用户名: 密码: 验证码:
浆料喷雾干燥法制备球形锰酸锂正极材料及其改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高电池性能和降低电极材料的成本一直是锂离子电池的主要研发方向。尖晶石型LiMn2O4具有工作电压高、安全性能好、生产成本低、对环境友好等特点,是21世纪最具发展前景的锂离子电池正极材料之一。但尖晶石型LiMn2O4的比容量较低,电化学循环性能较差阻碍其规模化应用。所以如何通过改性提高尖晶石LiMn2O4材料的电化学性能是其得以广泛应用的关键。因此,探寻新的合成及改性方法成为了尖晶石LiMn2O4材料改性研究的热点。为了获得物理加工和电化学性能优异的锰酸锂正极材料,本文从工业化角度出发,提出采用浆料喷雾干燥法制备球形掺铬锰酸锂,并进行了系列表面包覆改性研究。
     首先对浆料喷雾干燥法制备球形锰酸锂的工艺条件进行了初步研究。结果发现,采用淀粉做为粘结剂时,喷雾干燥后样品颗粒球形度好,不易破碎;控制制浆固含量为50%时,所得浆料均匀、流动性好,得到喷雾干燥产物粉体平均颗粒大小在20μm左右;喷雾干燥过程中温度的控制直接影响到干燥效果和干燥样品的物理性质。干燥后得到球形前驱体制备锰酸锂的最佳焙烧温度为770℃,此时得到样品的初始放电容量为122.1 mAh·g-1,循环30次后容量保持率为89.8%。与普通干燥法相比,浆料喷雾干燥法制备的球形材料在形貌、电化学阻抗、放电容量和循环性能等方面有较大的优势。
     其次,系统研究了不同锰源对浆料喷雾干燥法制备锰酸锂性能的影响。通过热处理和酸处理的方式对现有电解二氧化锰(EMD)进行结构和组份优化。结果发现,将EMD在300-400℃进行适当的热处理,可以优化其结构,使其有利于嵌锂并顺利实现向锰酸锂的转化,得到的产物在初始放电容量和循环性能上都有所提高。而酸处理能有效减少EMD中钠、硫杂质的含量,使产物锰酸锂中杂质含量也降低,产物的初始放电容量得到提高,但是循环性能还需要改善。精制化学二氧化锰(CMD)的结构与360℃热处理后EMD相似。CMD制备得到尖晶石锰酸锂的初始放电容量为120.0 mAh·g-1,循环40次后放电容量保持为100.8 mAh·g-1,容量保持率为84.0%。四氧化三锰做锰源制备的锰酸锂电化学性能最佳,0.2C首次放电容量达127.9mAh·g-1,2C放电容量为124.7 mAh·g-1,40次充放电循环后容量保持率达到97.6%,但是物理性能相对较差。综合比较EMD、CMD和四氧化三锰等锰源制备的锰酸锂的物理和电化学性能,300-400℃热处理后EMD应用前景最佳。
     然后深入研究了浆料喷雾干燥法制备掺铬锰酸锂,发现采用醋酸铬和硫酸铬等可溶性铬盐,铬离子可以浸渍进入二氧化锰空隙,在混合过程即可形成均匀的前驱体,因此得到的样品与采用三氧化二铬制备的样品相比晶格参数和晶胞体积小,电荷转移阻抗小,电化学极化小。使用醋酸铬为铬源,掺铬量x=0.04时,制得的锰酸锂高温电化学性能最佳,在55℃条件下进行充放电测试,得到初始放电容量为117.2 mAh·g-1,循环30次后容量保持率为93.3%。
     最后,为了更进一步改善锰酸锂的高温循环性能,分别采用三种包覆方法对上述制得的球形掺铬锰酸锂进行了表面包覆改性研究。其中,水溶胶法包覆氧化铝,成本低,环境友好,得到产物包覆效果好,包覆1%的Al2O3得到的包覆产物初始放电容量为114.5 mAh·g-1,高温循环50次后容量保持率为93.6%。低热固相法包覆氧化铝工艺更简单,能耗更低,更适合于工业放大,同样包覆1%的Al2O3得到的包覆产物初始放电容量为115.6 mAh·g-1,50次高温循环容量保持率为92.8%。除了包覆氧化物外,还首次对多元醇法包覆磷酸盐进行了尝试,并取得了较好的成效,磷酸盐包覆材料表现出更好的稳定性,使得材料的高温循环稳定性得到较大提高,其中包覆了磷酸钴锂的球形掺铬锰酸锂样品,其首次放电比容量为117.8 mAh·g-1,经50次高温循环后放电比容量仍然保持为114.0 mAh·g-1,容量保持率提高为96.8%。相比未包覆材料初始放电容量为117.1 mAh·g-1,50次高温循环后容量保持率只有90.3%,包覆后材料的循环稳定性能都得到较大提高。
It is always the main research direction for lithium ion battery to improve its performance and reduce the cost of electrode materials. Spinel LiMn2O4, with high working voltage, good safety performance, low production cost, and environmental friendliness, is becoming one of the most promising cathode materials for lithium-ion battery in the 21st century. But its low specific capacity and poor electrochemical cycling performance limits its large-scale application. Therefore, the key to extensive application is to improve the electrochemical performance of LiMn2O4 materials and to explore new synthesis and modification methods, it is becoming a research hotspot for spinel LiMn2O4 materials. In order to obtain spinel LiMn2O4 materials with excellent physical and electrochemical performance, this paper, from the perspective of industrialization consideration, adopts the method of slurry spray drying to prepare spherical chromium doped spinel lithium manganese oxide, and conducts researches on some surface coating modification.
     Firstly a preliminary study about the process conditions of slurry spray drying for spherical lithium manganese oxide is carried out in this paper. The results show that using starch as a binder, spray dried particles gain good sphericity, hard to be broken. Controling solid content at 50%, the slurry is even with good fluidity, and the average size of spray dried particles is about 20μm. The controlling of the temperature during the spray drying process exerts a direct influence on the physical properties of dried samples. The optimal roasting temperature for lithium manganese oxide from dried spherical precursor is 770℃, where the initial discharge capacity of the obtained samples is 122.1 mAh·g-1, with an 89.8% capacity retention after cycling for 30 times. Compared with common drying methods, the spherical products prepared by slurry spray drying have great advantages in morphology, electrochemical impedance, discharge capacity and cycling properties than by common drying.
     Secondly, the effects of different manganese sources on the properties of lithium manganese oxide prepared by slurry spray drying are studied systematically in this paper. Structure and component of electrolytic MnO2 (EMD) are optimized through heat and acid treatment respectively. The results show that after proper heat treatment at 300-400℃, the structure of EMD can be optimized, the lithium intercalation and the successful transformation to lithium manganese oxide are facilitated, and the initial discharge capacity and cycle performance of the obtained products are improved. Impure contents in EMD such as sodium and sulfur can be reduced effectively by acid treatment, and so can the impure contents in produced lithium manganese oxide. While the initial discharge capacity of the product is improved, the cycle performance needs to be enhenced. Refined structure of chemical manganese dioxide (CMD) is similar to that of EMD after heat treatment at 360℃. The initial discharge capacity of spinel lithium manganese oxide obtained from CMD is 120.0 mAh·g-1, and the discharge capacity is 100.8 mAh-g-1 after cycling for 40 times, a capacity retention of 84.0%. Electrochemical performance of lithium manganese oxide obtained from Mn3O4 is excellent, initial discharge capacity at 0.2C is 127.9 mAh·g-1, and discharge capacity at 2C is 124.7 mAh·g-1, with an 84.0% capacity retention after cycling for 40 times. But its physical performance is dissatisfactory. Compared physical and electrochemical performance of lithium manganese oxide prepared from EMD, CMD, and Mn3O4, EMD after heat treatment at 300-400℃is the best manganese source.
     Then spherical chromium doped spinel lithium manganese oxide prepared by slurry spray drying method is studied thoroughly. It is found that chromium ion from soluble chromium compounds such as chromium acetate and chromium sulfate can dipping into the pore of manganese dioxide, so that even precursor can be formed in the mixing process. Therefore, compared with that from chromium oxide, products obtained from soluble chromium compounds have smaller crystal lattice parameters and volume, and smaller charge transfer impedance and electrochemical polarization. With chromium acetate as a chromium source and the chromium content x= 0.04, the obtained lithium manganese oxide show best high-temperature electrochemical performance. The initial discharge capacity is 117.2 mAh·g-1, and the capacity retention is 93.3% after cycling for 30 times when charging and discharging at 55℃.
     Finally, in order to further improve the cycle performance of lithium manganese oxide under high temperature, three coating methods are adopted. Among them, the water sol-gel coating method is low in cost and friendly to environment, and can produce well-coated products. The initial discharge capacity of products coated with 1% Al2O3 by the water sol-gel method is 114.5 mAh·g-1, and capacity retention is 93.6% after cycling for 50 times at high temperature. The low-heating solid-phase method is simpler in process, and lower in energy consumption, thus more suitable for industrialization. With the same Al2O3 coating content at 1%, the initial discharge capacity for coated products by this method is 115.6 mAh·g-1, and capacity retention after cycling for 50 times is 92.8% at high temperature. Besides coating with oxide, this paper also makes an initial try to coat phosphate by polyol synthesis method, which achieves good results. Phosphate-coated materials show better and much improved cycle stability at high temperature. Among them is lithium cobalt phosphate coated chromium doped lithium manganese oxide, whose initial discharge capacity is 117.8 mAh·g-1, and the capacity after 50 times is 114.0 mAh·g-1, a capacity retention of 96.8% at high temperature. The initial discharge capacity of uncoated materials is 117.1 mAh·g-1, with capacity retention at 90.3%. Compared with this, coated materials gain a great improvement in their cycling stabilization performance.
引文
[1]吴宇平,万春荣,姜长印.锂离子二次电池[M],北京:化学工业出版社,2002,1-10.
    [2]P G Bruce. Energy storage beyond the horizon:rechargeable lithium batteries [J]. Solid State Ionics,2008,179(21-26):752~760.
    [3]M Armand, J M Tarascon. Building better batteries[J]. Nature,2008,451(2): 652~657.
    [4]陈立泉.锂离子正极材料的研究发展[J].电池.2002,32(6):6-8.
    [5]T Ohzuku, R Brodd. An overview of positive-electrode materials for advanced lithium-ion batteries [J]. Journal of Power Sources,2007,174(2):449~456.
    [6]J B Goodenough. Cathode materials:A personal perspective [J]. Journal of Power Sources,2007,174:996~1000.
    [7]A K Shukla, T P Kumar. Materials for next-generation lithium batteries [J]. Current Science,2008,94(3):314~331.
    [8]N Kosova, E Devyatkina, A Slobodyuk, et al. Surface chemistry study of LiCoO2 coated with alumina[J]. Solid State Ionics,2008,179(27-32):1745~1749.
    [9]H Arai, M Tsuda, K Saito, et al. Nickel dioxide Polymorphs as lithium insertion electrodes [J]. Electrochimca Acta,2002,47(17):2697~2705.
    [10]B Markovsky, A Rodkin, Y S Cohen, et al. The study of capacity fading processes of Li-ion batteries:major factors that play a role [J]. Journal of Power Sources, 2003,119-121:504-510.
    [11]S H Cao, Z X Wang, X H Li, et al. Comparative study on electrochemical behavior of Li(Ni0.5Mn0.5)(1-x)MxO2 (M=Ti, Al; x=0,0.02) cathode materials [J]. Chinese Journal of Inorganic Chemistry,2006,22(8):1540~1544.
    [12]K Kang, Y S Meng, J Breger, et al. Electrodes with high Power and high capacity for rechargeable lithium batteries [J]. Science,2006,311:977~980.
    [13]X Wang, F Zhou, X M Zhao, et al. Fabrieation and characterization of nanosized single-crystalline LiNi0.5Mn0.5O2 [J]. Journal of Crystal Growth,2004,267: 184~187.
    [14]A K Padhi, K S Nanjundaswamy, J B Goodenough. Phospho-livinesas positive electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1997,144(4):1188~1194.
    [15]N Ravet. Electrode material having improved surface conductivity [P]. CA Patent No. EP1049182,2000-05-02.
    [16]S Y Chung, J T Bloking, Y M Chiang. Electronically conductive phospho-olivines as lithium storage eletrodes [J]. Nature Materials,2002,1(2):123~128.
    [17]B Kang, G Ceder. Battery materials for ultrafast charging and discharging [J]. Nature,2009,145(3):190~193.
    [18]D Jugovic, D Uskokovic. A review of recent developments in the synthesis procedures of lithium iron phosphate powders [J]. Journal of Power Sources, 2009,190:538~544.
    [19]郭炳琨,徐徽,王先友,等.锂离子电池[M].长沙,中南大学出版社,2002,32-33.
    [20]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京,化学工业出版社,2007,69-71.
    [21]V W J Vethoeven, I M de Sehepper, G Naehtegaal, et al. Lithium dynamics in LiMn2O4 probed directly by two-dimensional Li-'NMR [J]. Physical Review Letters,2001,86(19):4314~4317.
    [22]H W Chan, J G Duh, J F Lee, Valence change by insitu XAS in surface modified LiMn2O4 for Li-ion battery [J]. Electrochemistry Communications,2006,8(11): 1731~1736.
    [23]K Y Chung, K B Kim, Investigations into capacity fading as a result of a Jahn-Teller distortion in 4 V LiMn2O4 thin film electrodes [J]. Electrochimica Acta,2004,49(20):3327~3337.
    [24]T Uchiyama, M Nichizawa, T Itoh, et al. Electrochemical Quartz crystal microbalance inverstigation of LiMn2O4 [J]. Journal of Electrochemical Society, 2000,147(6):2057-2060.
    [25]C Y Ouyanga, S Q Shib, J Teller. Distortion and electronic structure of LiMn2O4 [J]. Journal of Alloys and Compounds,2009,474:370~374.
    [26]D Aurbach. Reiew of selected electrode-solution interaction which determine the performance of Li and Li ion batteries [J]. Journal of Power Sources,2000,89(1): 208-216.
    [27]B H Deng, H Nakamura, M Yoshio. Capacity fading with oxyen loss for manganese spinels upon cycling at elevated temperatures [J]. Journal of Powers Sources,2008,180:864~868.
    [28]S Balaji, D Mutharasu, N S Subramanian, et al. A review on microwave synthesis of electrode materials for lithium-ion batteries [J]. Ionics,2009,15:765~777.
    [29]Y P Fu, Y H Su, S H Wu, et al. LiMn2-yMyO4(M=Cr, Co) cathode materials synthesized by the microwave-induced combustion for lithium ion batteries [J]. Journal of alloys and compounds,2006,426(1-2):228~234.
    [30]杜柯,杨亚男,胡国荣,等.熔融盐法制备LiMn2O4材料的合成条件研究[J].无机化学学报,2008,24(4):615-620.
    [31]唐新村.低热固相反应制备锂离子电池正极材料及其嵌锂性能研究[D].长沙:湖南大学2002.
    [32]C L Tan, H J Zhou, W S Li, et al. Performance improvement of LiMn2O4 as cathode material for lithium ion battery with bismuth modification [J]. Journal of Power Sources,2008,184 (2):408~413.
    [33]A R Naghash, J Y Lee. Preparation of spinel lithium manganese oxide by aqueous co-precipitation [J]. Journal of Power Sources,2000,85:284~293.
    [34]H M Wu, J P Tu, Y F Yuan, et al. Electrochemical performance of nanosized LiMn2O4 for lithium-ion batteries [J]. Physical Review B:Condensed Matter, 2005,369 (1-4):221~226.
    [35]M Seungtaek, C Hoontaek, K Shinichi, et al. Capacity fading of LiMn2O4 electrode synthesized by the emulsion drying method [J]. Journal of Power Sources,2000,90:103~108.
    [36]G T K Fey, Y D Cho, T P Kumar. Nanocrystalline LiMn2O4 derived by HMTA-assisted solution combustion synthesis as a lithium-intercalating cathode material [J]. Materials Chemistry and Physics,2006,99(2-3):451~458.
    [37]Q H Zhang, S P Li, S Y Sun. LiMn2O4 spinel direct synthesis and lithium ion selective adsorption [J]. Chemical Engineering Science,2010,65:169~173.
    [38]S H Kang, J B Goodenough, L K Rabenberg et al. Nanocrystalline lithium manganese oxide spinel cathode for rechargeable lithium batteries [J]. Electrochemical and Solid State Letters,2001,4(5):A49~A51.
    [39]J W Fergus. Recent developments in cathode materials for lithium ion batteries [J]. Journal of Power Sources,2010,195(4):939~954.
    [40]J M Amarilla, K Petrov, F Pico, et al. Sucrose-aided combustion synthesis of nanosized LiMn1.99-yLiyM0.01O4 (M=Al3+, Ni2+, Cr3+, Co3+, y= 0.01 and 0.06) spinels:Characterization and electrochemical behavior at 25 and at 55℃ in rechargeable lithium cells [J]. Journal of Power Sources,2009,191:591~600.
    [41]A V Churikov, E I Kachibaya, V O Sycheva, et al. Electrochemical properties of LiMn2-yMeyO4 (Me= Cr, Co, Ni) spinels as cathodic materials for lithium-ion batteries [J]. Russian Journal of Electrochemistry,2009,45(2):175~182.
    [42]Z D Peng, Q L Jiang, K Du, et al. Effect of Cr-sources on performance of Li1.05Cr0.04Mn1.96O4 cathode materials prepared by slurry spray drying method [J]. Journal of Alloys and Compounds,2010,493:640~644.
    [43]Q L Jiang, G R Hu, Z D Peng, et al. Preparation of spherical spinel LiCr0.04Mn1.96O4 cathode materials based on slurry spray drying method [J]. Rare Metals,2009,28 (6):618~623.
    [44]C P Grey, N Dupre, NMR studies of cathode materials for lithium-ion rechargeable batteries [J]. Chemical Reviews,2004,104:4493~4512.
    [45]L Xiao, Y Zhao, Y Yang, et al. Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method [J]. Electrochimica Acta, 2008,54:545~550.
    [46]彭忠东.锂离子电池正极材料合成及中试生产技术研究[D].长沙:中南大学,2002.
    [47]K Matsumoto, T Fukutsuka, T Okumura, et al. Electronic structures of partially fluorinated lithium manganese spinel oxides and their electrochemical properties [J]. Journal of Power Sources,2009,189:599~601.
    [48]Q Luo, A Manthiram. Effect of Low-Temperature Fluorine Doping on the Properties of Spinel LiMn2-2yLiyMyO4-δFδ(M=Fe, Co, and Zn) Cathodes [J]. Journal of the Electrochemical Society,2009,156:A84-A88.
    [49]P Singh, A Sil, M Nath, et al. Preparation and characterization of lithium manganese oxide cubic spinel Li1.03Mn1.97O4 doped with Mg and Fe [J]. Physica B,2010,405:649~654.
    [50]X J Sun, X H Hu, Y Shi, et al. The study of novel multi-doped spinel Li1.15Mn1.96Co0.03Gd0.01O4+δ as cathode material for Li-ion rechargeable batteries [J]. Solid State Ionics,2009,180:377~380.
    [51]M W Raja, S Mahanty, R N Basu. Influence of S and Ni co-doping on structure, band gap and electrochemical properties of lithium manganese oxide synthesized by soft chemical method [J]. Journal of Power Sources,2009,192:618~626.
    [52]T Li, W H Qiu, H L Zhao, et al. Electrochemical properties of spinel LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1 synthesized by solid-state reaction [J]. Journal of University of Science and Technology Beijing,2008,15(2):187~191.
    [53]S W Lee, K S Kim, H S Moon, et al. Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery [J]. Journal of Power Sources,2004,126:150~155.
    [54]A M Kannan, A Manthiram. Surface/Chemically Modified LiMnO Cathodes for Lithium-Ion Batteries [J]. Electrochemical and Solid-State Letters,2002,5: A167~A167.
    [55]J Cho, J G Lee, B Kim, B Park. Effect of P2O5 and AlPO4 Coating on LiCoO2 Cathode Material [J]. Chemistry of Materials,2003,15:3190~3193.
    [56]D Q Liu, Z Z He, X Q Liu. Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries [J]. Materials Letters,2007,25:4703~4706.
    [57]J Tu, X B Zhao, G S Cao, et al. Improved performance of LiMn2O4 cathode materials for lithium ion by gold coating [J]. Materials Letters,2006,60: 3251~3254.
    [58]W J Zhou, B L He, H L Li. Synthesis, structure and electrochemistry of Ag-modified LiMn2O4 cathode materials for lithium-ion batteries [J]. Materials Research Bulletin,2008,43:2285~2289.
    [59]S C Park, Y S Han, Y S Kang, et al. Electrochemical properties of LiCoO2-coated LiMn2O4 prepared by solution-based chemical process [J]. Journal of the Electrochemical Society,2001,148:A680~A686.
    [60]Z Liu, H Wang, L Fang, et al. Improving the high-temperature performance of LiMn2O4 spinel by micro-emulsion coating of LiCoO2 [J]. Journal of Power Sources,2002,104:101~107.
    [61]J. Cho, G.B. Kim, H.S. Lim, et al. Improvement of Structural Stability of LiMn2O4 Cathode Material on 55℃ Cycling by Sol-Gel Coating of LiCoO2 [J]. Electrochemical and Solid-State Letters,1999,2:607~609.
    [62]B J Hwang, R Santhanam, C P Huang, et al. LiMnO Core Surrounded by LiCoMnO Shell Material for Rechargeable Lithium Batteries [J]. Journal of the Electrochemical Society,2002,149:A694~A698.
    [63]S C Park, Y M Kim, Y M Kang, et al. Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2 [J]. Journal of Power Sources,2001, 103:86~92.
    [64]S C Park, Y M Kim, S C Han, et al. The elevated temperature performance of LiMn2O4 coated with LiNi1-XCoXO2 (X= 0.2 and 1) [J]. Journal of Power Sources,2002,107:42~47.
    [65]D Q Liu, X Q Liu, Z Z He. The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithium ion battery [J]. Materials Chemistry and Physics,2007,105:362~366.
    [66]A R Han, T W Kim, D H Park, et al. Soft chemical dehydration route to carbon coating of metal oxides:Its application for spinel lithium manganate [J]. Journal of Physical Chemistry C,2007,111:11347~11352.
    [67]T J Patey, R Buchel, S H Ng, et al. Flame co-synthesis of LiMn2O4 and carbon nanocomposites for high power batteries [J]. Journal of Power Sources,2009, 189:149~154.
    [68]J G Li, X M He, R S Zhao. Electrochemical performance of SrF2-coated LiMn2O4 cathode material for Li-ion batteries [J]. Transactions of Nonferrous Metals Society of China,2007,17(6):1324~1327.
    [69]K S Lee, S T Myung, K Amine, et al. Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries [J]. Journal of Materials Chemistry, 2009,19:1995~2005.
    [70]H Shan, H Goktepe, S Patat, et al. The effect of LBO coating method on electrochemical performance of LiMn2O4 cathode material [J]. Solid State Ionics, 2008,178:1837~1842.
    [71]R Vidu, P Stroeve. Improvement of the thermal stability of Li-ion batteries by polymer coating of LiMn2O4 [J]. Industrial and Engineering Chemistry Research, 2004,43:3314~3324.
    [72]C Arbizzani, M Mastragostino, M Rossi. Preparation and electrochemical characterization of a polymer Li1.03Mn1.97O4/PEDOT composite electrode [J]. Electrochemistry Communications,2002,4:545~549.
    [73]赵铭姝,宋晓平.尖晶石型锰酸锂前驱动体的表征与分解活化能[J].过程工程学报.2003,3(1):29-33.
    [74]夏定国,王道.Sol-Gel法合成LiMn2O4及电化学研究[J].北京工业大学学报.2007,23(4):88-91.
    [75]雷钢铁,李朝辉,苏光耀.尖晶石型LiMn2O4的制备[J].电池.2003,33(3):164-166.
    [76]刘兴泉,陈召勇.原位氧化还原沉淀水热合成法制备LixMn2O4尖晶石[J].高等学校化学学报.2002,23(2):179-181.
    [77]Y L Zhang, H C Shin, J Dong, et al. Nanostructured LiMn2O4 prepared by a glycine-nitrate process for lithium-ion batteries [J]. Solid State Ionics,2004,171: 25~31.
    [78]肖卓炳,麻明友,刘建本.LiMn1.8Co0.2O3.95F0.05络合燃烧法合成及其性质研究 [J].中国锰业.2005,23(4):14-17.
    [79]刘兴泉,陈召勇,贺益,等.不同Mn源对Li1+xMn2-XO4尖晶石正极材料的电化学性能的影响[J].合成化学,2001,9(3):218-222.
    [80]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能[J].电池,2004,34(6):411-414.
    [81]夏熙.二氧化锰的物理、化学性质与其电化学活性相关[J].电池,2005,35(6):433-436.
    [82]蒋庆来,胡国荣,彭忠东,等.二氧化锰原料对固相法制备尖晶石锰酸锂性能的影响[J].功能材料,2010,41(9):1485-1489.
    [83]I Laurie. Hill, V Alain, G Dominique. MnO2(α-, β-, γ-) compounds prepared by hydrothermal-electrochemical synthesis:characterization, morphology, and lithium insertion behavior [J]. Journal of Power Sources,2003,119~121: 226~231.
    [84]C Luiz. Ferracin, A Fabio, et al. Characterization and electrochemical performance of the spinel LiMn2O4 prepared from ε-MnO2 [J]. Solid State Ionics, 2000,130:215~220.
    [85]童庆松,刘汉三,林素英,等.掺钛尖晶石锂锰氧化物的合成、结构及电化学性能研究[J].高等学校化学学报,2005,26:138-141.
    [86]童庆松,杨勇,连锦明.掺钛电解二氧化锰制掺杂LiMn2O4的电化学性能[J].无机化学学报,2005,(21)12:1784-1790.
    [87]中国科学院青海盐湖研究所.球形尖晶石Li-Mn-Oxide锂离子电池正极材料的制备方法[P].CN 1744353A,2006-3-8.
    [88]三井金属矿业公司,松下电器产业公司.生产尖晶石型锰酸锂的方法、阴极材料和非水电解质二次电池[P]. CN 1151072C,2004-5-26.
    [89]三井金属矿业公司,松下电器产业公司.尖晶石型锰酸锂的制备方法[P]. CN 1173887C,2004-11-3.
    [90]杜拉塞尔公司.锂锰氧化物尖晶石的制备方法[P].CN1097558C,2003-1-1.
    [91]丁淑荣,李新海,王志兴,等.电解二氧化锰的改性研究[J].电化学,2007,13(2):165-170.
    [92]詹晖,周运鸿.以不同二氧化锰为原料制备的锂锰氧化物的性能研究[J].高等学校化学学报,2002,23(6):1100-1104.
    [93]S H Lim, J Cho. PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates [J]. Electrochemistry Communications,2008,10:1478~1481.
    [94]M M Thackeray. Manganese Oxides for Lithium Batteries [J]. Progress in Solid State Chemistry,1997,25:1-71.
    [95]X Wang, Y D Li. Selected-Control Hydrothermal Synthesis of α-and β-MnO2 Single Crystal Nanowires [J]. Journal of the American Chemical Society,2002, 124:2880~2881.
    [96]H E Wang, D Qian, Z G Lu, et al. Facile synthesis and electrochemical properties of hierarchical MnO2 submicrospheres and LiMn2O4 microspheres [J]. Journal of Physics and Chemistry of Solids,2007,68:1422-1427.
    [97]H S Fang, L P Li, Y Yang, et al. Low-temperature synthesis of highly crystallized LiMn2O4 from alpha manganese dioxide nanorods [J]. Journal of Power Sources, 2008,184:494~497.
    [98]李志光,刘素琴,黄可龙.不同锰源合成尖晶石型LiXMn2O4及其性能[J].中国有色金属学报,2003,13(4):526-529.
    [99]真嵨宏.锰酸锂及其制备方法和用途[P].日本公开特许:P2002-53321A,2002-2-19.
    [100]Z Liu, W L Wang, X Liu, et al. Synthesis of nanostructured spinel LiMn2O4 by hydrothermal method at 70℃ [J]. Inorganic Chemistry Communications, 2004,7:308~310.
    [101]Z Liu, W L Wang, X M Liu, et al. Hydrothermal synthesis of nanostructured spinel lithium manganese oxide [J]. Journal of Solid State Chemistry,2004,177: 1585~1591.
    [102]何向明,蒲薇华,蔡砚,等.基于控制结晶法制备的锂离子电池正极材料球形锰酸锂[J1.中国有色金属学报。2005,15(9):1390-1395.
    [103]H J Guo, X H Li, Z X Wang, et al. Preparation of manganese oxide with high density by decomposition of MnCO3 and its application to synthesis [J]. Journal of Power Sources,2009,189(1):95~100.
    [104]何向明,蒲薇华,蔡砚,等.球形尖晶石LiMn2O4掺杂钇的性能研究[J].化学学报,2005,63(19):1853-1856.
    [105]郭少华,何向明,曾庆轩,等.表相掺杂Co的球形LiMn2O4制备及其电化学性能[J].化工新型材料,2007,35(3):34-36.
    [106]余姚市金和实业有限公司.锂离子二次电池正极材料LiCoxMn2-xO4的合成方法[P]. CN 1635644A,2005-7-6.
    [107]天津巴莫科技股份有限公司.锂离子二次电池正极材料LixCoYLazMn2-Y-ZO4[P]. CN 101022161A,2007-8-22.
    [108]唐新村,何莉萍.尖晶石LiMn2O4前驱体的低热固相反应法合成机理及其结构与热分解过程研究[J].高等学校化学学报,2003,24(4):576-579.
    [109]H M Wu, J P Tu, X T Chen, et al. Electrochemical study on LiMn2O4 as cathode material for lithium ion batteries [J]. Journal of Electroanalytical Chemistry,2006,586(1):180~184.
    [110]I Taniguchi, N Fukuda, M Konarova. Synthesis of spherical LiMn2O4 microparticles by a combination of spray pyrolysis and drying method [J]. Powder Technology,2008,181:228~236.
    [111]Z Wen, Z Gu, S Huang, et al. Research on spray-dried lithium titanate as electrode materials for lithium ion baneries [J]. Journal of Power Sources,2005, 146(1-2):670~673.
    [112]B Lin, Z Y Wen, Z H Gu, et al. Morphology and electrochemical performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode material by a slurry spray drying method [J]. Journal of Power Sources,2008,175(1):564~567.
    [113]X Q Wang, H Nakamura, M Yoshio. Capacity fading mechanism for oxygen defect spinel as a 4 V cathode material in Li-ion batteries [J]. Journal of Power Sources,2002,110:19~26.
    [114]B H Deng, H Nakamura, M Yoshio. Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures [J]. Journal of Power Sources,2008,180:864~868.
    [115]T F Yi, C L Hao, C B Yue, et al. A literature review and test:Structure and physicochemical properties of spinel LiMn2O4 synthesized by different temperatures for lithium ion battery [J]. Synthetic Metals,2009,159: 1255~1260.
    [116]G T K Fey, Y D Cho, T PremKumar. A TEA-starch combustion method for the synthesis of fine-particulate LiMn2O4 [J]. Materials Chemistry and Physics, 2004,87:275~284.
    [117]湖南化工研究院.高品质化学二氧化锰的制备方法及用途[P]. CN 101372362A,2009-2-25.
    [118]J R Hill. C M Freeman, M H Rossouw. Understanding γ-MnO2 by molecular modeling [J]. Journal of Solid State Chemistry,2004,177:165~175.
    [119]Y Chabre, J Pannetier. Structural and electrochemical properties of the proton/ y-MnO2 system [J]. Progress in Solid State Chemistry,1995,23(1):1~130.
    [120]L I Hill, A Verbaere, D Guyomard. MnO2 (α-, β-, γ-) compounds prepared by hydrothermal-electrochemical synthesis:characterization, morphology, and lithium insertion behavior [J]. Journal of Power Sources,2003,119-121: 226~231.
    [121]G Pistoia, A Antonini, D Zane, et al. Synthesis of Mn spinels from different polymorphs of MnO2 [J]. Journal of Power Sources,1995,56:37~43.
    [122]何方勇.掺杂锰酸锂的合成及性能研究[D].中南大学.2007.36-39.
    [123]彭爱国,贺周初,余长艳,等.化学二氧化锰制备中粗二氧化锰的氧化研究[J].无机盐工业,2010,42(1):20-22.
    [124]贺周初,彭爱国,余长艳,等.新型电池正极材料化学二氧化锰的重质化[J].精细化工中间体,2009,39(1):56-58.
    [125]R Thirunakaran, K T Kim, Y M Kang, et al. Adipic acid assisted, sol-gel route for synthesis of LiCrxMn2-xO4 cathode material [J]. Journal of Power Sources, 2004,137(1):100~104.
    [126]R Thirunakaran, K T Kim, Y M Kang, et al. Cr+ modified LiMn2O4 spinel intercalation cathodes through oxalic acid assisted sol-gel method for lithium rechargeable batteries [J]. Materials Research Bulletin,2005,40 (1):177~180.
    [127]Y C Su, Q F Zou, Y W Wang, et al. Structure and electrochemical behavior of LiCryMn2-yO4 compositions [J]. Materials Chemistry and Physics,2004,84 (2-3):302~306.
    [128]J Molenda, D Palubiak, J Marzec. Transport and electrochemical properties of the LiyCrxMn2-xO4 (0    [129]C P Grey, N Dupre. NMR studies of cathode materials for lithium-ion rechargeable batteries [J]. Chemical Reviews,2004,104:4493~4512.
    [130]Y G Xia, Q Zhang, H Y Wang, et al. Improved cycling performance of oxygen-stoichiometric spinel Li1+xAlyMn2-x-y04+δ at elevated temperature [J]. Electrochimica Acta,2007,52:4708~4714.
    [131]R H Zeng, W S Li, D S Lu, et al. A study on insertion/removal kinetics of lithium ion in LiCrxMn2-xO4 by using powder microelectrode [J]. Journal of Power Sources,2007,174:592~597.
    [132]K Edstrom, T Gustafsson, J O Thomas. The cathode-electrolyte interface in the Li-ion battery [J]. Electrochimica Acta,2004,50:397~403.
    [133]S B Park, H C Shin, W G Lee, et al. Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides [J]. Journal of Power Sources,2008,180: 597~601.
    [134]禹筱元.层状LiNi1/3CO1/3Mn1/3O2与改性尖晶石LiMn2O4的研究[D].长沙:中南大学,2005.
    [135]S W Lee, K S Kim, H S Moon. Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery [J]. Journal of Power Sources,2004,126:150~155.
    [136]Z D Peng, X R Deng, K Du, et al. Coating of LiNi1/3Mn1/3Co1/3O2 cathode materials with alumina by solid state reaction at room temperature [J]. Journal of Central South University of Technology,2008,15(1):34~38.
    [137]G R HU, X R Deng, et al. Comparison of AlPO4-and Co3(PO4)2- coated LiNio.8Co0.2O2 cathode materials for Li-ion battery [J]. Electrochemical Acta, 2008,53(5):2567~2573.
    [138]D Y Li, H Yang, J S Lian, et al. The Fabrication of the Hydrous Alumina Powders by the Sol-Gel Method. Rare Metal Materials and Engineering,2008, 37(2):292~294.
    [139]徐化云.锂离子电池正极材料的制备改性及表征[D].安徽合肥:中国科学技术大学,2007.
    [140]F Li, X H Yu, X Q Xin, et al. Syntheses of MO2(M=Si, Ce, Sn) nanoparticles by Solid-State reactions at ambient temperatures [J]. Solid State Science,2000,2(8): 767-772.
    [141]唐新村.低热固相反应制备铿离子电池正极材料及其嵌铿性能的研究[D].湖南长沙:湖南大学,2002.
    [142]J S Lian, H Yang, D Y Li. Influence of Heat Treatment Conditions on the Size and Morphology of Nano γ-Al2O3 Powders [J]. Rare Metal Materials and Engineering,2008,37(2):412~414.
    [143]H Lee, M G Kim, J ChoOlivine. LiCoPO4 phase grown LiCoO2 cathode material for high density Li batteries[J]. Electrochemistry Communications, 2007,9:149~154.
    [144]J Wang, S Y Chew, D Wexler. Nanostructured nickel sulfide synthesized via a polyol route as a cathode material for the rechargeable lithium battery [J]. Electrochemistry Communications,2007,9:1877~1880.
    [145]D H Kim, Y S Ahn, J Kim. Polyol-mediated synthesis of Li4Ti5O12 nanoparticle and its electrochemical properties [J]. Electrochemistry Communications,2005, 7:1340~1344.
    [146]D Wang, H Buqa, M Crouzet, et al. High-performance, nano-structured LiMnP04 synthesized via a polyol method [J]. Journal of Power Sources,2009, 189:624~628.
    [147]T R Kim, D H Kim, H W Ryu, et al. Synthesis of lithium manganese phosphate nanoparticle and its properties [J]. Journal of Physics and Chemistry of Solids, 2007,68:1203~1206.
    [148]Qing Lai Jiang, Ke Du, Yan Bing Cao, et al. Synthesis and characterization of phosphate-modified LiMn2O4 cathode materials for Li-ion battery [J]. Chinese Chemical Letters,2010,21:1382~1386.
    [149]J Cho, L Hyunjung, M G Kim. Olivine LiCoPO4 phase grown LiCoO2 cathod material for high density Li batteries [J]. Eleetrochemistry Communications, 2007,9(1):149~154.
    [150]I Taniguchi. Powder properties of partially substituted LiMxMn2-xO4 (M= Al, Cr, Fe and Co) synthesized by ultrasonic spray pyrolysis [J]. Materials Chemistry and Physics,2005,92:172~179.
    [151]C H Lua, T Y Wua, H C Wub. Preparation and electrochemical characteristics of spherical spinel cathode powders via an ultrasonic spray pyrolysis process Materials [J]. Chemistry and Physics,2008,112:115~119.
    [152]K Matsuda, I Taniguchi. Relationship between the electrochemical and particle properties of LiMn2O4 prepared by ultrasonic spray pyrolysis [J].Journal of Power Sources,2004,132:156~160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700