用户名: 密码: 验证码:
分级真空预压法加固高粘性吹填土的模拟试验与三维颗粒流数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吹填土围海造陆或吹淤造陆的工程建设,能够抵御沿海潮汐危害,缓解土地资源紧张。航道、港池疏浚出来的淤泥可以作为港口后方陆域建设中的吹填工程用料,该作法既清理了海港、码头,疏浚了航道,保护了环境,又降低了运输物源砂料的工程造价,同时提高了地基处理效率,满足了工期需要。世界各国都在持续不断地进行围海造陆或吹淤造陆建设,但航道、港池疏浚出来的淤泥中,粘粒含量非常高,具有特殊的工程地质性质,制约了土体固结过程,影响了工程效率。
     本论文结合国家自然科学基金项目“海积软土地基加固过程中有机质的作用和影响”(No.40372122)和国家自然科学基金国际合作项目“不同气候带几种表生特殊土的形成环境及演化趋势”(No.40911120044)资助,针对高粘性吹填土的特殊性质,提出真空预压改良法——分级真空预压法,进行室内固结试验研究,同时结合三维颗粒流的离散单元法,模拟高粘性吹填土的真空预压固结过程,改善传统真空预压法工期长、效率低、细颗粒容易进入排水体内部或聚集排水体附近淤堵的问题。
     本文首先对比研究不同地区、不同类型的吹填土基本性质,总结高粘性吹填土的普遍特征,指出高粘性高有机质含量吹填土的特点;然后,在中交水运规划设计院有限公司的帮助下,采用直排式真空预压法加固高粘性吹填土;为了进一步提高高粘性吹填土加固效率,提出“分级真空预压”构想,通过室内试验,验证改良法对高粘性吹填土的固结作用;同时,测试分析直排式真空预压和分级真空预压两种固结方式下固结的吹填土微观结构,用定性、定量分析方法反映高粘性吹填土的固结规律;最后,建立三维颗粒流数值模型,模拟2个排水体联合作用下,高粘性吹填土的真空预压固结过程,阐述分级真空预压法加固高粘性吹填土的固结机理。
     本研究中,高粘性吹填土的模拟试验主要采用了物理、化学等测试手段以及微观测试手段,对比分析固结过程中高粘性吹填土的物质迁移规律、土体强度特征和土体结构特征。并通过高粘性吹填土的数值模拟过程,建立三维颗粒流模型,以物理模拟试验为基础,提出加速高粘性吹填土固结的新方法——分级真空预压法的可行性,完善了分级真空预压法加固高粘性吹填土理论,为工程实践提供了理论基础,并给予相关的工程建议。
Dredger fill as a kind of fill deposit is pumped from waters to the shore or the construction site by dredger and mud pump. The sedimentary formation of dredger fill is gradually consolidated by different methods. And reclaiming land is a popular method with a long history all over the world. However, the special soil has many characteristics of high moisture content, high porosity ratio, high compressibility, low strength and so on. Drainage consolidation method still exists problems as follows. First, the surface of the dredger fill would become hard shell commonly in 2 or 3 years. So it is hard to apply with the engineering loading which is lack of time. Second, under the powerful vacuum suction effect, particles move with the water to drain pipes. And the large plastic pipes are surrounded with large fine clay of dredger fill and then are formed mud membrane, which cause lower consolidation efficiency. Clearly, traditional vacuum preloading method cannot meet engineering construction of high clay content dredger fill.
     In order to improve consolidation velocity of high clay dredger fill, this thesis researched on it step by step. First, compared several sample soils from different coastal regions to study the basic properties. And geology engineering characteristics of "three-high and two-low" of high clay dredger fill were definitely concluded, which means high moisture content, high porosity content, large compressibility, low permeability, low strength and so on. At the same time, geology engineering analysis showed other particular properties, like high clay content (high plasticity index), high liquid limited moisture content. Meanwhile, this provided the material basis and theoretical basis for further research on consolidation properties of high clay dredger fill.
     With the help of China Communication Water Transportation Planning and Design Institute Co.Ltd, straight-line vacuum preloading method was used to reinforce high clay dredger fill. In physical model test, making sure that pipes type and distance were main purpose in straight-line vacuum preloading process. Laboratory simulation test was taken to deeply analyzed on experimental data through monitoring basic physical properties, chemical properties and mechanical properties. During high clay dredger fill consolidation process, the distance from high clay dredger fill to drain pipes was shorter, the soil strength was higher. On the other hand, the settlement was smaller. Soil consolidation produced horizontal migration, which caused uneven settlement. Meanwhile, under the action of straight-line vacuum preloading method, high clay dredger fill produced consolidation drainage, greatly reduced the vacuum pressure relay frictional cost. Compression deformation and strength were increased, construction period was shortened, vacuum transfer efficiency and reinforcement effect were improved, that all reduced reinforcement expenses.
     Above experiments shortened the period of consolidation, but the phenomenon of drainage plugging was still serious. In order to improve efficiency of high clay dredger fill continually, the idea of step vacuum preloading (SVP for short) method was come ture based on the straight-line vacuum preloading method. And SVP method was proved staged and stepped vacuum degree with high clay dredger fill. So it was taken laboratory test, measurement and simulation research, deeply analyzed with experimental data through monitoring basic physical properties, chemical properties and mechanical properties, expounded advantage. Furthermore, it was improved SVP method significant which played important role in high clay dredger fill consolidation. Based on the results of SVP test, the soil moisture content continually reduced and liquid soluble migrated. Then, organic content decreased, cation exchange capacity reduced, PH value changed, soluble salt content declined, and sodium content reduced.
     Meanwhile, grey correlation method analyzed physical, chemical and granulometric composition indexes. It was found that the clay content changed with soil strength, which was the largest correlation in soil. Moisture content and organic content changed with soil strength were the less important correlation. That explained the growth of soil strength closely related with clay content in high clay dredger fill, confirmed feasibility of fine particles as the consolidation degree index. So, this conclusion assisted in strength increasing rule with high clay dredger fill.
     By two kinds of consolidation methods above, microstructure analysis was taken to research dredger fill. Scanning electron microscope and mercury porosimeter were used to analyze qualitative and quantitative characteristics of microstructure. High clay dredger fill has high moisture content and large void ratio at the beginning of consolidation, so the pore boundary value of microstructure were defined 40μm, 4μm, 0.4μm, 0.04μm respectively. Especially, it was analyzed from big pore to small pore, whose intervals were gradually changed from large to small. At the same time, fractal theory was used to calculate the fractal dimension of structural. It was found that the distribution fractal dimension of structural cell was in a growing trend, while the distribution fractal dimension of the pore was in reducing trend, which reflect a regularly structure changing rule of high clay dredger fill.
     Finally, in the view of practical size characteristics and drainage construction characteristics of high clay dredger fill, PFC3D numerical model was set up, under the action of straight-line vacuum preloading for the first time. It was reflected drainage consolidation characteristics under the joint action of different distances of two drain pipes. At the beginning of consolidation, fine particles discharged with flow water. The porosity of the dredger fill was larger at the side of drain pipes than the porosity in the middle of two pipes. Under these circumstances, the consolidation velocity decreased with the porosity increased. Meanwhile, another PFC3D numerical model was set up under the action of SVP for the first time, reflecting the advantage of SVP method for high clay dredger fill. Furthermore, combined with numerical simulation test, the porosity of the dredger fill was gradually decreased. And high clay dredger fill was consolidated with it. So, consolidation mechanism was explained and SVP method was confirmed feasibly.
     Above all, based on physical simulation experiment and numerical simulation analysis, a new method of SVP accelerated high clay dredger fill consolidation. The theory of SVP method was consummated to reinforce high clay dredger fill. An exploratory study was analyzed to improve high clay dredger fill consolidation efficiency. Furthermore, the mechanism of SVP method was illustrated, provided a theory basis and feasibility suggestions for engineering practice.
引文
[1]戴剑龙.新型围海造陆法节约又环保[N].中国:中国交通报,2007-12-4(B041).
    [2]贾艳杰,田代沂.古渤海湾的围海造陆过程[J].天津师大学报(自然科学版),1996,16(3):42-46.
    [3]李增林.谈谈我国的上古神话——以《女娲补天》、《精卫填海》为例[J].宁夏大学学报(社会科学版),1983,2:50-55.
    [4]涂石,涂元济.谈精卫神话[J].西北师大学报(社会科学版),1986,3:60-67.
    [5]杨飞.古有精卫填海今有浙江围海[N].北京:中国水利报. 2010-02-23(D1).
    [6]荷兰最大的填海造陆工程[J].人民长江,1978,3:66.
    [7]郭春华.荷兰人造荷兰——荷兰围海造田垦区见闻[J].世界知识,1980,14:24-25.
    [8]文博.十三世纪以来荷兰填海取得的土地[J].世界知识,1980,20:21.
    [9]谢世楞.荷兰的海岸工程[J].港工技术通讯,1982,4:71-96.
    [10] Worldide,A.S.,顾晓奔.围海造田:荷兰的经验[J].世界科学,1986,8:27-28.
    [11]顾世显.考察丹麦、荷兰海岸带开发见闻[J].海洋与海岸带开发,1988,2:72-73.
    [12]刘东华,王锦文.围海造陆的方法:中国,CN200810154303.3 [P]. 2008-12-22
    [13]哈欣,曹杰.海滨旅游区围海造陆进展快[N].北京:北方经济时报,2008-03-07(15).
    [14]李欣,王志勇,赵英,等.天津港北大防波堤围海造陆工程环境影响报告书[R].中国技术专家网,cstaID:CG2004030599.
    [15]岳建文,祝业浩.国华黄骅发电厂围海造陆工程围堤龙口封堵施工技术[J].港工技术,2004,12:37-38.
    [16]丁承显.日本有关吹填地土质和基础的研究动态[J].水运工程,1977,5:24.
    [17]李英杰.大阪南港新城居住区[J].世界建筑,1982,1:32-35.
    [18]刘洪滨.韩国新万金围海造陆综合开发工程简介[J].海岸工程,1995,2:54.
    [19]黄维伍.香港近年新建的几个居住区[J].住宅科技,1982,11:13-16.
    [20]丁永良,何维隽,张明华.珠海特区磨刀门围海筑堤工程泥水分离技术可行性调查与试验报告[R].渔业现代化,1986,1:17-21.
    [21]章吉青.深圳前湾C1塘填海及软基处理效果分析[J].铁道建筑,2009,10:82-86.
    [22]陈友谊.一个弹丸岛的新命运[J].世界知识,1988,20:27.
    [23]朱凤岚.日本打造“冲之鸟岛”岩礁[J].世界知识,2005,19:29-31.
    [24]焦佩.日本海洋发展观与中日海权争端[J].日本问题研究,2006,2:46-50.
    [25]张沛霖.从国际海洋法角度试析日本冲之鸟岛问题[J].理论学习,2007,11:61-62.
    [26]唐宏伟.软基加固新技术助力天津围海造陆[S].武汉:中国水运报,2008,5:51.
    [27]陈文帅.快速加固软基的机理及现场试验研究[D].天津:天津大学建筑工程学院,2007.
    [28]杨顺安,张瑛玲,刘虎中,等.深圳地区吹填淤泥的工程特征[J].地质科技情报,1997,1:87-91.
    [29]曾锡庭.在吹填过程中即着手对新吹填地基进行加固的设想[J].港口工程,1984,1:1-4.
    [30]王清,肖树芳.海积软土的工程地质研究现状[J].世界地质,2000,3:253-257.
    [31]房后国,刘娉慧,肖树芳,等.海积软土排水固结机理分析[J].吉林大学学报(地球科学版),2005,35(02):207-212+217.
    [32]王宝勋.海积软土力学特征与固化新技术研究[D].湖南:中南大学土木建筑学院,2008.
    [33]黄伟,陈林.水力吹填运用于标准塘施工的若干技术问题[J].浙江水利科技,2000,S1(12):11-12+29.
    [34]刘志兵.吹填围堰技术中的应用研究[J].科技资讯,2007,3:48.
    [35]张成良,洪振舜,邓永锋.淤泥吹填处理及其研究进展[J].路基工程,2007,1:12-14.
    [36]宋晶,王清,陈慧娥,等.高粘性高盐量吹填土固结过程孔隙分维特征[J].吉林大学学报(地球科学版),2010,40(2):361-367.
    [37]杨静.高粘粒含量吹填土加固过程中结构强度的模拟试验研究[D].长春:吉林大学建设工程学院,2008.
    [38]张中琼.高粘粒含量吹填土快速加固的室内模拟试验研究[D].长春:吉林大学建设工程学院,2008.
    [39]张延军,张延诘.国内真空预压法加固软土地基的现状与趋势[J].世界地质,2000,4:375-378.
    [40]许胜,王媛.真空预压法加固软土地基理论研究现状及展望[J].岩土力学,2006,27(10):943-947.
    [41]陈文帅.快速加固软基的机理及现场试验研究[D].天津:天津大学建筑工程学院,2007.
    [42]侯晋芳.碱渣代替工程土进行填垫的研究[D].天津:天津大学建筑工程学院,2004.
    [43]冯志刚,朱俊高,冯豪杰.常规次固结沉降计算方法的改进研究[J].岩土力学,2010,31(5):1475-1480.
    [44]陈允进,宋晶,夏玉斌,等.真空预压法加固吹填土的孔隙水压力试验研究[J].工程地质学报,2010,18(5):703-708.
    [45]宋晶,王清,孙铁,等.吹填土自重沉淤阶段孔隙水压力消散的试验研究[J].岩土力学,2010,31(9):2935-2940.
    [46]张中琼,王清,秦炎,等.快速加固吹填土的室内模拟试验[J].吉林大学学报(地球科学版),2010,40(3):645-650.
    [47] Berry P.L., Wilkinson W.B.Radial consolidation of clay soils[J]. 1969, 9: 253-284.
    [48] Han J., Ye S.L. Simplified method for consolidation rate of stone column reinforced foundations[J]. Journal of Geotechnical, Geoenvironmental Engineering, 2001, 7: 597-603.
    [49] Fox P.J., Di Nicola M., Quigley D.W. Piece wise-linear model for large strain radial consolidation[J]. Journal of Geotechnical, Geoenvironmental Engineering, 2003, 10: 940-950.
    [50]丁承显.沿海吹填地的沉降和变形[J].水运工程,1977,5:25-32.
    [51]朱实.削山填海的壮举神户人工岛的建造[J].国际问题资料,1983,S2:20-21.
    [52]张文全.日本新吹填土表层处理方法简介[J].水运工程,1984,4:35-41.
    [53]张文全.挤实砂桩法的设计(上)[J].水运工程,1984,8:48-53.
    [54]渡义治.埋立粘土的土性变化上覆土工法的选定[J].土工基础,1983.6.
    [55] Kiyama S.S.M. Ground improvement techniue for a vast neel aimel land by combination of vertical drains & dewatering [J]. Osaka Uts Technology, 1982, 1.
    [56] Plannerer, A. Das Rütteladruckverfahren, seine weiterentwicklung und anwendung fur gründungsaufgaben[J]. Mitteilungen des Instituts für grundbau und Bodenmechanik, TH Wien 1965, H.6, S. 54-74.
    [57]朱维新,王正宏.软土的預压加固[J].中国水利,1956,8:14-21+13.
    [58]黄文熙.十年来中国水利科学的成就[J].科学通报,1959,2:686-689.
    [59]陈环.真空预压加固软基的理论与实践[J].工业建筑,1984,1:38-43.
    [60]中国人民解放军.大型油罐工程中采用试水预压加固软弱地基[J].建筑技术通讯(建筑工程),1972,12:4-10.
    [61]唐敏,张美燕.天津新港地区软基加固可行性研究[J].港口工程,1983,1:17-25+52.
    [62]叶柏荣,陆舜英,唐羿生,等.袋装砂井——真空予压法加固软土地基[J].港口工程,1983,1:26-30.
    [63]叶柏荣,张敬,张欣.超软地基加固技术[J].港口工程,1986,5:1-7+28.
    [64]叶柏荣.关于吹填浮泥造陆的技术问题[J].港工技术,1994,1:41-45.
    [65]曹大正.吹填土真空预压快速疏干固结法:中国,CN1061823 [P]. 1992-06-10.
    [66]曹大正.低位真空预压软土地基加固抬高法:中国,CN97100652.0 [P]. 1997-09-10.
    [67]胡晓春.临港工业区:多元创新促发展[N].滨海时报,2010.3.9.
    [68]朱超,张季超,刘晨.真空预压处理广州南沙区软基的加固深度探讨[J].岩土工程学报,2010,32(S2):422-425.
    [69]周雪娣,董天林,刘学为.真空预压在天津某造船基地加固软基工程中的应用[J].西部探矿工程,2010,2:15-17.
    [70]赵广文,黄家青,吴建伟,等.真空预压技术在温州地区吹填淤泥地基加固中的应用[J].浙江建筑,2010,10:26-28.
    [71]陈环.对新港东突堤吹填土及软基加固的可能方案分析[J].港口工程,1984,01:22-25.
    [72]汤连生,王思敬,张鹏程,等.水-岩土化学作用与地质灾害防治[J].中国地质灾害与防治学报,1999,3.
    [73]樊耀星,陈合爱,张长生.真空预压法加固淤泥地基的效果分析[J].南昌大学学报(工科版),2006,28(04):397-400.
    [74]易图斌.袋装砂井加固软土的施工技术[J].路基工程,2001,3:42-44.
    [75]应舒,高长胜,黄家青.新吹填淤泥地基浅层处理试验研究[J].岩土工程学报,2010,32(12):1956-1960.
    [76]李卫,白金勇,杨京方,等.浅层真空预压法在加固新吹填粉土及粉质黏土地基中的应用[J].中国港湾建设,2010,04:12-14.
    [77]顾立军,侯和平,冯伟骞.低位真空预压技术在永定新河防潮闸地基加固工程中的应用[J].海河水利,2010,04:48-50.
    [78]董志良,张功新,李燕,等.大面积围海造陆创新技术及工程实践[J].水运工程,2010,10:54-67.
    [79]高速公路深厚软土地基处理新技术开发与应用[J].广东公路交通,2010,2:65-66.
    [80]吴连祥,邵锦周,龚海斌,等.低能强夯处治软黏土及新吹填土工程实践[C].长沙:2009年地基基础工程与锚固注浆技术研讨会,2009.
    [81]隋秀伟,刘洪昌.介绍一种处理浅层吹填土软基新技术——振冲导流挤密工艺[J].中国科技信息,2009,10:86+88.
    [82]洪振舜.吹填土的一维大变形固结计算模型[J].河海大学学报,1987,6:27-36.
    [83]方开泽.饱和软粘土的有限应变固结理论及其应用[J].河海大学科技情报,1986,3:25-38.
    [84]彭涛,武威,黄少康,等.吹填淤泥的工程地质特性研究[J].工程勘察,1999,5:1-5.
    [85]刘莹,肖树芳,王清.吹填土室内模拟试验研究[J].岩土力学,2004,4:518-521+528.
    [86] TAN Tjonc-kie(陈宗基).Three dimensional theory on the consolidation and flow of the clay layers[J]. Science in China, Ser. A, 1957, 1: 203-215.
    [87] Barden,L.,Younan,N.A.Consolidation of layered clays[J]. Canadian Geotechnical Journal,1969, 6: 413-429.
    [88] Poskitt,T.J.Consolidation of saturated clay with variable permeability, compressibility[J].1969, 19: 234-252.
    [89] Venkata Ratnam M., Subrahmanyam G.Consolidation of anisotropic saturated clay under three-dimensional drainage [J]. Journal of the Institution of Engineers (India Civil Engineering Division), 1971, 51: 244-251.
    [90]张诚厚,王伯衍,曹永琅.真空作用面位置及排水管间距对预压效果的影响[J].岩土工程学报,1990,1:45-52.
    [91]蔡树棠.泥浆的力学性质和砂粒在泥浆中运动时所受的阻力[J].应用数学和力学,1981,3:267-272.
    [92]娄炎.真空预压加固软淤泥的研究[J].水利水运科学研究,1987,3:45-57.
    [93]洪家宝,方开泽.统一固结理论在吹填土中的应用[J].河海大学学报,1991,6:16-22.
    [94]王盛源.饱和粘性土主固结与次固结变形分析[J].岩土工程学报,1992,5:70-75.
    [95]谢永利,潘秋元,曾国熙.空间描述的三维有限变形固结理论[J].西安公路交通大学学报,1994,4:6-12.
    [96]谢新宇,朱向荣,谢康和,等.饱和土体一维大变形固结理论新进展[J].岩土工程学报,1997,4:30-38.
    [97]房营光.层状饱和粘性土砂井路基的固结变形分析[J].土木工程学报,1997,5:49-57.
    [98]李韬.U.L.描述的大变形固结理论及其有限元分析[D].长安:长安大学,2001.
    [99]陈建峰,孙红,石振明,等.修正剑桥渗流耦合模型参数的估计[J].同济大学学报(自然科学版),2003,5:544-548.
    [100]曹永华,郭述军,高志义.电渗固结理论及其局限性[C].深圳:第七届全国工程排水与加固技术研讨会,2008,11:161-166.
    [101]李丽慧,王清,王剑平,等.真空排水预压下土体变形的应力路径分析[J].工程地质学报,2001,2:170-173.
    [102]刘莹,肖树芳,王清.吹填土沉积固化后结构强度增长的机理分析[J].同济大学学报(自然科学版),2003,11:1295-1298.
    [103]王清,陈慧娥,蔡可易.水泥土微观结构特征的定量评价[J].岩土力学,2003,S1:12-16.
    [104]王冠英.不同地区海积软土前期固结压力与结构强度的关系及其成因分析[D].长春:吉林大学建设工程学院,2004.
    [105]谢海澜,王清,李萍,等.生石灰和水泥混合处理吹填土的试验研究[J].工程地质学报,2003,1:49-53.
    [106]刘娉慧,肖树芳,王清.外掺剂加固吹填泥浆的机理分析[J].工程地质学报,2005,2:285-288.
    [107]徐锴,梅国雄,宰金珉,等.真空预压土体的变形研究[J].岩土力学,2007,11:2471-2474.
    [108]陈慧娥,王清,许晓慧.不同有机质含量水泥加固土微观结构分析[J].辽宁工程技术大学学报(自然科学版),2009,6:945-948.
    [109]龚镭.从长期沉降观测资料分析次固结沉降[J].工程勘察,2009,37(5):10-12.
    [110]牛岑岑,王清,杨静.渗流作用下吹填土沉降的时效特征研究[C].成都,第三届全国岩土与工程学术大会论文集,2009.
    [111]叶国良,郭述军,朱耀庭.超软土的工程性质分析[J].中国港湾建设,2010,5:1-9.
    [112]宋志刚,唐益群.吹填土固结速度影响因素的分析[J].路基工程,2010,3:18-20.
    [113]王清,王凤艳,肖树芳.土微观结构特征的定量研究及其在工程中的应用[J].成都理工学院学报,2001,2:148-153.
    [114]谭罗荣.土的微观结构研究概况和发展[J].岩土力学,1983,1:73-86.
    [115] Casagrande.A.The structure of clay and its importance in foundation engineering [J].J.Boston Soc.Civ.Engris,1932,19(4):168-209.
    [116] Vanolphen. An introduction to clay colloid chemistry[J].1963.
    [117]陈宗基.对我国土力学、岩体力学中若干重要问题的看法[J].土木工程学报,1963,5:24-30.
    [118]吴义祥.工程粘性土微观结构的定量评价[J].中国地质科学院院报,1991,2:143-151.
    [119]张奠成,陶文祥,杨敬安.提取土微观结构特征的显微图片处理及分析的研究[J].合肥工业大学学报(自然科学版),1992,1:1-9.
    [120] Tovey N. K. Quantitative analysis of electron micrographe of structure[C]. Gothenburg:国际土结构会议文集. 1973.
    [121] Matuso S, Kamon M. Microscopic study on deformation and strength of clays[C].东京:第九届国际土力学和基础程会议文集, 1977.
    [122]高国瑞.兰州黄土显微结构和湿陷机理的探讨[J].兰州大学学报,1979,2:123-134.
    [123]高国瑞.膨胀土的微结构和膨胀势[J].岩土工程学报,1984,2:40-48.
    [124] Moore C A. Donaldson C F. Quantifying soil microstructure using fractals[J]. Geotechique,1995,1(45):105-116.
    [125] Bai X, S.P. Change in microstructure of Kailin in consolidation undrained chear[J]. Geotechnique,1994,44(4):175-180.
    [126]张奠成,杨敬安,李云,等.土壤微观结构的计算机定量分析[J].应用科学学报,1993,2:159-165.
    [127]施斌.粘性土击实过程中微观结构的定量评价[J].岩土工程学报,1996,04.
    [128]施斌.粘性土微观结构简易定量分析法[J].水文地质工程地质,1997,1:7-10.
    [129]王清.几种粘性土的微观结构特征及变形与强度的时效研究[D].长春:长春科技大学,1997.
    [130]王常明.海积软土微观结构定量化及固结模型研究[D].长春:长春科技大学,1999.
    [131]汤连生.黄土湿陷性的微结构不平衡吸力成因论[J].工程地质学报,2003,11(1):30-35.
    [132]张宏,柳艳华,石名磊.海陆交互相黏性土工程特性及微结构特征[J].土木建筑与环境工程,2009,6:47-52.
    [133]孔令伟,吕海波,汪稔,等.湛江海域结构性海洋土的工程特性及其微观机制[J].水利学报,2002,9:82-88.
    [134]胡瑞林,官国琳,李向全,等.黄土湿陷性的微结构效应[J].工程地质学报,1999,2:161-167.
    [135]李向全,胡瑞林,张莉.粘性土固结过程中的微结构效应研究[J].岩土工程技术,1999,3:52-56.
    [136]王清,王剑平.土孔隙的分形几何研究[J].岩土工程学报,2000,4:496-498.
    [137] Bagrov,A.A. In fluence of the degree of dispersion on the dependence of the specific power for limiting break down of the structure of clay suspensions on the concentration of the dispersephase [J]. 1969, 31: 523-525.
    [138] Grafton,D.R.,Garey,C.L.Effect of clay-adhesive interaction the structure of coatings [J]. 1969.
    [139] Kol'Tsov, E.M. Determing the desities of clay suspensions use din the construction of under ground structures [J]. Soil Mechanics, Foundation Engineering, 1969:416-419.
    [140] Nacci, V.A., Huston, M.T. Structure of deep sea clays[J], 1969: 599-619.
    [141]刘长礼,王秀艳.预压下软土孔隙成分分维特征及其实用意义[J].工程勘察,1993,5:6-11.
    [142]赵爱红,廖毅,唐修义.煤的孔隙结构分形定量研究[J].煤炭学报,1998,4.
    [143]薛茹,胡瑞林,毛灵涛.软土加固过程中微结构变化的分形研究[J].土木工程学报,2006,10:87-91.
    [144]蒋明镜,彭立才,朱合华,等.珠海海积软土剪切带微观结构试验研究[J].岩土力学,2010,7:2017-2023+2029.
    [145]周晖,房营光,曾铖.广州饱和软土固结过程微孔隙变化的试验分析[J].岩土力学,2010,31(S1):138-144.
    [146] Cundall P., Voegele M., Fairhurst C. Computerized design of rock slopes using interactivegraphics for the input output of geometrical data[J].1977: 5-15.
    [147] Cundall P.A., Strack O.D.L. Development of constitutive laws for soil using the distinct elment method[J]. Sea Preprints,1979, 1:289-298.
    [148] Cundall P.A., Strack,O.D.L. Discrete numerical model for granul aras semblies [J]. Geotechnique, 1979, 29: 47-65.
    [149] Bardet J.P., Proubet J. Numerical simulation of localization in granular materials[C]. Publ by ASCE, 1991.
    [150] Bardet J.P., Proubet J. Numerical in vestigation of the structure of persistent shear bands in granular media[J]. Geotechnique, 1991, 41:599-613.
    [151] Bardet J.P., Proubet J. Shear-band analysis in idealized granular material[J]. Journal of Engineering Mechanics, 1992, 118: 397-415.
    [152] Kulatilake P.H.S.W., Malama B., Wang J. Physical, particle flow modeling of jointed rock block behavior under uniaxial loading[J]. International Journal of Rock Mechanics, Mining Sciences, 2001, 38: 641-657.
    [153] Zeghal M., ElShamy U., Dobry R., Fish J., Shephard M., Abdoun T. Micro-mechanical simulations of water flow through granular soils[C]. American Society of Civil Engineers, 2002.
    [154] ElShamy, U., Zeghal, M. Coupled continuum-discrete model for saturated granular soils[J].Journal of Engineering Mechanics, 2005, 131:413-426.
    [155] ElShamy, U., Zeghal, M. Response of liquefiable granular deposits tomulti-direction shaking[D]. American Society of Civil Engineers, 2006.
    [156] Zeghal, M., ElShamy, U. Amicro-mechanical study of granular soil liquefaction during dynamic excitations[D]. Taylor, Francis, Balkema, 2006.
    [157] Cai H., Zhou J., LiX. Plasto elastic response of horizontally layered sites under multi-directional earthquake shaking[J].Tongji Daxue Xuebao/Journal of Tongji University, 2000, 28: 177-182.
    [158]张刚.管涌现象细观机理的模型试验与颗粒流数值模拟研究[D].上海:同济大学土木工程学院,2007.
    [159]罗勇.土工问题的颗粒流数值模拟及应用研究[D].上海:浙江大学岩土工程研究所,2007.
    [160]罗勇,龚晓南,吴瑞潜.桩墙结构的颗粒流数值模拟研究[J].科技通报,2007,6:853-857+862.
    [161]罗勇,龚晓南,吴瑞潜.颗粒流模拟和流体与颗粒相互作用分析[J].浙江大学学报(工学版),2007,11:1932-1936.
    [162]罗勇,龚晓南,连峰.三维离散颗粒单元模拟无黏性土的工程力学性质[J].岩土工程学报,2008,2:292-297.
    [163]刘洋,周健,付建新.饱和砂土流固耦合细观数值模型及其在液化分析中的应用[J].水利学报,2009,2:250-256.
    [164]周健,周凯敏,姚志雄,等.砂土管涌-滤层防治的离散元数值模拟[J].水利学报,2010,1:17-24.
    [165]张明鸣,徐卫亚,夏玉斌,等.抛石挤淤机理及其颗粒流数值模拟研究[J].中南大学学报(自然科学版),2010,1:310-315.
    [166]习志雄.真空预压法处理吹填淤泥质软土地基的颗粒流数值模拟[D].北京:北京交通大学,2010.
    [167]刘建炎,李景林,吴春勇,等.吹填砂土地基的不同加固方法效果评价[J].世界地质,2006,1:81-85.
    [168]王黎明,韩选江,朱允伟,等.真空动力固结加固吹填土地基的试验[J].南京工业大学学报(自然科学版),2006,6:57-61.
    [169]姚忠岭.曹妃甸工业区吹填砂土地基的处理研究[D].石家庄:河北理工大学,2008.
    [170]杨成兴,张金欢,潘杰,等.浅谈真空动力固结法加固吹填土地基[J].科技创新导报,2009,30:42-43.
    [171]岳伟.CFG桩复合地基振动法施工工艺与质量控制[J].施工技术,2010,39:26-28.
    [172]曹立波.真空预压加固软土地基工法研究[J].交通标准化,2010,2:98-100.
    [173]王艳,李军世.真空预压处理机场软基的试验研究[J].岩土工程界,2009,10:42-46.
    [174]韩选江.大型围海造地吹填土地基处理技术原理及应用[M].北京:中国建筑工业出版社,2009.3.
    [175]刘莹,王清,肖树芳.不同地区吹填土基本性质对比研究[J].岩土工程技术,2003,4:197-200.
    [176]山内丰聪,上晖南,石桥侦造,等.博多湾吹填土的特性[J].港工勘察,1979,(4):36-42.
    [177]刘锡清.中国大陆架的沉积物分区[J].海洋地质与第四纪地质,1990,10(1):13-24.
    [178]中国科学院海洋研究所地质研究室.渤海地质[M].北京:科学出版社,1985.
    [179]中华人民共和国水利部. GB/T 50123—1999土工试验方法标准[S].北京:中国建筑工业出版社,1999.
    [180]唐大雄,王清,张文殊,等.工程岩土学[M].北京:地质出版社,1999.
    [181]夏玉斌,刘强,邓磊.直排式真空预压地基处理方法:中国,CN200710306072.9 [P]. 2008-07-09.
    [182]夏玉斌,刘强.真空预压垂直铺塑侧向密封技术在软基处理工程中的试验与应用[J].水运工程,2006,10(10):212-224.
    [183]夏玉斌,陈允进.直排式真空预压法加固软土地基的试验与研究[J].工程地质学报,2010,18(3):376-384.
    [184]冯苍旭.土壤孔隙水压力检测系统试验研究及关系模型建立[D].石家庄:河北农业大学,2004.
    [185]周上祺.X射线衍射分析原理方法应用[M].重庆:重庆大学出版社,1991.
    [186]郭兴.盐渍土中易溶盐迁移规律与基本性质[J].青海交通科技,2008,4:21-22.
    [187]陈慧娥,王清.水泥加固土微观结构的分形[J].哈尔滨工业大学学报,2008,2:307-309.
    [188]陈慧娥.有机质影响水泥加固软土效果的研究[D].长春:吉林大学建设工程学院,2006.
    [189]刘娉慧,王清,董钧祥.室内加固的吹填土微结构试验研究[J].水文地质工程地质,2005,4:21-23+31.
    [190]赵安平.季冻区路基土冻胀的微观机理研究[D].长春:吉林大学建设工程学院,2008.
    [191]李杨,王清,陈慧娥,等.长春地区季冻土微观结构特征的定量评价[J].河北工程大学学报(自然科学版),2007,4:31-34.
    [192]董宏志,王清,于莉,等.长春季节性冻土地区土体微观结构与水分迁移的关系[J].水文地质工程地质,2008,2:62-65.
    [193]谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992,1:14-24.
    [194]周晖,房营光,禹长江.广州软土固结过程微观结构的显微观测与分析[J].岩石力学与工程学报,2009,S2:3830-3837.
    [195]宋晶,王清,张鹏,等.固结过程中高粘性吹填土颗粒迁移规律研究[C].第八届土木工程研究生学术论坛论文集,2010,11:156;
    [196] Jing SONG, Qing WANG, Yu-bin XIA, etal. Research on the mechanism of consolidation settlement of dredger fill [C]. Auckland: International Association for Engineering Geology Congress 2010, 9: 2485-2492.
    [197] Xiao-qing YUAN, Qing WANG, Jing SONG. A study on the shear strength mechanism of dredger fill affected by soluble salt[C]. Auckland: International Association for Engineering Geology Congress 2010, 9: 3919-3925.
    [198] Itasca Consulting Group Inc.PFC3D Version4.0 Particle Flow Code in 3Dimensions Online Manual Table of Contents.使用说明书.
    [199] Bear J.Dynamics of Fluids in Porous Media[M].New York:American Elsevier Publishing Co., Inc., 1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700