用户名: 密码: 验证码:
铝土矿连续球磨过程建模与关键参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝土矿选矿是我国首创的处理高硅铝矿石的新工艺,该工艺通过提高矿石的铝硅比使其适用于拜耳法氧化铝生产,以降低氧化铝的生产成本,具有很好的发展前景。球磨是选矿中一个十分重要的环节,它将经过破碎的铝土矿磨碎至一定细度,得到有用矿物基本单体解离或富集合的颗粒,再经过分级过程后供浮选,其经济和技术指标的好坏直接关系着整个选厂的经济和技术指标。
     由于铝土矿来源复杂、品位波动频繁,其球磨过程由人工凭经验控制,造成流程指标波动大、效率低等问题。建立铝土矿球磨过程模型,对研究流程的行为和实现优化控制具有重要意义。然而,球磨过程影响因素众多且相互耦合,包括物料的性质、介质参数、操作变量、磨机规格、转速等,是一个非常复杂的系统。同时,这些因素的多变性和过程中的随机因素大大增加了建模的难度。
     获得物料的破碎分布函数(B)、物料在磨机内的停留时间分布(RTD)函数和连续磨矿物料的比破碎速率函数(S)是建立球磨过程模型的关键,因此,本论文深入研究并优化确定了这三个函数参数,从而建立了球磨机磨矿过程的总体平衡模型,并将其引入磨矿分级过程的数据协调。对实际生产数据的预测结果表明了球磨机模型的有效性。论文主要研究工作及创新性如下:
     (1)针对矿石粒度分布严重不均造成自然粒级给料的磨矿数据无法准确确定破碎分布函数,而传统单粒级给料方法试验工作量大的问题,基于组合粒级给料方式的分批磨矿试验方法,获取了大量的试验数据,揭示了铝土矿破碎的非一阶特性,即铝土矿粗粒级和细粒级的破碎速率随时间的增加逐渐减小,而引起非一阶的最可能原因是铝土矿本身的非均质性。
     (2)针对铝土矿不同粒级破碎速率随时间变化快慢不同,且磨矿开始时减速快,然后逐渐趋于一阶的特点,提出了分段线性化的非一阶破碎描述方法。该方法对磨矿时间进行分段,假设每一时间段内破碎符合一阶规律,以前一时间段的产品作为后一时间段的给料来计算物料的破碎速率和产品粒度分布,进而准确地确定了分批磨矿破碎速率随粒度和时间变化的三维关系,且简化了模型的求解。在此基础上,优化确定了铝土矿的破碎分布函数。基于所获参数,对分批磨矿产品粒度进行预测,累积粒度分布的相对误差均位于±5%以内,非累积粒度分布的绝对误差均位于±2%以内,表明了所获参数具有较高的准确性。
     (3)结合磨机本身的分级作用,采用两个小混合器加一个大混合器的等价模型表示RTD。针对等价模型参数示踪测量方法难度大,而从实际生产数据辨识的方法会影响破碎速率函数精度的问题,提出基于实测数据直接估算平均停留时间的方法,从而确定了铝土矿连续球磨的RTD,并避免了RTD对破碎速率函数的影响。
     (4)针对铝土矿的非均质性,基于分批磨矿结果,提出了连续磨矿的非一阶破碎速率函数模型;针对破碎速率函数优化辨识的边界约束不确定问题,提出了基于软约束调整的优化方法,保证破碎速率满足给定目标的同时减小了搜索代价,进而确定了不同生产条件下最优的破碎速率函数;分析破碎速率与磨矿条件和矿石性质的关系,建立了破碎速率函数的最小二乘支持向量机(LS SVM)软测量模型。
     (5)针对磨矿分级过程数据存在采样和分析误差的问题,结合数据的层次特点,提出了磨矿分级过程三层数据协调模型,并将球磨机单元模型引入粒度数据协调中,增强了数据的冗余性。提出了基于PSO算法的分层协调方法,保证协调精度的同时加快了协调的求解效率。协调结果的统计分析,以及与商业软件协调结果的对比证明了协调模型和方法的有效性,也进一步证明了球磨机模型的有效性。
Beneficiation of diasporic bauxite, created firstly in China, is one of the new potential technologies to process high silica bauxite, which eliminates some silica minerals to increase the grade of the ores so that they are suitable for the Bayer process, and in consequence, the cost of alumina production is reduced. Ball milling is an important operation unit in the beneficiation process, which grinds the comminuted ores to small particles and liberates the alumina from silica minerals for classification and then flotation. The economical and technical indices of the benification plant are directly influenced by the grinding process.
     In practice, the ores come from many mine resources and the grade of the ores varies frequently, and the process is controlled empirically by the operators. All of these result in large fluctuation of the grinding circuit and low efficiency. So, modelling the process is significant to understand and to optimally control the process. However, the ball milling process is influenced by many factors, including the properties of the materials, the media characteristics, operating conditions, mill size and speed etc., so that it is a complex process. Meanwhile, time-varying of these factors and other stochastic factors make it even more diffcult to model the process.
     The breakage distribution function (B), residence time distribution (RTD) of the miaterial in the mill and the specific breakage rate function (S) of the continuous milling process are the key parameters to establish the ball milling model. Therefore, these three functions are studied and optimally determined to establish the population balance model. Finally, data reconciliation of the grinding-classification process based on the ball mill model is studied. The prediction results of the industrial process show the effectiveness of the model. The main contributions are as follows:
     (1) The size distribution function can not be correctly determined because there are too few medium size particles in the natural size distribution of the bauxite. Meanwhile the mono-sized grinding method is time-consuming and expesive. So, a test method with make-up feed is adopted to get a large amount of test data. The breakage rates of the bauxite are found to be non-first order from the test data. That is, the coarse and the fine size intervals break slowly and follow non-first order, and the medium size intervals break fast and follow the first order. The non-first order is most probably caused by the heterogeneity of the ore.
     (2) According to the characteristic that breakage rates of different size intervals decrease fast at different rates with time at the beginning and then become to be first order, piecewise linearized method is proposed to describe the non-first order. In the method, grinding time is devided into pieces, and breakage is assumed to be first order in each time piece. Breakage rates and product size distribution are then calculated by taking the product of last piece as feed. So, the 3D relationship of the breakage rates varying with particle size and grinding time is accurately determined and the model solving problem is simplified. The breakage distribution function is then optimally determined by using back-calculation method. Validation results show that relative errors of the cumulative size distribution are all within±5%, and absolute errors of noncumulative size distribution are all within±2%, which means high accuracy of the obtained parameters.
     (3) Based on the mechanism of the material transportation through the mill and the exit classification of the mill, the two small-one large reactors model is used as the RTD model. Because it is difficult to use the radio tracking method to get the RTD parameters in the bauxite grinding process and fitted RTD will influence the accuracy of breakage rate function, a mean RTD estimation method based on measured and empirical data is then proposed to avoid the influence of RTD on breakage rate.
     (4) Considering of the heterogenerity of the bauxite, a non-first order breakage rate model is proposed for the continuous grinding process. Due to the uncertainty of the boundary constraints of the breakage rate identification problem, an optimization method based on soft constraints adjusting is proposed, which insures the breakage rates are satisfying and cost of searching is reduced. The optimal breakage rates under different operating conditions are then identified from the industrial data. A soft sensor using least square support vector model (LS_SVM) is proposed to calculate the breakage rates using milling condition parameters.
     (5) In order to correct the sampling and analysis errors of the process data, a triple-layer data reconciliation model is proposed for the grinding-classification process based on the characteristic of the process data. Meanwhile, the ball mill unit is introducted into the size distribution reconciliation to increase the redundancey the process data. Then, the method of solving the reconciliation problem layer by layer based on PSO is proposed to reduce the time complexity of the problem. The statistical analysis of the reconciliation results and comparison of them with the reconciliation results using a commercial software validate the effectiveness of the reconciliation model and the method, and also the ball mill model.
引文
[1]刘丽孺.氧化铝生产的能耗分析及环境负荷评价[博士学位论文].沈阳:东北大学,2003.
    [2]Smith P. The processing of high silica bauxites-Review of existing and potential processes. Hydrometallurgy,2009,98 (1-2):162-176.
    [3]选矿手册编委会.《选矿手册》第二卷,第二分册.北京:冶金工业出版社,1993,p.93.
    [4]Flavel M D, Rimmer H W. Particle breakage study in an impact breakage environment. Reprint of paper presented at SME-AIME Annual Meeting, Chicago, USA. SME Publications, Littleton, Ohio,1981.
    [5]杨家文主编.碎矿与磨矿技术.北京:冶金工业出版社,2006,p.1.
    [6]Epstein B. The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution. Journal of the Franklin Institute,1947, 244(6):471-477.
    [7]Epstein B. Logarithmico-normal distribution in breakage of solids. Industrial and Engineering Chemistry,1948,40(12):2289-2291.
    [8]Whiten W J. A model for simulating crushing plants. Journal of the South African Institute of Mining and Metallurgy,1972,72(10):257-264.
    [9]Whiten W J. A matrix theory of comminution machines. Chemical Engineering Science,1974,29(2):31-34.
    [10]Mishra B K. A review of computer simulation of tumbling mills by the discrete element method: Part Ⅰ—contact mechanics. International Journal Mineral Processing,2003,71(1-4):73-93.
    [11]Mishra B K. A review of computer simulation of tumbling mills by the discrete element method Part Ⅱ—Practical applications. International Journal Mineral Processing,2003,71(1-4):95-112.
    [12]Herbst J A. A microscale look at tumbling mill scale-up using high fidelity simulation. International Journal of Mineral Processing.2004,74S:S299-S306.
    [13]Powell M S, Morrison R D. The future of comminution modelling. International Journal of Mineral Processing,2007,84(1-4):228-239.
    [14]周平,岳恒,赵大勇,等.基于案例推理的软测量方法及在磨矿过程中的应用.控制与决策,2006,21(6):646-655.
    [15]丁进良,岳恒,齐玉涛,等.基于遗传算法的磨矿粒度神经网络软测量.仪器仪表学报,2006,27(9):981-984.
    [16]张晓东,王伟,王小刚.选矿过程神经网络粒度软测量方法的研究.控制理论与应用.2002,19(1):85-88.
    [17]Gardner R P, Austin L G.. A chemical engineering treatment of batch grinding. In: Rumpf H, Behrens D, eds. Procddedings:1st European Symposium Zerkleinern, Verlag Chemie, Weinheim.1962, pp.217-247.
    [18]Austin LG, Shoji K, Bhatia V, et al.. Some results on the description of size reduction as a rate process in various mills. Industrial and Engineering Chemistry Process Design and Development,1976,15(1):187-196.
    [19]Deniz V. A study on the specific rate of breakage of cement materials in a laboratory ball mill. Cement and Concrete Research,2003,33(3):439-445.
    [20]Bozkurt V, Ozgur I. Dry grinding kinetics of colemanite. Powder technology. 2007,176(2-3):88-92.
    [21]Samanli S, Cuhadaroglu D, Ipek H, et al.. The investigation of grinding kinetics of power plant solid fossil fuel in ball mill. Fuel,2010,89(3):703-707.
    [22]Ipek H, Ucbas Y, Yekeler M, et al.. Dry grinding kinetics of binary mixtures of ceramic raw materials by bond milling. Ceramics International,2005,31(8): 1065-1071.
    [23]Shoji K, Lohrasb S, Austin L G. The Variation of breakage parameters with ball and powder loading in dry ball milling. Powder Technology,1979,25(1): 109-114.
    [24]Verma R, Rajamani R K. Environment-dependent breakage rates in ball milling. Powder Technology,1995,84(2):127-137.
    [25]Erdem A S, Ergun S L. The effect of ball size on breakage rate parameter in a pilot scale ball mill. Minerals Engineering,2009,22(7-8):660-664.
    [26]Austin L G, Bagga P. An analysis of fine dry grinding in ball mills. Powder Technology,1981,28(1):83-90.
    [27]Austin L G, Shah J, Wang J, et al.. An analysis of ball-and-race milling Part Ⅰ:The Hardgrove mill. Powder Technology,1981,29(2):263-275.
    [28]Yekeler M, Ozkan A, Austin L G. Kinetics of fine wet grinding in a laboratory ball mill. Powder Technology,2001,114(1-3):224-228.
    [29]Teke E, Yekeler M, Ulusoy U, et al.. Kinetics of dry grinding of industrial minerals:calcite and barite. International Journal of Mineral Processing,2002, 67(1-4):29-42
    [30]Tangsathitkulchai C. The effect of slurry rheology on fine grinding in a laboratory ball mill. International Journal of Mineral Processing,2003,69(1):29-47.
    [31]Ozkan A, Yekeler M, Calkaya M. Kinetics of fine wet grinding of zeolite in a steel ball mill in comparison to dry grinding. International Journal of Mineral Processing,2009,90(1):67-73.
    [32]Rajamani R K, Guo D. Acceleration and deceleration of breakage rates in wet ball mills. International Journal of Mineral Processing,1992,34(1-2):103-118.
    [33]Bilgili E, Hamey R, Scarlett B. Nano-milling of pigment agglomerates using a wet stirred media mill:elucidation of the kinetics and breakage mechanisms. Proceedings of the second International Conference on Population balance Modeling. Valencia, Spain, Paper No.20.2004.
    [34]Kapur P C. Self-preserving size spectra of comminuted particles. Chemical Engineering Science,1972,27(2):425-431.
    [35]Bilgili E, Hamey R, Scarlett B. Nano-milling of pigment agglomerates using a wet stirred media mill:Elucidation of the kinetics and breakage mechanisms. Chemical Engineering Science,2006,61(1):149-157.
    [36]Bilgili E, Scarlett B. Population balance modeling of non-linear effects in milling processes. Powder Technology,2005,153(1):59-71.
    [37]Bilgili E, Yepes J, Scarlett B. Formulation of a non-linear framework for population balance modeling of batch grinding:Beyond first-order kinetics. Chemical Engineering Science,2006,61(1):33-34.
    [38]Ma Zh, Hu S, Zhang S, et al. Breakage behavior of quartz in a laboratory stirred ball mill. Powder Technology,1998,100 (1):69-73.
    [39]Rao B V, Datta A. Analysis of nonlinear batch grinding in stirred media mills using self-similarity solution. Powder Technology,2006,169(1):41-48.
    [40]Grandy G A, Fuerstenau D W. Minerals beneficiation-simulation of nonlinear grinding systems:Rod-mill grinding. Transactions of the Society of Mining Engineers of AIME,1970,247:348-354.
    [41]Fuerstenau D W, De A, Kapur P C. Linear and nonlinear particle breakage processes in comminution systems. International Journal of Minerals Processing, 2004:74S:S317-S327.
    [42]Tavares L M, De Carvalho R M. Modeling breakage rates of coarse particles in ball mills. Minerals Engineering,2009,22(7-8):650-659.
    [43]陈炳辰.影响磨矿分级操作因素的分析.金属矿山,1984,13(8):27-31.
    [44]盖国胜.粉碎过程数学模型.山东建材学院学报,1988,2(4):22-29.
    [45]Herbst J A, Fuerstenau D W. Mathematical simulation of dry ball milling using specific power information. Transaction of SME-AIME,1973,254:343-348.
    [46]Herbst J A, Grandy G A, Fuerstenau D W. Population balance models for the design of continous grinding mills. XiMDC, London. Paper 19,1973.
    [47]Austin L G, Klimpel R R, Luckie P T. Process Engineering of Size Reduction: Ball Milling. New York: Society of Mining Engineering,1984.
    [48]Morrell S, Man Y T. Using modelling and simulation for the design of full scale ball mill circuits. Minerals Engineering,1997,10 (12):1311-1327.
    [49]Man Y T. Model-based procedure for scale-up of wet, overflow ball mills, part I: outline of the methodology. Minerals Engineering,2001,14(10):1237-1246.
    [50]Man Y T. Model-based procedure for scale-up of wet, overflow ball mills, part II: worked example. Minerals Engineering,2001,14(10):1247-1257.
    [51]Matijasic G, Glasnovic A. Batch Grinding in laboratory ball mills:Selection function. Chemical Engineering and Technology,2009,32(10):1560-1566.
    [52]Datta A, Rajamani R K. A direct approach of modeling batch grinding in ball mills using population balance principles and impact energy distribution. International Journal of Mineral Processing,2002,64(4):181-200.
    [53]Narayanan S S, Whiten W J. Breakage characteristics for ores for ball mill modeling. Proceedings of the Australian Institute of Mining and Metallurgy,1983, 286:31-39.
    [54]Pauw O G, Mare M S. The determination of optimum imact breakage routes for an ore. Powder Thchnology,1988,54(1):3-13.
    [55]Bourgeois F. Micro-scale modelling of comminution processes [Dotorial Thesis]. Salt Lake City:University of Utah,1993.
    [56]King R P. Modelling and simulation of mineral processing systems, first editation. New York: Butterworth-Heinemann Publishers,2001.
    [57]Sand G W, Subasinghe G K N. A novel approach to evaluating breakage parameters and modeling batch grinding. Minerals Engineering,2004,17(11-12): 1111-1116.
    [58]Austin L G, Bhatia V K. Experimental methods for grinding studies in laboratory mills. Powder Technology,1972,5(5):261-266.
    [59]Austin L G, Luckie P T. Methods for determinaton of breakage distribution parameters. Powder Technology,1972,5(4):215-222.
    [60]Austin L G, Luckie P T. The estimation of non-normalized breakage distribution parameters from batch grinding tests. Powder Technology,1972,5(5):267-271.
    [61]Klimpel R R, Austin L G. The back-calculation of specific rates of breakage and non normalized breakage distribution parameters from batch grinding data. International Journal of Mineral Procesing,1977,4(1):7-32.
    [62]Devaswithin A, Pitchumani B, De Silva S R. Modified back-calculation method to predict particle size distributions for batch-grinding in a ball mill. Industrial and Engineering Chemistry Research:Process Design and Development,1988,27(4): 723-726.
    [63]Reid K J. A solution to the batch grinding equation. Chemical Engineering Science,1965,20(11):953-963.
    [64]Kapur P C. An improved method for estimating the feed-size breakage distribution function. Powder Thchnology,1982,33(2):269-275.
    [65]Berthiaux H, Varinot C, Dodds J. Approximate calculation of breakage parameters from batch grinding tests. Chemical Engineering Science,1996, 51(19):4509-4516.
    [66]Berthiaux H, Dodds J. A new estimation technique for the determination of breakage and selection parameters in batch grinding. Powder Technology,1997, 94(2):173-179.
    [67]Das P K, Khan A A. Pitchumani B, Solution of the batch grinding equation. Powder Technology,1995,85(3):189-192.
    [68]Das P K. Use of cumulative size distribution to back-calculate the breakage parameters in batch grinding. Computers and Chemical Engineering,2001, 25(9-10):1235-1239.
    [69]Capece M, Bilgili E, Dave R. Identification of the breakage rate and distribution parameters in a non-linear population balance model for batch milling. Powder Technology.2011,208(1):195-204.
    [70]Yousefi A-A, Irannajad M, Farzanegan A. Determination of breakage function of ores using BFDS Software. In:1st Iranian Mining Engineering Conference, Tehran.2005, pp.1333-1347.
    [71]Rajamani K, Herbst J S. Simultaneous estimation of selection and breakage functions from batch and continuous grinding data. Transactions of the Institution of Mining and Metallurgy,1984,93:C74-C85.
    [72]Pettersen J K, Sandvik K L. Estimating the breakage and selection functions for a continuous mill. International Journal of Mineral Processing,1992,35(3-4): 149-158.
    [73]Weller K R. Hold-up and residence time characteristics of full scale grinding circuits. In:J.O'Shea and M.Polis, eds. Proceedings, third IFAC Symposium, Pergammon Press,1980, pp.303-309.
    [74]Marchand J C, Hodouin D, Everell M D. Residence time distribution and mass transport characteristics of large industrial grinding mills. In: Shea J 0 and Polis M, eds.. Proceedings, third IFAC Symposium, Pergammon Press,1980, pp. 295-302.
    [75]Cho H, Austin L G. The equivalence between different residence time distribution models in ball milling. Power Technology,2002,124(1-2):112-118.
    [76]Makokha A B, Moys M H, Bwalya M M. Modeling the RTD of an industrial overflow ball mill as a function of load volume and slurry concentration. Minerals Engineering,2011,24(3-4):335-340.
    [77]Man Y T. Model-based procedure for scale-up of wet, overflow ball mills, part III: validation and discussion. Minerals Engineering,2001,14(10):1259-1265.
    [78]Weedon D M. A Perfect mixing matrix model for ball mills. Mineral Engineering, 2001,14(10):1225-1236.
    [79]Benzer H, Ergun L, Lynch A J, et al.. Modeling cement grinding circuigts. Minerals Engineering,2001,14(11):1469-1482.
    [80]Benzer H. Modeling and simulation of a fully air swept ball mill in a raw material grinding circuit. Powder Technology,2005,150(3):145-154.
    [81]Bazin C, St-Pierre M, Hodouin D. Calibration of the perfect mixing model to a dry grinding mill. Powder Technology,2005,149(2-3):93-105.
    [82]Dundar H, Benzer H, Aydogan N A, et al.. Simulation assisted capacity improvement of cement grinding circuit:study cement plant. Minerals Engineering,2010,24(3-4):205-210.
    [83]Eksi D, Benzer A H, Sargin A, et al.. A new method for determination of fine particle breakage. Minerals Engineering,2011,24(3-4):216-220.
    [84]Ramasamy M. Modeling of grinding in a laboratory continuous ball mill for dynamic studies. Chemical Product and Process Modeling,2006,1(1):Article 6.
    [85]De Carvalho R M, Tavares L M. Dynamic modeling of comminution using a general microscale breakage model. In:10th Internatiaonal Symposium on Process Systems Engineering,2009, pp.215-524.
    [86]Herbst J A, Fuerstenau D W. Scale-up procedure for continuous grinding mill design using population balance models. International Journal of Mineral Processing,1980,7(1):1-31.
    [87]Herbst J A, Rajamani R K. Developing a simulator for ball mill scale-up:A case study, design and installation of comminution circuit. In: Mular A L, Jergensen GV eds, AIME, New York.1982, pp.325-345.
    [88]尹蒂,李松仁.选矿数学模型.长沙:中南工业大学出版社,1993,pp.152-153.
    [89]Austin L G, Julianelli K, De Souza A S, et al.. Simulation of wet ball milling of iron ore at Carajas, Brazil. International Journal of Mineral Processing,2007, 84(1-4),157-171.
    [90]Weller K R, Sterns U J, Arton E, et al.. Multicomponent models of grinding for scale-up from continuous small or pilot scale circuit. International Journal of Mineral Processing,1988,22(1-4):119-147.
    [91]Mangal A, Pitchumani, B. Simulation of an industrial ball mill, Bulk Solids Handling,1993,13(2):281-284.
    [92]Sosa-Blanco C, Hodouin D, Bazin C, et al.. Integrated Simulation of grinding and flotation application to a lead-silver ore. Minerals Engineering,1999,12(8): 949-967.
    [93]Irannajad M, Farzanegan A, Razavian S M. Computer simulation of tumbling ball mills in Excel spreadsheet. In: 20th World Mining Congress & Expo, Mining and Sustainable Development. Tehran, Iran,2005.
    [94]Irannajad M, Farzanegan A, Razavian S M. Spreadsheet-based simulation of closed ball milling circuits. Minerals Engineering,2006,19(15):1495-1504.
    [95]Liu Y, Spencer S. Dynamic simulation of grinding circuits, Minerals Engineering, 2004,17(11-12):1189-1198.
    [96]Soderman P, Storeng U, Samskog P O, et al.. Modelling the new LKAB Kiruna concentrator with USIM PAC. International Journal Mineral Processing,1996, 44-45:223-235.
    [97]Smith H. Process simulation and modelling. Developments in Mineral Processing, 2005,15:109-121.
    [98]张文军,周贤渭,张国祥.根据选矿厂数据估计球磨机模型参数的通用程序.有色金属,1989,41(3):36-41.
    [99]李松仁.球磨机-螺旋分级机回路的计算机模拟.金属矿山,1984,13(10):33-35.
    [100]胡为柏,伍敏善,张国祥.螺旋分级机的数学模型.有色金属,1984,36(2):28-33.
    [101]伍敏善.球磨机螺旋分级机磨矿回路的计算机仿真.矿冶工程,1988,8(1):36-39.
    [102]刘建远.一个用于闭路粉碎过程仿真计算的通用模型.矿冶.2005,14(4):23-30.
    [103]刘建远.闭路粉碎流程稳态的循环收敛法计算.矿冶.2006,15(3):12-17.
    [104]Li X, Yang Y -J, Deng H -Y, Huang G -Y. Computer simulation of batch grinding process based on Simulink 5.0. Journal of China University of Mining and Technology,2005,15(2):148-151.
    [105]李侠.矿物加工计算机仿真平台的构建[硕士学位论文].长沙:中南大学,2005.
    [106]陈炳辰,肖文才.球磨机模拟计算的新方法-转换系数法.中国有色金属学报,1991,1(1):24-30.
    [107]盖国胜,陈炳辰.粉磨过程数学模型及过程优化研究评述.金属矿山,1995,22(1):28-32.
    [108]Tie M, Bi J, Fan Y. Hybrid intelligent modeling approach for the ball mill grinding process. In: Liu D et al. (Eds), Proceddings of the 4th International Sysmposium on Neural Networks:Advances in Neural Networks. Nanjing,2007, pp.609-617.
    [109]Jankovic A, Valery W, Davis E. Cement grinding optimization. Minerals Engineering,2004,17(11-12):1075-1081.
    [110]Conradie A V E, Aldrich C. Neurocontrol of a ball mill grinding circuit using evolutionary reinforcement learning. Minerals Engineering,2001,14(10): 1277-1294.
    [111]Ramasamy M, Narayanan S S, Rao Ch D P. Control of ball mill grinding circuit using model predictive control scheme. Journal of Process Control,2005,15(3): 273-283.
    [112]Chen X, Li Q, Fei S. Supervisory expert control for ball mill grinding circuits. Expert Systems with Applications,2008,34(3):1877-1885.
    [113]D G赫尔伯特(王庆凯,李长根译).选矿过程的建模、控制和仿真.国外金属矿选矿,2004,3:27-33.
    [114]景广军.选矿数模及计算机应用的现状与发展.有色矿冶,1998,14(4):16,20-25.
    [115]罗仙平,夏青,王建峰.选矿工艺数学建模现状与展望.四川有色金属,2004,(2):48-50.
    [116]红钢.河南铝土矿的矿石性质及其对选冶工艺的影响.矿冶,2002,11(1):27-32.
    [117]红钢.河南铝土矿工艺矿物学研究.轻金属.2001,38(11):7-11.
    [118]段希祥.碎矿与磨矿.北京:冶金工业出版社,2006.
    [119]郭键,李明,方启学,等.粒度对一水硬铝石和高岭石浮选分离的影响.矿产综合利用,2003,24(5):17-21.
    [120]陆冠伟,王士源,张启溶,等.选矿设计手册.北京:冶金工业出版社,1988.
    [121]ISO2591-1, Test sieving-Partl:Methods using test sieves of woven wire cloth and perforated metal plate. First edition, International Standard.1988.
    [122]Alfredo L, Velazquez C, Menendez-aguado J M, et al. Grindability of lateritic nickel ores in Cuba. Powder Technology,2008,182(1):113-115.
    [123]Cho H, Austin L G. A study of the exit classification effect in wet ball milling. Powder Technology,2004,143-144:204-214.
    [124]Songfack P, Rajamani R. Hold-up studies in a pilot scale continuous ball mill: dynamic variations due to changes in operating variables. International Journal of Mineral Processing,1999,57:105-123.
    [125]Horvath I等.杜雅君译.铝土矿的物理化学性质.轻金属,1991,(11):5-10.
    [126]Rajamania R K, Herbst J A. Optimal control of a ball mill grinding circuit—I. Grinding circuit modeling and dynamic simulation. Chemical Engineering Science.1991,46(3):861-870.
    [127]吴明珠,张成名.磨矿动力学在磨矿操作中的应用.有色金属(选矿部分),1989,(5):10-15.
    [128]Zhao Q Q, Jimbo G. The effect of grinding media on the breakage rate of planetary mill. Advanced Powder Technology,1988,2(2):91-101.
    [129]Kotake N, Daibo K, Yamamoto T et al.. Experimental investigation on a grinding rate constant of solid materials by a ball mill-effect of ball diameter and feed size. Powder Technology,2004,143-144:196-203.
    [130]李少远,席裕庚.模糊动态环境下复杂系统的满意优化控制.自动化学报, 2002,28(3):408-412.
    [131]阳春华,王晓丽,陶杰,等.铜闪速熔炼配料过程建模与智能优化方法研究.系统仿真学报,2008,20(8):2152-2155.
    [132]Goldberg D E. Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading, MA,1989.
    [133]Katare S, Bhan A, Caruthers J M, et al. A hybrid genetic algorithm for efficient parameter estimation of large kinetic models. Computers and Chemical Engineering,2004,28(12):2569-2581.
    [134]Wang X, Yang C, Gui W, et al.. CSTR-based modelling for the continuous carbonation of sodium aluminate solution. The Canadian Journal of Chemical Engineering,2010, DOI:10.1002/cjce.20425.
    [135]Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transations on Systems, Man and Cybernatics,1994, 24(4):656-667.
    [136]谢恒星,李松仁.球磨机中钢球磨损规律数学模型的研究.金属矿山,1988,17(4):36-40.
    [137]韩家维.球磨机钢球磨损规律的探讨.四川有色金属,1996,(3):42-43.
    [138]谢恒星,李松仁.工业型螺旋分级机数学模型的研究.有色金属,1992,44(1):28-34.
    [139]宋海鹰,桂卫华,阳春华.模糊偏最小二乘支持向量机的应用研究.系统仿真学报,2008,20(5):1344-1352.
    [140]李晋,秦琳琳,吴刚,等.基于加权最小二乘支持向量机的温室小气候建模与仿真.系统仿真学报,2008,20(16):4232-4236.
    [141]Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer-Verlag,1995.
    [142]Vapnik V N. An overview of statistical learning theory. IEEE Transations on Neural Networks,1999,10(5):988-999.
    [143]张学工.关于统计学习理论与支持向量机.自动化学报,2000,26(1):32-42.
    [144]Suykens J A K, Vandewalle J. Least squares support vectos machine classifiers. Neural Processing Letters,1999,9(3):293-300.
    [145]Suykens J A K. Least squares support vectos machines for classification and nonlinear modeling. Neural Netword World,2000,10(1-2):29-47.
    [146]Crowe C M. Data reconciliation-progress and challenges. Journal of Process Control,1996,6(2-3):89-98.
    [147]高倩.鲁棒数据校正理论与应用研究[博士学位论文].上海:上海交通大学,2007.
    [148]Prata D M, Schwaab M, Lima E L, et al.. Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: Application for an industrial polypropylene reactor. Chemical Engineering Science,2009,64(18): 3953-3967.
    [149]Kuehn D R, Davidson H. Computer control:Mathematics of control. Chemical Engeering Progress,1961,57(6):44-47.
    [150]Simpson D E, Everetta M G. Reducing the number of unknowns in a constrained minimization problem-an application to material balance. Applied Mathematical Modelling,1988,12(4):204-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700