用户名: 密码: 验证码:
太西无烟煤超纯制备工艺与装备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为深度降低煤的灰分,解决制约煤基材料发展的瓶颈问题。论文以太西无烟煤为研究对象,进行了相关的试验研究,得出了通过煤岩组分分离制备超纯煤的方法;制定了分步脱灰与重介两段等密度精选相结合的超纯制备工艺。通过对加重质在旋流器内的沉降与扩散过程分析,建立了重介旋流器内密度场和速度场分布的异重流模型;研制出高精度分选设备——精选型圆筒重介旋流器。提出了悬浮液压力波形成与共振吸收模型,以及基于工艺自衡的介质密度调控新方法,开发了高精度重介调控技术。探索了破碎后用浮选法进行超纯制备的技术可行性。
     煤炭超纯制备的实质就是要提纯煤中纯净的均质镜质体,煤炭的超纯制备过程也就是煤岩组分的分离过程。研究结果表明,对粗选轻产物进行等密度精选,有利于提高综合分选精度和轻产物的纯度。由此,制定了两段跳汰初选——轻产物两段等密度重介精选的工艺流程。
     采用流体力学与热力学相结合的分析方法,提出了重介质在径向的沉积和扩散运动是旋流器内梯度密度分布的主要成因的观点,得出了重介旋流器内密度场分布满足异重流模型:在旋流器的内层为强迫涡区,径向密度与回转半径线性相关等密度面为均匀的圆台面;螺旋流的外层,存在轴向逐渐增厚的自由涡流动区域,该区域各点的密度与回转半径成指数函数关系(ρ=ρl +a?Rk),混合流体在轴向沿等密度线运动。被选物料进入旋流器后,迅速到达其等密度层附近并随之运动,得到分选。利用计算流体力学(CFD)软件(Fluent)对旋流器内密度场和速度场的分布进行了数值模拟,结果表明,悬浮液流场速度分布与密度分布形态一致,这进一步验证了异重流模型。介质入口流道形式和重产物口反压力大小等都对流场的分布有着显著的影响,通过对相关参数的优化,提高了旋流器的分选精度和抗磨性能。开发出Φ500/400、Φ800/650两种型号精选型圆筒重介旋流器,可能偏差E值≤0.015。通过流体受力分析,提出了悬浮液压力波形成与共振吸收模型:重介旋流器入口压力的变化可以分解为:来源于介质桶液位变化的低频压力波和来源于流体振荡的高频压力波。当高频压力波自振频率与空气弹簧自振频率相等时即可实现谐振吸收。提出了以降低工作介质整体粒度组成为特征的介质制备新方法,构建了基于工艺自衡的高精度重介分选密度自动控制系统,介质密度波动范围可控制在±0.002 kg/L;旋流器入口压力波动范围小于±0.001 MPa;介质消耗0.60 kg/t以下。
     论文的研究结果已应用于太西洗煤厂实际生产中,已生产出灰分Ad<2.00%超纯煤产品,取得了良好的技术经济效果。
Systematic research and experiments have been done to reduce excessive ash in coal. Bottlenecks restricting the development of coal based materials have been studied using Taixi anthracite as the model coal. Preparation of super-clean coal by maceral separation was investigated. It was concluded that a new technique using two de-ash steps and a heavy media cyclone employing equal density separation could prepare purification coal. A density current model describing the density and velocity fields in the cyclone was developed. Equipment to perform high-precision separations was constructed. This is called the Refine-type Heavy Medium Cyclone. The formation and sympathetic absorption of the suspension pressure wave was modeled. A new method to adjust the density of the media that is based on a self-balancing principle is described. This allowed precise adjustment of the heavy medium. The feasibility of using flotation to purify Taixi anthracite was also explored.
     The results show that essence of coal purification is to clean vitrinite in the coal. Coal purification is the process of maceral separation. Equal density re-separation of the initially purified product helps improve the total precision of the separation and the purity of the cleaned coal. To achieve this end a two segment jigging technique for pre-separation, and two stage heavy medium cyclone for equal density concentration was designed.
     A combination of hydrodynamics and thermodynamics was adopted to analyze the radial diffusion and sedimentation in the medium. These appear to be the main cause of the graded density distribution that develops in the cyclone. The density and velocity fields are distributed in the cyclone in a way that satisfies the density current model. The inner area is the forced whirlpool zone where the radial density and the radius of gyration are linearly related isopycnic surface is truncated cone. An eddy free flow area exists in a thickening outer layer of screw flow. In this region the density and gyration radius follow an exponential function (ρ=ρl +a?Rk). In these regions the mixed fluids move in the axial direction along equal density lines. CFD software was adapted to allow simulation of the velocity and density fields in the cyclone. The velocity distribution in the flow field is consistent with density distribution of the suspension. This validates the density current model. Feed enters the cyclone, reaches and follows the corresponding equal density layer, where separation takes place.
     The flow field had been greatly influenced by the medium inlet form and the counterpressure of the heavy products, the separation precision and abrasion resistance of cyclone had been improved through the optimizing of the relative parameters. Two types of selected cylinder heavy medium cyclone with radiuses ofΦ500/400、Φ800/650 had been developed, E≤0.015.
     The model of suspension pressure wave and resonance absorption had been put forward through the force analysis of the fluid: the inlet pressure variety of heavy medium cyclone could be separated into two kinds of pressure waves: the low frequency wave which comes from the change of liquid level in the medium bucket, and the high frequency pressure wave which is from the fluid oscillation. When the self-oscillation frequencyof high frequency wave equaled to the frequency of self-oscillation of air spring, the resonance oscillation will be achieved. The new method of medium preparation based on decreasing medium integrity granularity formation was established, high efficient heavy medium separation density automatic control system based on self-balance was proposed, and the fluctuating range of the medium density could be controlled in±0.002 kg/L; and the pressure fluctuating range of the cyclone inlet was less than±0.001 MPa; and medium consumption is less than 0.60kg/t
     The research results of this paper had been applied in Taixi coal preparation plant, and the purification coal product with ash Ad<2.00% had been produced, and satisfied technical and economic effects had been obtained.
引文
[1]云南经济信息网,Http//:www.yn.cei.gov.cn,2009—02—01.
    [2]周少雷等.中国的选煤与选煤技术.第15届国际选煤大会论文集.徐州:中国矿业大学出版社,2006.10.
    [3]百度百科,Http//:www.baike.baidu.com/view/1252956.htm.
    [4]徐健,王淑萍.水煤浆代油燃烧技术的应用.全国化工热工设计技术中心站2004年年会论文集,2004:259~266.
    [5]中国招标信息网,www.cnbidding.com,2009—02—10.
    [6]解强,胡维淳,张玉柱,许红球.对我国活性炭工业发展的思考与建议.煤炭加工与综合利用,2003,(5).
    [7]王大春.高质量煤基活性炭炭化料的制备研究进展.武汉科技大学学报:自然科学版,2008,26(3).
    [8]陈占军.配置制备高吸附活性炭的试验研究.煤炭加工与综合利用,2002(2):28-30.
    [9]张意颖,张文辉,梁大明,李书荣,王岭.煤基活性炭的原料煤适应性.煤, 2006 ,9(2).
    [10]郭中台.降低催化裂化油浆中灰分的过滤工艺研究[D].天津:天津大学硕士学位论文,2005.
    [11]李侃社,周安宁.煤基材料研究进展.高分子材料科学与工程,2001.4.
    [12]刘宝珺.西部大开发中的资源与环境.山东科技大学学报:自然科学版,2005,(1).
    [13]龙晓阳.目前煤净化技术简介[J].鞍钢技术,1994,(3).
    [14]耿东森,张荣光,张健·酸碱脱灰法制备超低灰煤[J].河北煤炭, 2000,(2).
    [15]曾凡,胡永平·矿物加工颗粒学[M]·徐州:中国矿业大学出版社.
    [16]章新喜,段超红,梁春成.低灰洁净煤的电选制备[J].中国矿大学报, 2001,(6).
    [17]安振连,陈清如,章新喜·摩擦电选制备超低灰煤的研究[J]·选煤技术, 1997,(8).
    [18]付晓恒等.煤的超细粉碎与超净煤的分选.煤炭学报,2005,30(2).
    [19] G.费拉拉.用先进的双密度动态重介系统生产优质煤.第十一届国际选煤会议论文集. 188~194.
    [20]杨建国.两段圆筒型重介旋流器的研究.徐州:中国矿业大学硕士学位论文,1992,5.
    [21]刘炯天.旋流静态微泡浮选柱及洁净煤制备研究,北京:中国矿业大学博士学位论文,1999,5.
    [22]曾凡.选取超纯煤的两种物理-化学方法[J].煤炭加工与综合利用, 1994,(5).
    [23]邓楚光.洁净煤技术[M].武汉:华东理工大学出版社,1996,12.
    [24]谢翠平,杨建国,王羽玲.超纯煤制备意义及制备方法简介[J].洁净煤技术,2004,(10).
    [25]谢翠平,杨建国.超细粉碎在超纯煤制备中的意义及发展方向[J].煤炭技术,2004,(12).
    [26]蒋善勇等.细粒太西煤选择性絮凝分选技术[J].煤,2007,(3).
    [27]张西春.煤质技术与科学管理,1997(4).
    [28]樊民强.选煤数学模型与数据处理.北京:煤炭工业出版社,2005(4).
    [29] DENSE-MEDIUM CYCLONE OPTIMIZATION INCREASES THE AMOUNT OF VALUABLE MATERIALS RECOVERED, http://www.netl.doe.gov/ KeyIssues/ mining/ cyclone.pdf, The National Energy Technology Laboratory (NETL), part of DOE’s national laboratory system, is owned and operated by the U.S. Department of Energy (DOE).
    [30]谢广元.选矿学.江苏徐州:中国矿业大学出版社,2001.
    [31]蒋明虎.旋流器切向速度测试与分布规律分析[J].石油机械,1999,(1).
    [32]吴飞雪等.激光粒子成像技术测定旋风分离器内颗粒浓度场的实验研究.石油大学学报:自然科学版,2000,(6).
    [33]王祖瑞.重介质选煤的理论与实践.北京:煤炭工业出版社,2001.
    [34] A J Lynch, Mineral Crushing and Grinding Circuits, D.W. Fuerstenau, Ed,vol.1,(1977).
    [35]褚良银.充气水力旋流器处理能力数学模型.有色矿冶,2007,(5).
    [36]王卫国,周慎杰.圆柱旋流器液固两相流场的数值模拟.煤矿机械,2006,(2).
    [37]刘峰等.DWP重介质旋流器流场的数值模拟.煤炭学报,2007,(2).
    [38]刘峰等.新型三产品重介质旋流器流场的数值模拟研究.选煤技术,2007,(8).
    [39] Deniel J. SUASNABAR and Clive A. J. FLETCHER, A CFD model for dense medium cyclone, 2nd international conference on CFD in the minerals and process industries, CSIRO, Melbourne, Australia, 6-8 December 1999, 200-204.
    [40]柳吉祥.旋转流分选的理论及应用.北京:煤炭工业出版社,1985.
    [41]杨胜林等.关于三产品重介质旋流器应用的探讨.重介质选煤技术会议论文集,海南海口,2008(5):41~57.
    [42]杨建国.圆筒重介旋流器磨损机理与抗磨设计研究.徐州:中国矿业大学博士学位论文,1997,5.
    [43]杨建国.旋流器入口流道内颗粒冲击参数计算方法.中国矿业大学学报:自然科学版,1998 (4):25-28.
    [44] R. Sripriya et al, Dense-Medium Cyclone: Plant Experience with High Near-Gravity Material Indian Coals, International Journal of Coal Preparation and Utilization, Volume 27, Issue 1 - 3 January 2007 , pages 78– 106.
    [45]选煤手册.煤炭工业出版社,1993,4.
    [46] Ferrara,G. Tri-Flo: A multistage high-sharpness DSM process with new applications . Transaction of the Society for Mining Metallurgy and Exploration– Even Numbers Only. ISSN07696248, vol.296 PP63~64,1996.4.3.
    [47] P. Bozzato, Static and Dynamic Stability in Dense Medium Separation Process, mineral processing and extractive metallurgy review, Vol 20 ISSUE 1 1999, PP197-214
    [48]《中国的矿产资源政策》白皮书.中国政府,2003.
    [49] Wang Yuling,Yang Jianguo. Use petrographical methods to choose suitable resources for low-ash-coal developing. 17th Annual International Pittsburgh Conference, Pittsburgh in USA,2000,(9).
    [50] Yang Jianguo. Coal Desulphurizarion by Cyclonic Whirl. 16th Annual International Pittsburgh Conference. Pittsburgh in USA,1999,(10).
    [51] Marian Wagner ,Petrologic studies of terrestrial organic matter in Carpathian flysch sediments, southern poland, 11 Internatoinal journal of Coal Geology 29(1996),P259-272.
    [52]孙旭光,李荣西,杜美利.煤显微组分分离富集.中国煤田地质.1997,9(3):26-27.
    [53]钱宁,范家骅.异重流.北京:水利出版社,1958.
    [54] Chris Clarkson and Peter Holtham, Efficiency of Large Diameter Dense Medium Cyclones, The Australian Coal Review April 1998.
    [54] Modular Dense Medium Cyclone Plants, www.FLSmidthMinerals.com.
    [55] A. K. Majumder et al, Applicability of a Dense-Medium Cyclone and Vorsyl Separator for Upgrading Non-Coking Coal Fines for Use as a Blast Furnace Injection Fuel, International Journal of Coal Preparation and Utilization, Volume29, Issue1 , January 2009 , pages 23– 33.
    [56] M. K. Magwei, Spigot capacity of dense medium cyclone, Paper for the degree master of engineering, university of Pretoria, 2007.
    [57] M. K. Magwei, S Volume Fundamentals on the spigot capacity of dense medium cyclones ,20, Issue 6, May 2007, Pages 574-580.
    [58] D.W. Horsfallt, Discussion: The beneficiation of fine coal by dense-medium cyclones, DECEMBER 1980, 441-442.
    [59] Bruce Atkinson, et al, Best Practice Guide to Dense Medium Cyclone Sampling and Analysis, ACARP Project, Published: January 07, http://www.acarp.com.au .
    [60] P. J. F. FOURIE*, The beneficiation of fine coal by dense-medium Cyclone, JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY OCTOBER 1980, 357-361.
    [61] L. L. Vatta, The Effect of Magnetic Field on the Performance of a Dense MediumSeparator, Physical Separation in Science and Engineering , Volume 12 (2003), Issue 3,Pages 167-178.
    [62] M. NARASIMHA, LARGE EDDY SIMULATION OF A DENSE MEDIUMCYCLONE - PREDICTION OF MEDIUM SEGREGATION AND COAL PARTITIONING,Fifth International Conference on CFD in the Process Industries, CSIRO, Melbourne,Australia, 13-15 December 2006, 1-6.
    [63] Wikipedia, Coal preparation plant, the free encyclopedia, http://en.wikipedia.org/wiki/Coal_preparation_plant.
    [64] Zhang xinxi, Triboelectrostatic Separation-an Efficient Method of Producing Low AshClean Coal, Journal of China University of Mining & Technology, 2002 (01), 30-34.
    [65]沈笑君.跳汰机自动分选超低灰分煤的实践.选煤技术, 2003,(6).
    [66]胡炳双.跳汰机自动分选超低灰分煤的探索.应用能源技术, 2004,(4).
    [67]付晓恒.物理法分选超净煤.选煤技术. 2004,(4).
    [68]付晓恒.煤炭的深度物理加工与超净煤的制备.选煤技术, 2006,(5).
    [69] G. ?zbayoglu and M. Mamurekli, Super-clean coal production from Turkishbituminous coal, Fuel,Volume 73, Issue 7, July 1994, Pages 1221-1223
    [70] AHMARUZZAMAN Md., Jute fiber composites from coal, super clean coal, andpetroleum vacuum residue-modified, Polymer-plastics technology and engineering ,2005, vol. 44, pp. 1607-1629
    [71] American Coal To Super-Clean Liquid Fuels, http://www.futurecoalfuels.org/.
    [72]任兰柱.新型可调小直径水力旋流器的设计研究.选煤技术,2006,(3).
    [73] K. Osseo-Asare, Aqueous Biphase Extraction for Processing of Fine Coal,http://www.osti.gov/bridge/servlets/purl/598772-FpCnmU/webviewable/598772.pdf
    [74] A. Nabeel, Studies on the Production of Ultra-clean Coal by Alkali-acid Leaching ofLow-grade Coals, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,Volume 31, Issue 7 January 2009 , pages 594 - 601
    [75] COAL ASH MODIFICATION AND REDUCTION, world intellectual propertyorganization , http://www.wipo.int
    [76] Coal-clean, cleaner, cleanest, Ecos 57, spring 1988, 28-30
    [77] Xie qiang, Preparation of activated carbon with low ash content and high specificsurface area from coal in the presence of KOH, Journal of coal science & engineering,(China) ,Volume 9, Issue 02, 2003.
    [78]王启宝.超低灰煤制备优质活性炭的研究.黑龙江矿业学院学报, 1999,(1).
    [79] HSISHENG TENG , Activated carbon production from low ash subbituminous coalwith CO2 activation, AIChE journal 1998, vol. 44, pp. 1170-1177
    [80] DYRKACZ G. R., An investigation into the process of centrifugal sink/float separations of micronized coals. I : Some inferences for coal maceral separations, Energy & fuels , 1992, vol. 6, pp. 720-742
    [81] R. Q. Honaker, Coal maceral separation using column flotation, Minerals Engineering, Volume 9, Issue 4, April 1996, Pages 449-464
    [82] Gary R. Dyrkacz, Adventures in Maceral Separation, 214-218 http://www.anl.gov/PCS/acsfuel/preprint%20archive/Files/39_1_SAN%20DIEGO_03-94_0214.pdf
    [83] G. R. Dyrkacz, A new prodecure for the separation of coal macerals, AIP Conf. Proc. -- February 1, 1981 -- Volume 70, p. 443
    [84]王美丽.煤岩组分解离与分选的研究.选煤技术, 2004,(4).
    [85] Garv R. Dvrkacz, THE EFFICIENT, LARGE SCALE SEPARATION OF COAL MACERALS, http://www.anl.gov/
    [86]张林,王朝雨,刘军.煤质活性炭除灰方法比较.现代化工,第25卷增刊.
    [87]钱伯章.发展煤基燃料是解决我国能源安全问题的重要途径.煤炭加工与综合利用,2004,(5).
    [88]霍健明等.超低灰太西精煤的制备.煤炭加工与综合利用,1997,(4).
    [89]周师庸.应用煤岩学.冶金工业出版社.
    [90] E.斯塔赫等.斯塔赫煤岩学教程.北京:煤炭工业出版社.
    [91]陈文敏.中国超纯煤的研制.煤炭科学技术,1994,(6).
    [92]欧泽深等.3米大型旋流器浮选柱研究鉴定文件,1998.
    [93]杨建国,欧泽深,张守军.重介旋流器选煤工艺地探讨.煤炭加工与综合利用,2002 (1):11-13.
    [94]张春林等.有关大型无压给料三产品重介质旋流器若干问题的探讨.煤炭加工与综合利用,2002(2):16-18.
    [95]杨维新等.合理改变重介旋流器工艺参数的生产实践.煤炭加工与综合利用,2001 (3):42-44.
    [96] MINING OFFICE OF INDUSTRIAL TECHNOLOGIES ENERGY EFFICIENCY AND RENEWABLE ENERGY U.S. DEPARTMENT OF ENERGY, SELECTIVE FLOCCULATION OF FINE MINERAL PARTICLES, Project Fact Sheet, http://www1.eere.energy.gov/industry/mining/pdfs/flocc.pdf
    [97]任爱军,方启学.旋流分选技术进展.国外金属矿选矿,2002,(8).
    [98]难选高硫煤脱硫降灰研究.江苏徐州:中国矿业大学,鉴定文件,1994.
    [99]楮良银.充气水力旋流器分选过程行为研究及应用开发.东北大学博士论文,1997.
    [100] Miller JD.,Principles of swirl flotation in centrifugal field with an air-sparged hydrocycloned[M],AEM-AIME Annual Meeting,1982;
    [101]方启学.亲水性矿粒亲水程度的测定.矿冶,2000.
    [102]何为军.用溶气式浮选柱制备超净煤的研究.北京校区:中国矿业大学博士学位论文, 2001.5.1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700