要么趋于一个稳定状态要么趋于周期解,这依赖于反馈控制状态、稀释率的控制参数和微生物及营养基的初始浓度.通过研究周期解,给出了周期解的周期及初始位置.最后利用数值模拟验证了理论结果.
Based on the qualitative results of continuous dynamical models in biology,the long-term and short-term managements of species are investigated by means of the theory of impulsive differential equations and boundary value problem.The short-term managements can be described by the systems with boundary value problem,and the long-term managements can be investigated by discussing the effects of the impulse at fixed moments and the state impulse on the dynamical systems in biology.The thesis has 6 chapters.
     Chapter 1 gives the biological backgrounds of the long-term and short-term managements of species,briefly states the present studies of impulsive differential equation and its applications to the dynamical systems in biology.
     Chapter 2 introduces the basic theories and preliminaries of impulsive differential equation and boundary value problem.
     In Chapter 3,the applications of boundary value problem to the system with Allee effect and impulsive effect are given.According to the initial density of a single-species with Allee effect,Chapter 3 presents two kinds of time-limited management models:the model with impulsive release and the model with impulsive harvest.By means of the comparison principle and the method of upper and lower solution,the corresponding sufficient conditions under which the models have a solution or no solution are obtained. If other parameters are given,the controllable parameters such as the population of release and the times of impulsive harvest are estimated respectively.
     In Chapter 4,the applications of boundary value problem to the system of two species with impulsive control in finite time are investigated.Section 4.1 presents a kind of timelimited pest control of a Lotka-Volterra predator-prey model with impulsive harvest.By the comparison principle,the conditions under which the model has a solution are found by a series of the upper solutions and the conditions under which the model has no solution are also given by a series of the lower solutions.Furthermore,the times of harvesting pest in the given time is estimated.Section 4.2 presents a kind of time-limited control model of a Lotka-Volterra competition system with impulsive harvest.The existence of solution of the model is discussed.Similarly,by the comparison principle,the conditions under which the model has a solution or no solution are found.Finally,the practical meanings of those conditions are explained.As an example of theoretical results,if other parameters are given,the times of impulsive control is estimated and the theoretical results are verified by numerical simulations.
     In Chapter 5,the effects of three kinds of impulsive control strategies on predatorprey system are investigated by the Floquet's theory and the comparison theorem of impulsive differential equation.By means of chain transform,Section 5.1 investigates the impulsive effects on a kind of predator-prey system with distributed time delay.The thresholds between permanence and extinction are obtained as functions of model parameters. It is proved that the impulsive period and the proportion of the impulsive harvest will ultimately affect the fate of each species.Section 5.2 discusses the effects of impulsive release on a kind of one-prey two-predator system with Ivlev's and Beddington-DeAngelis' functional response.It is proved that the prey-free periodic solution is locally asymptotically stable when the period of impulsive release is less than a critical value. Furthermore,the conditions for the permanence of the system are obtained.Numerical simulations show that the system has complex properties,including periodic solution, period-doubling bifurcation,chaos,etc.Finally,a brief discussions on the relationships between the continuous system and the impulsive system are given.Section 5.3 discusses a kind of impulsive control to an omnivorous species by means of the dynamics of infectious disease and obtains the sufficient conditions under which the susceptible predator will be extinct or which the species coexist.The numerical simulations verify the theoretical results and show the system has complex dynamical behaviors.
     In Chapter 6,the periodicity of continuous culture of microorganism in the turbidostat is discussed by investigating the existence of periodic solution of a kind of trubidostat model with impulsive state feedback control and Monod growth rate.Based on the qualitative analysis,the conditions for the existence of periodic solution of order one are obtained by the existence theorem of periodic solution of a general planar impulsive autonomous system.It is shown that the system either tends to a stable state or has a periodic solution,which depends on the feedback state,the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate.The period and the initial point of the periodic solution are given.Finally,the theoretical results are verified by numerical simulations.
引文
[1]徐克学.生物数学[M].北京:科学出版社,1999.
    [2]陈兰荪,陈键.非线性生物动力系统[M].北京:科学出版社,1993.
    [3]MARK K.Elements of Mathematical Ecology[M].Cambridge:Cambridge University Press,2001.
    [4]陆征一,王稳地.生物数学前沿[M].北京:科学出版社,2008.
    [5]陆征一,周义仓.数学生物学进展[M].北京:科学出版社,2006.
    [6]张广智.在全省小麦病虫害防治工作电视电话会议上的发言[EB/OL].[2006-04-12].河南农业信息网,http://www.haagri.gov.cn/shownews.asp?id=46878&typeid=.
    [7]张宗炳,曹骥.害虫防治:策略和方法[M].北京:科学出版社,1990.
    [8]LU Z H,CHI X B,CHEN L S.Impulsive control strategies in biological control of pesticide [J].Theoretical Population Biology,2003,64(1):39-47.
    [9]TANG S Y,XIAO Y N,CHEN L S,et al.Integrated pest management models and their dynamical behaviour[J].Bulletin of Mathematical Biology,2005,67(1):115-135.
    [10]LIU X N,CHEN L S.Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-prey system with impulsive perturbations on the predator[J].Chaos,Solitons & Fractals,2003,16(2):311-320.
    [11]NIETO J J.Periodic boundary value problems for first-order impulsive ordinary differential equations[J].Nonlinear Analysis,2002,51(7):1223-1232.
    [12]LAKSHMIKANTHAM V,BAINOV D D,SIMEONOV P S.Theory of Impulsive Differential Equations[M].Singapore:World scientific,1989.
    [13]BAINOV D,SIMEONOV P.Impulsive differential equations:periodic solutions and applicaions [M].Essex,England:Longman Scientific & Technical,1993.
    [14]BAINOV D D,SIMEONOV P S.Systems with impulse effect:stability,theory and application[M].England:Ellis Horwood Limited,1989.
    [15]BALLINGER G,LIU X.Existence and uniqueness results for impulsive delay differential equations[J].Dyn.Continuous Discrete Impulsive System,1999,5:267-270.
    [16]LIU X,BALLINGER G.Existence and continuability of solutions for differential equations with delays and state dependent impulses[J].Nonlinear Analysis,2002,51:633-647.
    [17]BAINOV D D,SIMEONOV P S,DISHLIE A B.Oscillatory of the solutions of a class of impulsive differential equations with a deviating argument[J].J.Appl.Math.Stochastic Anal.,1998,11:95-102.
    [18]BEREZANSKY L,BRAVERMAN E.Liaearized oscillation theroy for a nonlinear delay impulsive equations[J].J.Comput.and Appl.Math.,2003,161:477-495.
    [19]CHEN M P,YU J S,SHEN J H.The persistence of nonoscillatory solutions of delay differential equations under impulsive perturbations[J].Comput.Math.Appl.,1994,27: 1-6.
    [20]YAN J R.Oscillation of nonlinear delay impulsive differential equations and inequalities[J].Journal of Mathematical Analysis and Applications,2002,265:332-342.
    [21]KULEV G K,BAINOV D D.On the asymptotic stablity of systems with impulses by the direct method of Lyapunov[J].J.Math.Anal.Appl.,1989,140(2):324-340.
    [22]PAVIDIS T.Stability of systems described by differential equations containing impulses[J].IEEE,Trans.Automatic Control,1967,AC-2:43-45.
    [23]SIMEONOV P S,BAINOV D D.Stability with respect to part of the variables in system with impulsive effect[J].J.Math.Anal.Appl.,1986,117(1):247-263.
    [24]FU X L,QI J G,LIU Y S.The existence of periodic orbits for nonlinear impulsive differential systems[J].Communications in Nonlinear Science and Numerical Simulation,1999,4:50-53.
    [25]QI J G,FU X L.Existence of limit cycle of impulsive differential equations with impulses at variable times[J].Nonlinear Analysis,2001,44:345-353.
    [26]马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2001.
    [27]NIETO J J,RODRIGUEZ-LOPEZ R.Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations[J].Journal of Mathematical Analysis and Applications,2006,318(2):593-610.
    [28]GUO D J.Multiple positive solutions of a boundary value problem for nth-order impulsive integro-differential equations in a Banach space[J].Nonlinear Analysis,2004,56(7):985-1006.
    [29]GUO D J,LIU X Z.Multiple positive solutions of boundary-value problems for impulsive differential equations[J].Nonlinear Analysis,1995 25(4):327-337.
    [30]SIREN J H.New maximum priciples for first-order impulsive boundary value problems[J].Applied Mathematies Letters,2003,16(1):105-112.
    [31]LUO Z G,SHEN J H.Stability and boundness for impulsive functional differential equations with infinite delays[J].Nonlinear Analysis,2001,46(4):475-493.
    [32]LIU X N,CHEN L S.Global dynamical of the period logistic system with periodic impulsive perturbations[J].Journal of Mathematical Analysis and Applications,2004,289(1):279-291.
    [33]JIN Z,MA Z E,HAN M A.The existence of periodic solutions of the n-species Lotka - Volterra competition systems with impulse[J].Chaos,Solitons and Fractals,2004,22(1):181-188.
    [34]ZHANG X Y,SHUAI Z S,WANG K.Optimal impulsive harvesting policy for single population[J].Nonlinear Analysis,2003,4:639-651.
    [35]ABDELKADER L,OVIDE A.Nonlinear mathematical model of pulsed-theraph of Heterogeneons Tumors[J].Nonlinear Analysis,2001,2:455-465.
    [36]DONG L Z,CHEN L S,SUN L H.Optimal harvesting policies for periodic Gompertz systems[J].Nonlinear Analysis:Real World Applications,2007,8(2):572-578.
    [37]WANG L M,LIU Z J,HUI J,et al.Impulsive diffusion in single species model[J].Chaos,Solitons & Fractals,2007,33(4):1213-1219.
    [38]JIN Z,HAN M A,LI G.The persistence in a Lotka-Volterra competition systems with impulsive[J].Chaos,Solitons & Fractals,2005,24(4):1105-1117.
    [39]ZHANG S W,TAN D J,CHEN L S.Chaos in periodically forced Holling type Ⅱ predatorprey system with impulsive perturbations[J].Chaos,Solitons and Fractals,2006,28(2):367-376.
    [40]ZHANG Y J,LIU B,CHEN L S.Extinction and permanence of a two-prey onepredator system with impulsive effect[J].IMA journal of Mathematical Medicine and Biology,2003,20:309-325.
    [41]TANG S Y,XIAO Y N,CHEN L S.Integrated pest management models and their dynamical behaviour[J].Bulletin of Mathematical Biology,2005,67(1):115-135.
    [42]LIU B,TENG Z D,CHEN L S.Analysis of a predator-prey model with Holling Ⅱ functional response concerning impulsive control strategy[J].Journal of Computational and Applied Mathematics,2006,193(1):347-362.
    [43]JIANG G R,LU Q S.Impulsive state feedback control of a predator-prey model[J].Journal of Computational and Applied Mathematics,2007,200(1):193-207.
    [44]GAO S J,CHEN L S,NIETO J J,TORRESD A.Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J].Vaccine,2006,24(35-36):6037-6045.
    [45]张凤琴.一阶脉冲微分方程边值问题的研究[D].西安:西安交通大学博士论文,2003.
    [46]LI J L,SHEN J H.Periodic boundary value problems for delay differential equations with impulses[J].Journal of Computational and Applied Mathematics,2006,193(2):563-573.
    [47]LI J L,NIETO J J,SHEN J H.Impulsive periodic boundary value problems of first-order differential equations[J].Journal of Mathematical Analysis and Application.s,2007,325(1):226-236.
    [48]李建利.脉冲微分方程边值问题和周期解[D].长沙:湖南师范大学,2006.
    [49]LUO Z G,SHEN J H,NIETO J J.Antiperiodic boundary value problem for first-order impulsive ordinary differential equations[J].Computers & Mathematics with Applications,2005,49(2-3):253-261.
    [50]LI A,FENGE M,WANG L.Impulsive optimal control model for the trajectory of horizontal wells[J].Journal of Computational and Applied Mathematics,2009,223(2):893-900.
    [51]YADAV V,BALAKRISHNAN S N.optimal impulsive control of system with control constraints and application to HIV treatment[C].Proceeding of the 2006 American Conference,Minneapolis,Minnesota,USA,June 14-16,2006:4824-4829.
    [52]刘新芝,王华友,刘斌.带有状态约束的切换系统的脉冲控制优化[J].华中科技大学学报(自然科学版),2005,33(4):30-33.
    [53]ANGELOVA J,DISHLIEV A.Optimization problems in population dynamics[J].Applicable Analysis,1998,69(3-4):207-221.
    [54]XU W J,CHEN S D,CHEN L S.Modeling of the prevention and control of forest pest[J].Journal of Biological Systems(JBS),2007,15(4):539-550.
    [55]邓宗琦.常微分方程边值问题和Sturm比较理论引论[M].武汉:华中师范大学出版社,1987.
    [56]葛渭高.非线性常微分方程边值问题[M].北京:科学出版社,2007.
    [57]MENG X Z,JIAO J J,CHEN L S.Global dynamics behaviors for a nonautonomons Lotka-Volterra almost periodic dispersal system with delays[J].Nonlinear Analysis:Theory,Methods & Applications,2008,68(12):3633-3645.
    [58]MENG X Z,JIAO J J,CHEN L S.The dynamics of an age structured predator - prey model with disturbing pulse and time delays[J].Nonlinear Analysis:Real World Applications,2008,9(2):547-561.
    [59]TANG S Y,CHEN L S.Modelling and analysis of integrated pest management strategy[J].Discrete Contin.Dyn.Syst.Ser.B.2004,4:759-768.
    [60]HADJIAVGOUSTI D,ICHTIAROGLOU S.Allee effect in a prey-predator system[J].Chaos,Solitons and Fractals,2008,36:334-342.
    [61]CHENG R,CAI S.A Volterra system limit cycles under sparse effect[J].J.Biomath.,2005,20:443-446.
    [62]YAN J,ZHAO A,YAN W.Existence and global attractivity of periodic solution for an impulsive delay differential equation with Allee effect[J].J.Math.Anal.Appl.,2005,309:489-504.
    [63]VAN KOOTEN T,ROOS A,PERSSON L.Bistability and an Allee effect as emergent consequences of stage-specific predation[J].J.Theor.Biol.,2005,237:67-74.
    [64]NIETO J J.Impulsive resonance periodic problems of first order[J].Appl.Math.Lett.,2002,15:489-493.
    [65]ZHANG F Q,MA Z E,YAN J R.Boundary value problems for first order impulsive delay differential equations with a parameter[J].J.Math.Anal.Appl.,2004,290:213-223.
    [66]SMART D R.Fixed point Theorem[M].Cambridge Univ.Cambridge,1980.
    [67]FRANCO D,NIETO J J.First-order impulsive order differential equations with antiperiodic and nonlinear boundary conditions[J].Nonlinear Anal.,2000,42:163-173.
    [68]NIETO J J.Basic theory for nonresonance impulsive periodic problems of first order[J].J.Math.Anal.Appl.,1997,205:423-433.
    [69]王刚,张大勇.生物竞争理论[M].西安:陕西科学出版社,1996.
    [70]陈兰荪,宋新宇,陆征一.数学生态学模型与研究方法[M].成都:四川科学出版社,2003.
    [71]LIU S Q,CHEN L S.Profitless delays for extinction in nonautonomous Lotka-Volterra system[J].Commun.Nonlinear Sci.Numer.Simu1.,2001,6:210-216.
    [72]LIU S Q,CHEN L S.Permanence,extinction and balancing survival in nonautonomous Lotka-Volterra system with delays[J].Applied Mathematics and Computation,2002,129(2-3):481-499.
    [73]SONG Y L,PENG Y H.Stability and bifurcation analysis on a Logistic model with discrete and distributed delays[J].Applied Mathematics and Computation,2006,181(2):1745-1757.
    [74]LIU S Q,CHEN L S.Necessary-sufficient conditions for permanence and extinction in lotka-volterra system with distributed delays[J].Applied Mathematics Letters,2003,16(6):911-917.
    [75]LIU S Q,EDOARDO B.Competitive systems with stage structure of distributed-delay type[J].Journal of Mathematical Analysis and Applications,2006,323(1):331-343.
    [76]XU R,DAVIDSON F A,CHAPLAIN M A.Persistence and stability for a two-species ratio-dependent predator-prey system with distributed time delay[J].Journal of Mathematical Analysis and Applications,2002,269(1):256-277.
    [77]CHEN F D.Global stability of a single species model with feedback control and distributed time delay[J].Applied Mathematics and Computation,2006,178(2):474-479.
    [78]MA W B,TAKEUCHI Y.Stability analysis on a predator-prey system with distributed delays[J].Journal of Computational and Applied Mathematics,1998,88(1):79-94.
    [79]MENG X Z,CHEN L S,CHENG H D.Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination[J].Appl.Math.Comput.,2007,186:516-529.
    [80]SONG X Y,GUO H J.Extinction and permanence of a kind of pest-predator models with impulsive effect and infinite delay[J].J.Korean Math.Soc,2007,44:327-342.
    [81]FAN M,KUANG Y,FENG Z L.Cats protecting birds revisited[J].Bull.Math.Biol.,2005,67:1081-1106.
    [82]QI C J,WANG X N,ZHANG Z B,et al.Preliminary study on the natural enemies of Clotera Anachoreta in Shandong,China[J].Natural Enemies of Insects,2000,22(4):185-187.
    [83]HOLLING C S.The functional response of predator to prey density and its role in mimicry and population regulation[J].Mem Ent Sec Can,1965,45:1-60.
    [84]KOOIJ R E,ZEGELING A.A predator-prey model with Ivlev's functional response[J].Journal of Mathematical Analysis and Applications,1996,198:473-489.
    [85]JITSURO S.Two-parameter bifurcation in a predator-prey system of Ivlev type[J].Journal of Mathematical Analysis and Applications,1998,217:349-371.
    [86]CHEN J B.Existence of positive periodic solution for a delayed periodic predator-prey model of Ivlev type[J].Ann.of Diff.Eqs.,2006,22:134-143.
    [87]FENG J W,CHEN S H.Global asympotic behavior for the competing predators of the Ivlev types[J].Mathematica Applicata,2000,13:85-88.
    [88]LIU B,ZHI Y,CHEN L S.The dynamics of a predator-prey model with Ivlev's functional response concerning integrated pest management[J].Acta Mathematicae Applicatae Sinica,English Series,2004,20:133-146.
    [89]ZHANG S W,CHEN L S.A study of predator-prey models with the Beddington-DeAnglis functional response and impulsive effect[J].Chaos,Solitons and Fractals,2006,27:237-248.
    [90]CANTREL R S,COSNER C.On the dynamics of predatory-prey models with the Beddington-DeAngelis function response[J].J Math Anal Appl,2001,257:206-22.
    [91]FRANCK C,MICHEL L,GEORGE S.Rabbits killing birds:modelling the hyperpredation process[J].J Animal Ecol,2000,69:154-164.
    [92]ZHANG H,XU W J,CHEN L S.A impulsive infective transmission SI model for pest control[J].Math Meth Appl Sci,2007,30:1169-1184.
    [93]FRANCK C,STEPHEN J C.Virus-vectored immunocontraception to control feral cats on islands:a mathematical model[J].J Appl Ecol,2000,37:903-913.
    [94]BURGES H D,HUSSEY N W.Microbial Control of Insects and Mites[M].New York:Academic Press,1971.
    [95]Falcon LA.Problem associated with the use of arthropod viruses in pest control[J].Annual Rev Entomol,1976,21:305-324.
    [96]ANDERSON R M,MAY R M.Regulation and stability of host-parasite population interactions:I.Regulatory processes[J].J Animal Ecol,1978,47:219-247.
    [97]GOH B S.Management and analysis of biological populations[M].Amsterdam,Oxford,New York:Elsevier Scientific Publishing Company,1980.
    [98]Leslie P H.Some further notes on the use of matrices in population mathematics[J].Biometrica,1948,35:213-245.
    [99]LESLIE P H,GOWER J C.The properties of a stochastic model for the predator-prey type of interaction between two species[J].Biometrica,1960,47:219-234.
    [100]PIELOU E C.An introduction to mathematical ecology[M].New York:Wiley-Interscience,1969.
    [101]AZIZ-ALAOUI M A,DAHER OKIYE M.Boundedness and global stability for a predatorprey model with modified Leslie-Gower and Holling-type Ⅱ type schemes[J].Appl Math Lett,2003,16:1069-1075.
    [102]LAKMECHE A,ARINO O.Bifurcation of non-trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment[J].Dyn Contin Discrete Impuls Syst,2000,7:265-287.
    [103]GUO H J,SONG X Y.An impulsive predator-prey system with modified Leslie-Gower and Holling type Ⅱ schemes[J].Chaos,Solitons and Fractals,2008,36(5):1320-1331.
    [104]RUSCH K A,MICHAEL CHRISTENSEN J.The hydraulically integrated serial turbidostat algal reactor(HISTAR) for microalgal production[J].Aquacultural Engineering,2003,27:249-264.
    [105]THEEGALA C S.A computer automated hydraulically integrated serial turbidostat algal reactor(HISTAR):mathematical modeling and experimental analysis[D].Louisiana State University,1997.
    [106]BENSON B C,GUTIERREZ-WING M T,RUSCH K A.The development of a mechanistic model to investigate the impacts of the light dynamics on algal productivity in a Hydraulically Integrated Serial Turbidostat Algal Reactor(HISTAR)[J].Aquacultural Engineering,2007,36:198-211.
    [107]BENSON B C,GUTIERREZ-WING M T,RUSCH K A.Application of the Fourier Method to Differentiate Biological Rhythms from Stochastic Processes in the Growth of Selenastrum capricornutum Printz:Implications for Model Development[J].J.Appl.Phycol.,2008,20:103-111.
    [108]RUSCH K A,MALONE R F.Microalgal production using a hydraulically integrated serial turbidostat algal reactor(HISTAR):a conceptual model[J].Aquacultural Engineering,1998,18:251-264.
    [109]ZHAO Y,SKOGESTAD S.Comparison of various control configurations for continuous bioreactors[J].Ind.Eng.Chem.Res.,1997,36:697-705.
    [110]PENG Q L,FREEDMAN H I.Global attractivity in a periodic chemostat with general uptake functions[J].J.Math.Anal.Appl.,2000,249:300-323.
    [111]KUANG Y.Limit cycles in a chemostat-related model[J].SIAM J.Appl.Math.,1989,49:1759-1767.
    [112]FU G F,MAW B,RUAN S G.Qualitative analysis of a chemostat model with inhibitory exponential substrate uptake[J].Chaos,Solitons and Fractals,2005,23:873-886.
    [113][日]山根恒夫 著,邢新会 译.生物反应工程[M].北京:化学工业出版社,2006.
    [114]贾士儒.生物反应工程原理[M].北京:科学出版社,2003.
    [115]SUN S L,CHEN L S.Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration[J].J.Math.Chem.42(2007),837-847.
    [116]减荣春,夏凤毅.微生物动力学模型[M].北京:化学工业出版社,2004.
    [117]DE LEENHEER P,LI B T,SMITH H L.Competition in the chemostat:some remarks[J].Can.Appl.Math.Q,2003,11:229-248.
    [118]DE LEENHEER P,SMITH H.Feedback control for chemostat models[J].J.Math.Biol.,2003,46:48-70.
    [119]LI B T.Competition in a turbidostat for an inhibitory nutrient[J].J.Biol.Dynam.,2008,2:208-220.
    [120]FLEGR J.Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems[J].J.Theoret.Biol.,1997,188:121-126.
    [121]JIANG G R,LU Q S,QIAN L N.Chaos and its control in an impulsive differential system[J].Chaos,Solitons and Fractals,2007,34:1135-1147.
    [122]SMITH R.Impulsive differential equations with applications to self-cycling fermentation [D].Hamilton,Canada:McMaster University,2001.
    [123]JIANG G R,LU Q S,QIAN L N.Complex dynamics of a Holling type Ⅱ prey-predator system with state feedback control[J].Chaos,Solitons and Fractals,2007,31:448-461.
    [124]ZENG G Z,CHEN L S,SUN L H.Existence of periodic solution of order one of planar impulsive autonomous system[J].J.Comput.Appl.Math.,2006,186:466-481.
    [125]ZHAO Y.Studies on modeling and control of continuous biotechnical processes[D].Trond-heim:Norwegian University of Science and Technology,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700