用户名: 密码: 验证码:
SDF-1-CXCR4轴在骨髓间充质干细胞移植促进胰岛再生中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     有研究表明骨髓间充质干细胞(MSCs)能够分泌基质细胞衍生因子(SDF-1),而SDF-1与其特异性受体CXCR4结合后形成具有修复受损组织,参与血管生成等多种生物学功能的单位。本实验通过分离、纯化大鼠的骨髓间充质干细胞,并在体外一定条件下培养、扩增。并将培养的第3代细胞移植入链脲佐菌素(STZ)诱导的糖尿病大鼠体内,观察同种异体MSCs移植入受体后,SDF-1/CXCR4轴在促进残存胰岛及其周围新生血管增殖中的作用。
     方法:
     将SD大鼠处死后,无菌条件下取出股骨和胫骨, DMEM培养液冲洗髓腔,200μm尼龙网过滤除去大的组织团块。细胞悬液离心(1000rpm,10min)后,收集细胞接种于含有10%胎牛血清的DMEM培养液中培养。通过腹腔注射链脲佐菌素(STZ,65mg/kg)构建糖尿病大鼠模型。诱导成功的糖尿病大鼠随机分为A组(MSCs移植组)、B组(MSCs移植+SDF-1/CXCR4轴阻断剂AMD组)和C组(糖尿病对照组),另设D组(正常大鼠对照组)。将传至3代的MSCs移植入糖尿病大鼠体内,观察各组大鼠的生存状态,每3天采鼠尾静脉血用血糖仪检测各组血糖水平,采用放免法检测血清中空腹和餐后不同时间点的胰岛素水平、Elisa法检测SDF-1水平。并于移植MSCs后第30天取出各组大鼠胰腺和血清,胰腺组织采用H-E染色和免疫组织化学染色法观察CD31、PCNA、PDX-1在胰腺组织的表达水平。
     结果:
     1、A组残存胰岛周围可见新生血管,CD31、PCNA、PDX-1染色阳性率分别为(71.2±5.3)%、(76.5±4.5)%、(69.8±6.7)%;B组和C组残存胰岛周围基本未见新生血管,CD31、PCNA、PDX-1染色阳性率B组为(7.4±2.1)%、(5.5±3.7)%、(8.8±2.9)%,C组为(5.7±3.1)%、(6.2±1.4)%、(3.5±1.6)%,A组与B组比较有统计学差异(p<0.05),B组与C组比较无统计学差异(p>0.05)。2、移植后第25天,A组糖尿病大鼠血糖水平基本正常,低于B组和C组,而胰岛素水平明显高于B组和C组(p<0.05)。3、A组与B组血清SDF-1水平差异无统计学意义(p>0.05),但都明显高于C组(p<0.05)。
     结论:
     通过分离、纯化、培养、扩增可以获得大量的MSCs,MSCs移植后明显的促进了糖尿病受体残存胰岛再生及其周围新生血管的形成,SDF-1/CXCR4轴特异性阻断剂-AMD3100能抑制MSCs逆转高血糖,促进胰岛再生的作用,进而提示SDF-1/CXCR4轴在胰岛再生和及其周围新生血管形成中具有重要作用。
Objective:
     There is controversy about the mechanism how decreasing hyperglycemia and promoting islets regeneration after transplanted MSCs. Recent research suggest that MSCs can secrete stromal cell-derived factor 1(SDF-1). SDF-1 is associated with revascularization and tissue repairing, which might play an important role on revascularization and regeneration of damaged remnant islets of the recipients.To investigate the role of SDF-1/CXCR4 axis on recipients’remnant islets regeneration and neovascularization after the transplantation of allogeneic bone marrow mesenchymal stem cells(MSCs).
     Methods:
     MSCs were isolated from SD rat, cultured, Proliferated and purified in vitro under certain condition and then passaged 3 was transplanted in the diabetic rats.The diabetic rats was induced by peritoneal streptozotocin injection (65mg/kg).
     SD rats were anesthetized with intraperitoneal sodium pentobarbital (30mg/kg). Femurs and tibiae of rats were collected and adherent soft tissue was carefully removed. Bone marrow cells were flushed from the medullary cavities of femurs and tibiae and disaggregated into a single-cell suspension by sequential passage through a 25-gauge needle. MSCs were separated by centrifugation(1000rpm,10min). The cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM/F12) containing10% fetal bovine serum (FBS). The diabetic rats induced by peritoneal injection of streptozotozin were randomly divided into group A (MSCs transplant group),group B(MSCs transplant+AMD group),group C(DM control group) ;Group D is control group.Each group contains 10 SD rats. The pancreas were removed and blood samples were retrieved from each group simultaneously at the 30th day after cells transplant.Detect the expression of CD31,PCNA and PDX-1 in each group of pancreas tissue by immunohistochemistry and observe the islets shape by Hematoxylin and Eosin(H-E) . Blood glucose and insulin in serum were detected by blood glucose monitor, radioimmunoscintigraphy and respectively SDF-1 in serum was detected by enzyme linked immunosorbent assay(ELISA).
     Results:
     Neovascularization were observed in the remnant islets of the recipient pancreatic tissue and CD31-positive cells(71.2±5.3)%,PCNA-positive cells(76.5±4.5)%,PDX-1-positive cells(69.8±6.7)% were observed in group A. Compared with group A, seldom-positive cells[CD31(7.4±2.1)%, PCNA(5.5±3.7)% and PDX-1(8.8±2.9)%] and rarely neovascularization were observed in group B and group C(p<0.05). Blood glucose level in serum of group A was lower than that of group B and group C,but insulin level in serum of group A was significantly higher than that of group B and group C(p<0.05). There are no significant difference between group A and group B in SDF-1 level in serum(p>0.05),but both were higher than that of group C(p<0.05).
     Conclusion:
     Obviously,MSCs promote recipient neovascularization surrounding the islets,which enhanced the proliferation and regeneration remnant of islet cells.AMD 3100 has the function of interrupting SDF-1/CXCR4 axis which inhibits the effect of MSCs on promoting islets regeneration.Therefore we concluded that SDF-1/CXCR4 axis play an important role in vascularization and islets regeneration.
引文
[1]李春霖,陆菊明.老年糖尿病的进展[J].老年医学与保健,2005,11(3):136-137.
    [2] Zimmet P,The burden of type 2 diabetes:are we doing enough.Diabetes Metab.2003,29(4Pt2):6S9-18.
    [3] World Health Organization.Definition,diagnosis and classification of diabetes mellitus and its complications,report of a WHO consultation[M].Geneva:World Health Organization,1999:1-20.
    [4]赵凤臣,韩秀敏.老年糖尿病患者心理状况及影响因素分析[J].中国公共卫生,2006,22 (10):1237-1238.
    [5] Koulmanda M,Qipo A,Smith RN,et al.Pig islet xenografts are resistant to autoimmune destruction by non-obese diabetic recipients after anti-CD4 treatment.Xenotransplantation.2003,10(2):178-184.
    [6] Bonner-Weir S,Toschi E,Inada A,et al.The pancreatic ductal epithelium serves as a potential pool of progenitor cells.Pediatr Diabetes.2004,5(2): 16-22.
    [7] Tamama K,Sen CK,Wells A.Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway.Stem Cells Dev 2008;17(5): 897-908.
    [8] Moriscot C,Fraipont F,Richard MJ,et al.Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro.Stem Cells 2005;23(4): 594-603.
    [9] Hoogduijn MJ, Crop MJ,Korevaar SS, et al. Susceptibility of human mesenchymal stem cells to tacrolimus,mycophenolic acid, and rapamycin. Transplantation 2008;86(9):1283-1291.
    [10] Imene Boumaza, Suganya Srinivasan, et al. Autologous bone marrow- derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun 2009;32:33-42.
    [11] Urban VS,Kiss J,Kovacs J,et al.Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes.Stem Cells 2008;26(1): 244- 253.
    [12]赵东波,张福琴,宋振顺.骨髓基质干细胞及其来源的产胰岛素细胞移植对受体胰岛新生血管的影响.中华实验外科杂志2009;26(7): 865-867.
    [13] Oh SH, Muzzonigro TM, Bae SH, et al. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes.Lab Invest 2004;84(5):607-617.
    [14]黄盛,郑伟,范志勇等.不同微环境对骨髓间充质干细胞分化为产胰岛素细胞的影响.中华实验外科杂志2008;25(3):386-370.
    [15] Ianus A,Holz GG,Theise ND,et al.In vivo derivation of glucose- competent pancreatic endocrine cells from bone marrow without evidence of cell fusion.J Clin Invest 2003;111(6):843-850.
    [16] Lechner A,Yang YG,Blacken RA,et al.No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo.Diabetes 2004;53(3):616-623.
    [17]钱荣立,等.关于糖尿病的新诊断标准与分型.中国糖尿病杂志.2000.(01):4-5)。
    [18] Obrien BA,Harmon BV,Cameron DP,et al.Apoptosis the mode ofβ-cell responsible for the development of IDDM in the nonbese diabetic (NOD)mouse.Diabetes,1997,46:750-757.
    [19]廖二元,超楚生.主编.内分泌学(下册).北京:北京人民卫生出版社,2004,1437.
    [20] WILLIAM H,HERMAN MD,MPH,LIZA L,et al.A Clinical Trail of Continuous Subcutaneous Insulin Infusion Versus Multiple Daily Injections in Older Adult with Type 2 Diabetes Care 2005;28:1568-1573.
    [21] Kizilel S, Garfinkel M, Opara E. The bioartificial pancrease: progress and challenges. Diabetes Technol Ther, 2005,7(6):968-985.
    [22]刘永锋.胰腺移植与胰岛移植比较及展望[J/CD].中华移植杂志:电子版,2008,2(1):1-3.
    [23] Gonzalez AM,Melaragno CS,et al.Pancrease and islet,transplantation in patients with diabetes mellitus.Arq Bras Endocrinol Metabol.2008; 52(2): 355-366.
    [24] Fiorina P, Folli F, Bertuzzi F, et al. Long-term beneficial effect of islet transplantation on diabetic macro-/microangiopathy in type 1 diabetic kidney-transplanted patients.Diabetes Care,2003, 26(4):1129-1136.
    [25] Shapiro AM,Lakey JR,Paty BW,et al.Strategic opportunities in clinical islet transplantation.Transplantation,2005, 79(10):1304-1307.
    [26] Pihoker C, Gilliam LK, Hampe CS, et al. Autoantibodies in diabetes. Diabetes, 2005,54 Suppl 2:S52-S61.
    [27] Lou J, Triponez F, Oberholzer J, et al. Expression of alpha-1 proteinasinhibitor in human I slet microvascular endothelial cells.Diabetes, 1999,48(9):1773-1778.
    [28] Lewis EC, Shapiro L, Bowers OJ, et al. Alphal1-antitrypsin monotherapy prolongs islet allograft survival in mice.Proc Natl Acad Sci U S A,2005,102(34):12153-12158.
    [29] Pipeleers D,in't Veld PI,Maes E,et al.Glucose-induced insulin release depends on functional cooperation between islet cells.Proc Natl Acad Sci U S A,1982,79(23):7322-7325.
    [30] Meier JJ,Hong-McAtee I,Galasso R,et al.Intrahepatic transplanted islets in humans secrete insulin in a coordinate pulsatile manner directly into the liver.Diabetes.2006.55(8):2324-2332.
    [31] Ong SL,Pollard C,Rees Y,et al.Ultrasound changes within the liver after total pancreatectomy and intrahepatic islet cell autotransplantation [J].Transplantation,2008,85(12):1773-1777.
    [32] SCHUURMAN HJ.Regulatory aspects of pig- to human transplantation [J]. Xenotransplantation, 2008,15(2):116-120
    [33] FRIEDMAN T,SMITH R,COLVIN R,et al.A critical role for human CD4+ T-cells in rejection of porcine islet cell xenografts[J]. Diabetes, 1999, 48:2340-2348.
    [34] ERICSSON T A,TA KEUCHI Y,TEMPLIN C,et al.Identification of receptors for pig endogenous retrovirus[J].Proc Natl Acad Sci U S A,2003,27,100(11):6759-6764.
    [35] Steven LC,et al.Studies on transplantable testicular teratomas of strain 129 mice.J Natl Cancer Inst.1958.20(6):1257-1275.
    [36] Evans MJ, Kaufman MH.Establishment in culture of pluripotential cells from mouse embryos.Nature, 1981, 292(5819):154-156.
    [37] Soria B, Roche E, et al. Insulinsecreting cells derived from embryonicstem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. 2000, 49: 157-162.
    [38] Lagasse E, Connors H, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.Nat Med,2000,6(11):1129.
    [39] Oliver-Krasinski JM, Stoffers DA.On the origin of the beta cell.Genes Dev. 2008.22(15):1998-2021.
    [40] Deltour L, Leduque P, et al. Polyclonal origin of pancreatic islets in aggregation mouse chimaeras.Development. 1991,112(4):1115-1121.
    [41] Ramiya VK,Maraist M,Arfors KE,et al.Reverasl of insulin dependent diabetes using islet generated in vitro from pancreatic stem cells[J]. NatMed, 2000, 6:278-282.
    [42] Bonner-Weir S,Taneja M,Weir GC.In vitro cultivation of human islets from expanded ductal tissue [J].Pros Nati Acad Sci USA,2000, 97: 7999-8004.
    [43] Cornelius JG,Tchernev V,Kao KJ,et al.In vitro generation of islets in long-term cultures of pluripotent stem cells from adult mouse pancreas[J]. Horm Metab Res, 1997,29:271-277 .
    [44]郑伟,范志勇,黄盛,宋振顺,等.同种异体胰岛及胰腺干细胞来源的胰岛样结构序贯治疗糖尿病.中华实验外科杂志.2008,25(9):1170-1172.
    [45] Friedenstein AJ,et al.Precursor cells of mechanocytes.Int Rev Cytol.1976, 47:327-359.
    [46] Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells.Science,1999,284:143-147.
    [47] Jiang Y,Jahagirdar BN,Reinhardt RL,et al.Pluripotency of mesenchymal stem cell derived from adultmarrow.Nature,2002,418: 41-49.
    [48] Peister A,Mellad JA,Larson BL,et al.Adult stem cells from bone marrow(MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation,and differentiation potential.Blood, 2004, 103: 1662-1668.
    [49] Javazon EH,Colter DC,Schwarz EJ,et al.Rat Marrow Stromal Cells are More Sensitive to Plating Density and Expand More Rapidly from Single Cell Derived Colonies than Human Marrow Stromal Cells.Stem Cells, 2001, 19:219-225.
    [50] Chen LB,Jiang XB,Yang L.Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells[J].World J Gastroenterol, 2004, 10:3016.
    [51] Tang DQ, Cao LZ, Burkhardt BR, et al.In Vivo and In Vitro Characterization of Insulin-Producing Cells Obtained From Murine Bone Marrow [J]. Diabetes, 2004,53:1721.
    [52] Karnieli O,Izhar-Prato Y,Bulvik S,et al.Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation.Stem Cells 2007,25(11):2837-2844.
    [53] Choi KS, Shin JS, Lee JJ,et al.In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun 2005,330(4):1299-1305.
    [54] Jung Y, Wang J, Schneider A, Sun YX,Koh-Paige AJ, Osman NI, et al. Regulation of SDF-1(CXCL12) production by osteoblasts;a possible mechanism for stem cell homing.Bone.2006,38:497-508.
    [55] Otsuru S,Tamai K,Yamazaki T,Kaneda Y.Circulating bone marrow- derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway.Stem Cells.2008,26: 223-234.
    [56] Kayali, Ayse G, Campbell, Aleksandr Stotland, et al. The stromal cell- derived factor-1/CXCR4 ligand-receptor axis is critical for progenitor survival and migration in the pancreas.J Cell Biol. 2003,163(4):859-869.
    [57] Tachibana K, Hirota S, Lizasa H, Yoshida H. The chemokine receptor CXCR4 is essential for Vascularization of the gastrotestinal tract.Nature. 1998, 393: 591-594.
    [58] Salvucci O,Lei Y,Villalba S,Sajewicz A.Regulation of endothelial cell branching morphogenesis By endogenous chemokine stromal derivied factor-1.Blood.2002,998:2703-2711.
    [59] Melchionna R, Porcelli D, Mangoni A, et al. Laminar shear stress inhibits CXCR4 expression on endothelial cells: functional consequences for atherogenesis.FASEB J.2005,19(6):629-631.
    [60] Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on exvivo expanded endothelial progenitor cell recruitment for ischemic neovascularization.Circulation. 2003,107(9):1322-1328.
    [61] Tang J, Xie Q,Pan G,et al.Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion.Eur J Cardiothorac Surg.2006,30(2):353-361.
    [62] Walter DH,Haendeler J,Reinhold J,et al.Impaired CXCR4 signaling contributes to the Reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res. 2005,97:1142-1151.
    [63]尹扬光,黄岚,赵晓辉,等. SDF-1对小鼠骨髓源性内皮祖细胞数量及功能的影响.心血管康复医学杂志.2006,15:427-434.
    [64] Walter DH,Rittig K,Bahlmann FH,et al.Statin therapy accelerates re- endothelialization:a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells.Circulation. 2002,105: 3017-3024.
    [65] Strasser, Geraldine A, Joshua S, Kaminker and Marc Tessier- Lavigne. Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching.Blood.2010.24:986-995.
    [66] Carr AN, Howard BW, Yang HT, et al. Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency: support for an endothelium- dependent mechanism.Cardiovasc Res.2006, 69:925-935.
    [67] Halvard Bonig, Doreen Chudziak, et al.Insights into the biology of mobilized hematopoietic stem/progenitor cells through innovative treatment schedules of the CXCR4 antagonist AMD3100.Experimental Hematology. 2009,37:402-415.
    [68] Hiasa K, IshibashiM, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1 enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase related pathway: next-generation chemokine therapy for therapeutic neovascularization [J]. Circulation.2004,109 (20):2454-2461.
    [69] Tang YL, Qian K, Zhang YC, et al. Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid mediated stromal-cell-derived factor-1a( SDF-1a) treatment[J].Regul Pept.2005,125(1-3):1-8.
    [70] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells.Science.1999,284:143-147.
    [71]杨丽霞,刘铜华,王志程,牛洁,郭翔宇.骨髓间充质干细胞诱导分化为胰岛细胞的研究进展.疑难病杂志.2008,12,7(12).
    [72] Neuhuber B, Swanger SA, Howard L, Mackay A, Fischer I. Effects of plating density and culture time on bone marrow stromal cell characteristics. Exp Hematol. 2008, 36(9):1176-1185.
    [73] Kretlow JD, Jin YQ, Liu w, et al.Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMCCell Biol.2008,9:60.
    [74] McCarty RC, Gronthos S, Zannettino AC, Foster BK, Xian CJ. Characterisation and developmental potential of ovine bone marrow derived mesenchymal stem cells.J Cell Physiol.2009,219(2):324-333.
    [75] Urban VS, Kiss J, Kovacs J, et al. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes.Stem Cells.2008,26: 244-253.
    [76] Horwitz EM, Le Blanc K, DominiciM, et al. Clarification of the nomenclature for MSCs:The International Society for Cellular Therapy position statement [J]. Cytotherapy.2005,7(5):393-395.
    [77] Rajprasad Loganathan, Mehmet Bilgen, et al. Cardiac dysfunction in the diabetic rat: quantitative evaluation using high resolution magnetic resonance imaging.Cardiovascular Diabetology.2006, 5(7):1-8.
    [78] Delisser HM, Christofidou-solomidou M, Strieter RM, et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis.AM J Pathol.1997,151: 671-677.
    [79]柳德斌,陈克能,曹晓哲,等. p53和VEGF在食管鳞癌中的表达及其临床意义[J].癌症.2002,21(9):989.
    [80] Konno S, Takebayashi Y, et al. Clinicopathological and prognostic significance of thymidine phosphorylase and proliferating cell nuclear antigen in gastric carcinoma.Cancer Lett. 2001, 166: 103-111.
    [81] Grapin-Botton A, Majithia AR, Melton DA. Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes[J].Genes Dev.2001,15(4):444-454.
    [82] Liu T, Wang CY, Gou SM, et al. PDX-1 expression and proliferation of duct epithelial cells after partial pancreatectomy in rats. Hepatobiliary Pancreat Dis Int.2007,6:424-429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700