用户名: 密码: 验证码:
红树林潮间带污染对大型底栖节肢动物群落的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以东寨港红树林潮间带为研究区域,分别在2009年12月、2010年3月和7月对该区域大型底栖节肢动物和一些主要的污染物因子进行了取样调查和测试研究。具体研究了大型底栖节肢动物的群落结构及其多样性;测试了污染因子和部分优势蟹类的重金属富集量。首次利用潮间带底栖节肢动物多样性等做为生物检测指标,结合水体富营养化、重金属含量等化学指标来综合评价潮间带的浅层水体和沉积环境的质量,以利于评价红树林潮间带湿地生态系统的健康状况。具体研究结果有:
     1.通过对8个采样点23个站位的调查,共获得底栖节肢动物34种,隶属2纲14科;方蟹科和沙蟹是主要类群,其中弧边招潮蟹(Uca arcuata)、双齿近相手蟹(Perisesarma bidens)、原足虫(Kalliapseudes tomiokaensis)、锯眼泥蟹(Ilyoplax serrata)及另一种泥蟹(Ilyoplax sp.)是较普遍的优势种;平均栖息密度和生物量均显示不同潮滩间差异不显著,而冬季与春、夏两季都存在显著差异。
     2.整个研究区域的物种种类数S、Margalef丰富度指数d、Shannon-Wiener物种多样性指数H′和均匀性指数J皆表现为冬季<春季<夏季,生物多样性也依次上升。Margalef丰富度指数评价的生物评价结果为:冬季水体中度污染、春夏两季清洁。
     3.水体的富营养化情况为:夏季全部取样点均达到富营养化,部分样点的营养指数超出临界值4的1倍多,冬季和春季近50%取样点也出现富营养化。水体的COD与叶绿素a含量在春夏量季极显著相关,相关系数分别为0.799和0.595。
     4.沉积物有机质平均含量都表明春季>冬季>夏季;中潮滩>高潮滩>低潮滩;表层>深层。且78%的调查站位的沉积物属第一类,有机碳含量低于2%。
     5.所有站位均出现了不同程度的重金属超标,整体水平上呈现表层>深层。沉积物质量分析结果为T2沉积物质量属第二类,其他基本属于第一类,Cu、Pb、Cr和Zn含量分别少于35mg/kg、60 mg/kg、80 mg/kg和150 mg/kg,整个区域沉积物质量良好。
     6.泥蟹1栖息密度与沉积物有机质含量显著负相关;原足虫的栖息密度及其生物量与叶绿素a呈显著正相关,生物量与Cu、Pb、Zn显著正相关;弧边招潮蟹的生物量上与叶绿素a、营养指数、Zn有较高水平的显著正相关;双齿近相手蟹的生物量与COD、N1、Cu、Pb、Zn等多个因子显著正相关。
     7.随冬、春、夏的季节更替,氮磷比持续上升;而且在夏季,各个群落参数与水体富营养化的几乎全部指标呈负相关,与夏季水体达富营养化相吻合。有机质含量在春季能对平均生物量的产生显著负向影响;Cu、Pb在夏季能对平均生物量的产生显著负向影响。
     8.双齿近相手蟹、弧边招潮蟹、宽额大额蟹三个不同潮滩的优势种肌肉中Cu和Zn的平均富集量也远远高于对Pb和Cr,且对Cu达到富集水平。其中,双齿近相手蟹肌肉内Cu的富集量及其对Cu的富集系数最大,弧边招潮蟹肌肉内Zn的富集量及其对Zn的富集系数最大。
The community structures of benthic macro-arthropods and principal pollutants in intertidal zone of Dongzhaigang Natural Mangrove Reserves were investigated and tested on December, 2009, March,2010 and July, 2010 respectively. The community structure and diversity of benthic macro-arthropods were studied, and pollutants and heavy metal accumulation of some dominant crab bodies were tested. In addition, The community diversity of benthic macro-arthropods were used as biological indicators at first time, and along with chemical indices of water eutrophication and heavy metal content to evaluate the quality of shallow water and the sedimentary environment in the intertidal zone, and the health of the study area was better assessed by these indicators The detailed results as follows.
     1. Sampling procedures were conducted at 23 stations on 8 sampling points, and benthic arthropods total 34 species belonging to 2 classes, 14 families were collected and identified; among these Grapsidae and Ocypodidae were the most abundant groups, and Uca arcuata, Perisesarma bidens, Kalliapseudes tomiokaensis, Ilyoplax serrata and another mud crab (Ilyoplax sp.) were the common dominant species. Average density and biomass at different intertidal levels were different but not significantly. However, some significant differences observed between winter and spring and between winter and summer.
     2. In the entire study area, the number of species, Margalef richness index d, Shannon-Wiener diversity index H′and evenness index J in spring were higher than those in winter, and all the these indices were highest in summer, so that the biological diversity also increased by seasons. Evaluation by Margalef richness index showed the water was moderately polluted in winter, but not in spring or summer.
     3. The result of eutrophication analysis indicated that all the sampling points were eutrophicated in summer, the nutritional indices of some points were one times higher than the critical level, about 50% of sampling points in spring and winter also appeared eutrophication. The content of COD and chlorophyll a in water were significantly correlated in spring and summer, the correlation coefficients were 0.799 and 0.595, respectively .
     4. The average organic matter contents of sediments in winter were higher than in summer, and the highest occurred in spring, and higher in high-intertidal than in low-intertidal level,and the highest appeared in middle-intertidal level. Results also showed that the organic matter was profuser in surface soil than that in deep soil. And the quality of Sediments in 78% sampling points were included in the first category, the organic carbon contents were less than 2%.
     5. The content of heavy metals exceeded the critical value in all the stations, with those in the surface soil higher that in deep soil. The quality of sediment belong to the first category, except the quality of T2 sediment are the second category, The contents of Cu, Pb, Cr and Zn were less than 35mg/kg, 60 mg/kg, 80 mg/kg and 150 mg/kg, the whole study region showed good.
     6. The density of Mud crab1 (Ilyoplax sp.) was negatively correlated with the organic matter content in sediment. The density and biomass of Kalliapseudes tomiokaensis were significantly positively correlated with chlorophyll a, and its biomass was significantly positively correlated with the contents of heavy metal Pb, Cu and Zn. The biomass of Uca arcuata was significantly positively correlated with chlorophyll a, nutrient indices, and the content of Zn. The biomass of Perisesarma bidens was significantly positively correlated with COD, nutrient indices, the contents of Pb, Cu and Zn.
     7. The ratio of Nitrogen to phosphorus increased in the order of winter, spring, and summer. Almost all parameters were negatively correlated with the summer water eutrophication, the result is consistent with the eutrophication of water in summer. Content of organic matter in spring can have a significantly negative impact to the average biomass, and only heavy metal Cu and Pb can have a significantly negative impact to the average biomass in the summer.
     8. Uca arcuata, Perisesarma bidens and Metopograpsus frontalis were dominant species in three tide levels, the average accumulation of Cu and Zn in their muscle were much higher than the amount of Pb and Cr, and the enrichment coefficients of Cu achieved enrichment levels. Among them, Cu of Perisesarma bidens and its enrichment coefficients for Cu is largest, as well as Zn with Uca arcuata.
引文
[1]林鹏,陈荣华.红树林有机碎屑在河口的生态系统中的作用[J].生态学杂志, 1991, 1(2): 45-48
    [2]Kathiresan K., Bingham B.L.. Biology of mangroves and mangrove ecosystems[J]. Adv. Mar. Biol., 2001, 40: 81-251
    [3]林鹏.中国红树林生态系[M].北京:科学出版社, 1997, 115-137
    [4]何斌源,范航清,王瑁,等.中国红树林湿地物种多样性及其形成[J].生态学报, 2007, 27(11): 4859-4870
    [5]马丽,蔡立哲,袁东星.红树林区底栖动物污染生态学研究进展[J].台湾海峡, 2003, 22(1): 113-118
    [6]张培玉.渤海湾近岸海域底栖动物生态学与环境质量评价研究[D].青岛:中国海洋大学, 2005
    [7]Gray J.S.. The Ecology of Marine Sediments-An introduction to the structure and function of benthic communities[M]. London: Cambridge University Press, 198l
    [8]GB/T 12763.6-2007,海洋调查规范第6部分:海洋生物调查[S].北京:中国标准出版社, 2007
    [9]Frid C.L.J., Buchanan J.B., Garwood P.R.. Variability and stability in benthos: twenty-two years of monitoring off Northumberland[J]. ICES J. Mar. Sci., 1996, 53(6): 978-980
    [10]Pearson T.H., Josefson A.B., Rosenbeg R.. Petersen’s benthic stations revisited. 1. Is the Kattegat becoming eutrophic[J]? J. Exp. Mar. Biol. Ecol.,1985, 92: 157-206
    [11] López J.E., Francesch O., Dorrio A.V., et al. Long-term variation of the infaunal benthos of La Coru?a Bay (NW Spain): results from a 12-year study(1982-1993). Mar. Sci., 1995, 59(Suppl. 1): 49-61
    [12]Reise K., Schubert A.. Macrobenthos turnover in the subtidal Wadden Sea: the Norderaue revisited after 60 years[J]. Helgolander Meeresunters, 1987, 41:69-82
    [13]Rosenberg R., Grya J.S., Josefson A.B., et al. Pertersen’s benthic stations revisited.Ⅱ. Is the Oslofjord and eastern Skagerrak enriched? J. Exp. Mar. Biol. Ecol., 1987, 105(2~3): 219-251
    [14]郑雯君.处理水域溢油的化学试剂[J].海洋环境科学. 1993, 12(2): 68-74
    [15]张海波.浅谈水污染的生物监测[J].丹东师专学报. 1998, 20(2): 67-68
    [16]孔红梅,赵景柱,姬兰柱,等.生态系统健康评价方法初探[J].应用生态学报, 2002,13(4): 486-490
    [17]郑耀辉,王树功,陈桂珠.滨海红树林湿地生态系统健康的诊断方法和评价指标[J].生态学杂志, 2010, 29(1): 111-116
    [18]李永祺,丁美丽.海洋污染生物学[M].北京:海洋出版社. 1991: 269-299
    [19]Denis H.L., Guy L.G... A brief review of approaches using ciliated protists to assess aquatic ecosystem health[J]. Aquatic Ecosystem Stress and Recovery (Formerly Journal of Aquatic Ecosystem Health), 1992, 1(4): 263-27
    [20]Mayer P.M., Galatowitsch S.M.. Assessing ecosystem integrity of restored prairie wetlands from species production-diversity relationships[J]. Hydrobiologia, 2001, 443(1): 177-185
    [21]曹善茂,周一兵.大连市区沿海底栖动物的种、量和对环境质量的评价[J].大连水产学院学报, 2001, 16(1): 34-41
    [22]Goldberg E D, et al. U. S. Missel Watch: 1977-1978 results on trace metals and radionuclides[J]. Estuarine, Costal and Shelf Science, 1983, 16(1): 69-93
    [23]McKenny C.L.J., Matthews E.. Alterations in the energy metabolism of an estuarine mysid(Mysidopsis bahia) as indicators of stress from chronic pesticide exposure[J]. Mar. Environ Res., 1990, 30(1): 1-19
    [24]沈国英,施并章.海洋生态学[M].厦门:厦门大学出版社, 2002
    [25]张跃平.江苏大型底栖无脊椎动物耐污值、BI指数及水质生物评价研究[D].南京:南京农业大学, 2006
    [26]吴桂汉,陈品健,江瑞胜,等.贝虾混养池底栖动物调查及有机污染评估[J].厦门大学学报:自然科学版, 2002(l): 20-25
    [27]蔡立哲.河口港湾沉积环境质量的底栖生物评价新方法研究[D].厦门:厦门大学, 2003
    [28]程树军,杨丰华,刘忠华,等.石油开发污染物毒性监测的试验生物筛选Ⅱ.消油剂对水生动物的毒性比较[J].热带海洋, 1999, 18(3): 95-99
    [29]David J.R.. Epidemiology and Ecosystem Health: Natural Bridges[J]. Ecosystem Health, 1999, 5(3): 174-180
    [30]Montefalcone M.. Ecosystem health assessment using the Mediterranean sea grass Posidonia oceanica: a review[J]. Ecological Indicators, 2009, 9(4): 595-604
    [31]罗岳平,李宁,汤光明.生物早期警报系统在水和废水水质评价中的应用[J].重庆环境科学, 2002, 24(1): 49-54
    [32]吴剑峰.蚕豆根尖微核技术监测南通市壕河水质污染的研究[J].生物学杂志, 1999, 16(1): 23-25
    [33]吴甘霖.利用水花生根尖微核技术(MNC)对马鞍山市废水的监测研究[J].安庆师范学院学报:自然科学版, 1997, 8(8): 57-62
    [34]Flammarion P., Noury P., Garric J.. The measurement of cholinesterasea activities as a biomarker in chub (Leuciscus cephalus): the fish lengh should not be ignored[J]. Environl Pollutlon. 2002, 120(2): 325-330
    [35]Petrovi? S., Ozreti? B., Krajnovi?-Ozrerti? M., el al. Lysosomal Membrane Stability and Metallothioneins in Digestive Glnad of Mussels (Mytilus galloprovincialis Lam.) as Biomarkers in a Field Study[J]. Marine Pollution Bulletin, 2001, 42(12): 1373-1378
    [36]梅卓华,方东,楼霄. 505显色法测定水中遗传毒性[J].环境监测管理与技术, 1997, 9(3): 17-18
    [37]吴伟,胡庚东,火村英,等.应用四膜虫刺泡发射评价加氯水体中有机浓集物的致突变性[J].中国环境科学, 1999, 19(5): 413-416
    [38]Hilty J. and Merenlender A.. Faunal indicator taxa selection for monitoring ecosystem health[J]. Biological Conservation, 2000, 92(2): 185-197
    [39]何明海.利用底栖生物监测与评价海洋环境质量[J].海洋环境科学, 1989, 8(4): 49-54
    [40]马克明,孔红梅,关文彬,等.生态系统健康评价:方法与方向[J].生态学报, 2001, 21(12): 2106-2116
    [41]姜建国,沈韫芬.用于评价水污染的生物指数[J].云南环境科学, 2000, 19(增): 251-253
    [42]Karr J.R.. Assessment of biotic integrity using fish communities[J]. Fisheries, 1981, 6: 21-27
    [43]Borja A., Franco J., Muxika I.. Classification tools for marine ecological quality assessment: the usefulness of macrobenthic communities in an area affected by a submarine outfall[J]. Ecological economy, 2006, 2(3): 327-336
    [44]Coullbc C.T.. Pollution and meiofauna: field, laboratory and mesocosm studies[J]. Oceano-graphy and Marine Biology Annual Review, 1992, 30:191-271
    [45]Warwick R.M.. A new method for detecting pollution effects on marine macrobenthic communities[J]. Mar. Biol., 1986, 92: 557-562
    [46]Warwick R.M., et al. Analysis of macrobenthic and meiobenthic community structure in relation of the species abundance biomass method[J]. Mar. Biol., 1987, 95(2): 193-200
    [47]Warwick R.M., Clarke K.R.. Relearning the ABC: taxonomic changes and abundance/biomass relationship in distributed benthic communities. Marine Biology, 1994, 118: 737-744
    [48]Gray J.S.. Detecting pollution-induced changes in communities using the log-normal distribution of individuals amongs species[J]. Marine Pollution Bulletin, ]98l, 12: 173-176
    [49]张志南.海洋底栖生物基础[M].青岛:中国海洋大学生命学院试用教材. 1984: 5
    [50]李荣冠,江锦祥.厦门西站海域大型底栖生物群落变化[J].台湾海峡, 1989, 8(2): 144-149
    [51]王备新,杨莲芳.大型底栖无脊椎动物水质快速生物评价的研究进展[J].南京农业大学学报, 2001, 24 (4): 107-111
    [52]方圆,倪晋仁,蔡立哲.湿地泥沙环境动态评估方法及其应用研究[J].应用与环境科学学报, 2000, 20(6): 570-675
    [53]Resh V.H., Norris R.H., Barbour M.T.. Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates [J]. Australian Journal of Ecology, 1995, 20: 108-121
    [54]何斌源,戴培建,范航清.广西英罗港红树林沼泽沉积物和大型底栖动物中重金属含量的研究[J].海洋环境科学, 1996, 15(1): 35-41
    [55]Guhatakurta H., Kaviraj A.. Heavy metal concentration in water, sediment, shrimp(Penaeus monodon) and mullet(Liza parsia) in some brackish water ponds of sunderban[J]. India Marine Pollution Bulletin, 2000, 40(11): 914-920
    [56]Ong Che R.G., Cheung S.G... Heavy metals in Metapenaeus ensis, Eriocheir sinensis and sediment from the Mai Po marshes, Hong Kong[J]. The Science of the Total Environment, 1998, 214: 87-97
    [57]Liang Y., Wong M.H., Shutes R.B.E., et al. Ecological risk assessment of polychlorinated biphenyl contamination in the Mai Po marshes nature reserve Hong Kong[J]. Wat Res., 1999, 33(6): 1337-1346
    [58]余日清,陈桂珠,章金鸿,等.排放生活污水对红树林底栖动物群落季节变化的影响[J].中国环境科学, 17(6): 498-500
    [59]MacFarlane G.R., Booth D.J., Brown K.R.. The semaphore crab, Heloecius cordiformis: bio-indication potential for heavy metal in estuarine systems[J]. Aquatic Toxicology, 2000, 50(3): 153-166
    [60]廖宝文.海南东寨港红树林湿地生态系统研究[M].青岛:中国海洋大学出版社, 2009
    [61]谢瑞红.海南岛红树林资源与生态适宜性区划研究[D].儋州:华南热带农业大学, 2007
    [62]邢旭煌.海南低温变化与热带气旋影响频数关系[J].广东气象, 2005, 27(4): 7-10
    [63]GB 17378.5-2007,海洋监测规范第5部分:沉积物分析[S].北京:中国标准出版社, 2007
    [64]GB 17378.4-2007,海洋监测规范第4部分:海水分析[S].北京:中国标准出版社, 2007
    [65]GB/T 12763.4-2007,海洋调查规范第4部分:海水化学要素调查[S].北京:中国标准出版社, 2007
    [66]GB/T 12763.9-2007,海洋调查规范第9部分:海洋生态调查指南[S].北京:中国标准出版社, 2007
    [67]GB 17378.6-2007,海洋监测规范第6部分:生物体分析[S].北京:中国标准出版社, 2007
    [68]Shannon-wiener C.E., Weater W.J.. The mathematical theory of communication[M]. Urbana: University of Illinois, 1949: 117
    [69]段学花,王兆印,徐梦珍.底栖动物与河流生态评价[M].北京:清华大学出版社, 2010: 12-49
    [70]Margalef D.R. Information Theory in Ecology[J]. Gen. Syst., 1957, 3: 36-71
    [71]孙儒泳.动物生态学原理[M].北京:北京师范大学出版社, 1993: 352-361
    [72]Pielou E.C.. Ecological Diversity. New York: Wiley, 1975: 163
    [73]徐兆礼,陈亚瞿.东黄海秋季浮游动物优势种聚集强度与鲐鳝渔场的关系[J].生态学杂志, 1989, 8(4): 13-15
    [74]梅杰,黎道洪,徐承香.贵州山岚桥洞内动物重金属富集的初步研究[J].动物学杂志, 2010, 45(3): 110-15
    [75]马元庆,张秀珍,孙玉增,等.栉孔扇贝对重金属的富集效应研究[J].水产学报, 2010, 34(10): 1572-1577
    [76]彼列尔曼A. N..后生地球化学[M].北京:科学出版社, 1975: 7
    [77]余婕.河口潮滩湿地有机质来源、组成与食物链传递研究[D].上海:华东师范大学, 2008
    [78]Jorden T.E., Whigham D.F., Hofmocket K.S., et al. Nutrient and sediment removal by a restored wetland receiving agricultural runoff[J]. J. Environ. Qual., 2003, 32: 1534-1547
    [79]GB 18668-2002,海洋沉积物质量[S].北京:中国标准出版社, 2002
    [80]吴景阳,李云飞.渤海湾沉积物中若干重金属的环境地球化学I沉积物中重金属的分布模式及其背景值[J].海洋与湖沼, 1985, 16(2):92-101
    [81]全国海岛资源综合调查简明规程编写组.全国海岛资源综合调查简明规程[M].北京:海洋出版社, 1993
    [82]GB1840614-2001,农产品安全质量无公害水产品安全要求[S].北京:中国标准出版社, 2001
    [83]GB13106-91,食品中锌限量卫生标准[S].北京:中国标准出版社, 1991
    [84]邹发生,宋晓军,陈伟,等.海南东寨港红树林滩涂大型底栖动物多样性的初步研究[J].生物多样性, 1999, 7(3): 175-180
    [85]韩洁,张志南,于子山.渤海大型底栖动物丰度和生物量的研究[J].青岛海洋大学学报, 2001, 31(6):889-896
    [86]黄勃,张本,陆健健,等.东寨港红树林区大型底栖动物生态与滩涂养殖容量的研究I.潮间带表层底栖动物数量的初步研究[J].海洋科学, 2002, 26(3): 65-68
    [87]袁志宇,赵斐然.水体富营养化及生物学控制[J].中国农村水利水电, 2008, (3): 57-59
    [88]吴丰昌,万国江,黄荣贵.湖泊沉积物-水界面营养元素的生物地球化学作用和环境效应Ⅱ界面氮循环及其环境效应[J].矿物学报, 1996, 16(4): 403-409
    [89]辛琨,赵广孺,孙娟,等.红树林土壤吸附重金属生态功能价值估算——以海南省东寨港红树林为例[J].生态学杂志, 2005, 24(2): 206-208
    [90]丁式江,傅杨荣.海南岛生态地球化学调查系列成果报告(一)海南岛1:25万多目标区域地球化学调查告[R].海口:海南省地质调查院, 2008
    [91]李柳强.中国红树林湿地重金属污染研究[D].厦门:厦门大学, 2008
    [92]国家海洋局. 2009年中国海洋环境质量公告[J].海洋开发与管理, 2009, (4): 27-29
    [93]赵金秀,胡恭任,于瑞莲,等.河口湿地招潮蟹重金属ICP-AES法测定及风险评价[J].环境科学与技术, 2010, 33(12F): 535-539
    [94]孙平跃,王斌. Zn、Cu和Pb在无齿相手蟹体内的积累和分布[J].海洋环境科学, 2003, 22(1): 45-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700