用户名: 密码: 验证码:
无线网络中协作通信系统的性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为抵抗无线衰落损伤、提高通信系统可靠性和增加系统传输速率的一种有效手段,协作(Cooperative)通信技术无疑是近几年学术界研究的热点之一。在无线环境中,单天线便携式移动节点可以协调地共享其它节点的资源,在源节点与目的节点之间构建多条通信链路,形成一个虚拟的MIMO系统,从而为小型移动设备的MIMO实用化提供了一条崭新的出路。
     鉴于协作通信技术将会发展成为未来无线通信领域广泛采用的传输技术之一。因此,在投入实际应用之前则非常有必要详尽地探讨和评估其各方面性能。本论文首先追踪报道了国内外与协作通信有关的研究进展。关于协作通信理论,迄今虽已取得较为丰富的研究成果,但还存在明显不足。一方面,已有工作大多是局限在Rayleigh信道环境下研究的。事实上,Nakagami衰落信道模型尽管相对复杂,但是它能够代表更为广泛的实际信道情形。另一方面,协作通信技术尽管能够引入更多的分集增益,但是从吞吐量角度看其并非是最佳选择。而跨层设计思想可以很好地弥补这一缺陷。然而目前针对协作通信的跨层设计的研究却很少。
     为此,在物理层下,我们主要研究Nakagami衰落信道环境下的并行、串行协作系统性能;在跨层设计方面,针对不同的网络结构和中继转发方式,我们提出了相应的跨层方案,并分析其吞吐量性能。具体研究工作如下:
     物理层下的研究工作主要包括:
     在Nakagami衰落环境下,研究了带有机会中继转发的并行协作通信系统的性能。每个中继节点只接收来自源节点的信息,中继节点采用前向译码中继转发方式(DF),目的节点分别采用最大比合并(MRC)与选择合并(SC)接收处理技术。推导出了精确的符号错误概率(SER)与中断概率(OP)的数学表达式。依据提供的理论公式,讨论了并行协作通信系统所能获得的分集增益。仿真分析了这两种接收合并技术下的并行协作系统性能,并与基于重复发送的并行协作通信系统进行对比。结果显示带有机会中继的并行协作通信系统性能远远好于基于重复发送的并行协作通信系统的性能。此外,基于统计信道信息,对选择合并接收方式的并行协作通信系统给出了最优功率分配方案。
     在Nakagami衰落环境下,研究了串行协作通信系统下的性能。每个接收节点既可以接收源节点信息,又可以接收部分或全部中继节点广播的信息。根据每个接收节点是否准确获悉前面中继节点的DF状态,分别分析了A-MRC、B-MRC、B-EGC三种不同接收方式下的串行协作系统性能。针对A-MRC接收方式下的串行协作系统,我们给出了精确的SER表达式和高信噪比下的渐近结果,同时又分析了B-MRC和B-EGC和接收方式下串行协作通信系统的渐近SER性能。根据给出的SER渐近表达式,深入地分析了这三种接收方式下的分集增益。结果表示:B-MRC接收方式下的性能最差,而B-EGC与A-MRC接收方式能获得一致的分集增益,且B-EGC接收方式更易于实现。
     物理层与数据链路层的跨层设计方式下的研究工作主要包括:
     在Rayleigh衰落环境和基于前向放大中继方式(AF)的并行协作框架下,提出了新的跨层设计方案。根据中继节点AF处理方式与对最优中继节点选择方式的不同,提出了四种备选方案,并且分别给出了平均吞吐量的数学表达式。讨论了系统各参数对平均吞吐量的影响,全面地对比了这四种方案的优缺点。
     在Rayleigh衰落环境和基于DF中继转发方式的并行协作框架下,提出了一种基于选择中继重传(SN-RT)的跨层设计方案。在重传过程,根据中继节点与目的节点间的瞬时信道状态选择一个最佳的中继节点,并联合源节点以Alamouti编码方式进行重传操作。通过与已有的固定中继重传(FN-RT)的跨层设计方案进行对比,发现SN-RT跨层方案更加充分地利用了网络的中继节点,进而显著地提高了系统的平均吞吐量。
     在Nakagami衰落环境下,设计出了一种新颖的多跳通信下的跨层设计方案。首先考虑单中继跨层设计方案,即允许每一跳的节点间可以重传操作,直到接收节点获取无差错的数据包后,信息传输方可进行下一跳。接下来将这一思想推广到基于多中继跨层设计情形,提出了随机选择单中继传输和随机选择两中继传输方案。对不同的跨层设计情形分别给出了平均吞吐量的数学表达式。
     综上所述,本文针对物理层下的协作通信系统进行了详细的性能分析,在跨层设计方面提出了新的设计方案,提高了协作通信系统的吞吐量性能。这些研究成果可以为将来进一步研究工作和实际应用提供丰富的理论依据。并且,本文所考虑的协作模型和设计方案具有广阔的应用前景,可以应用在蜂窝网络、无线局域网、Ad-Hoc网络、传感器网络和WiMAX网络中。
As a hotspot in academic community during the recent years, cooperative communication technology serves to mitigate wireless channel impairment, enhance communication reliability and increase transmission rate. Single-antenna and potable mobile nodes share resources of each other with apt coordination under wireless scenario. Accordingly, multiple communication links between the source node and the destination node are established with a virtual multiple-input and multiple-output (MIMO) system formed at the same time, providing a new technique for MIMO implementation of small and mobile terminals.
     It is likely that cooperative communication technology will become one of the most promising transmission technologies for future wireless communications. Profound evaluation of its performance, however, is a requisite before its employment in practical applications. The thesis begins with a summary of efforts poured into the topic by both domestic and international researchers. Although fruitful achievements have been achieved, there are still some insufficiencies. On one hand, mentioned previous analyses, however, have assumed Rayleigh fading models while Nakagami fading models may represent miscellaneous real channels. Furthermore, although cooperative communication technology can deduce advantages in terms of diversity, it is not the best choice from the throughput point of view. Fortunately, it is more than compensated with cross-layer design scheme. Little literature attention has been focused on the cross-layer design for cooperative communication.
     Therefore, we will solely focus on the study of performances of both parallel and serial cooperative systems under Nakagami fading channels. With different network topologies and relaying strategies, cross-layer design schemes will be proposed accordingly and the performances of average throughput will be analyzed. Detailed contents are listed as:
     Researches at the physical layer include:
     Investigation is made upon performances of parallel cooperative communication systems with opportunistic relaying over Nakagami fading channels, under which scenario each relaying node solely receives the messages from the source node. Moreover, the decode-and-forward (DF) strategy is adopted at the relaying nodes, whilst maximal-ratio-combining (MRC) and selection-combining (SC) schemes are employed separately at the destination nodes. Particularly, exact and closed-form symbol error rate (SER) and outage probability (OP) expressions are derived, based upon which the diversity properties are discussed. Furthermore, simulations for both reception schemes are conducted and the performances of repetition-based cooperative communication systems are compared accordingly. It is obviously observed that the performances of cooperative systems using opportunistic relaying outperform that of repetition-based cooperative technique. In addition, relying on statistical channel information, the optimum power allocations for the source and the relays are determined.
     Investigation is made upon the performances of serial cooperative communication systems over Nakagami fading channels. Each receiver receives the messages from the source as well as the messages from partial or all relays. According to the DF state that the receivers are not informed of whether previous relays successfully decoded the received messages and forward it, the performances for serial cooperative systems with adaptive-MRC (A-MRC), blind-MRC (B-MRC) and blind-equal-gain-combining (B-EGC) schemes are examined respectively. Exact SER expressions and asymptotic results are derived for the A-MRC scheme together with examination on the asymptotic SER performances for B-MRC and B-EGC schemes, based on which the diversity properties are intensively addressed. The results demonstrate that the performance for B-MRC scheme is the worst among the three schemes, while the diversity order for B-EGC scheme is found to be identical to that of A-MRC scheme but with less than satisfactory practical realization.
     Researches on cross-layer design concerning physical layer and data link layer include:
     A novel cross-layer design scheme is proposed for parallel cooperative systems adopting amplify-and-forward (AF) relaying over Rayleigh fading channels. Four schemes are proposed with average throughput expressions based on assorted relaying strategies. The effects of selecting system parameters on average throughput are discussed, with both merits and limitations of the four schemes investigated.
     A specific novel cross-layer design scheme, named selective-node-based retransmission (SN-RT) scheme, is proposed for parallel cooperative systems with DF relaying over Rayleigh fading channels, with which an optimal relay is selected relying upon the instantaneous signal-to-noise ratio of the relay-to-destination link at each stage of retransmission. After that, the source together with the optimal relay transmits signals to the destination nodes following Alamouti-based space-time coding. Simulation results show that SN-RT scheme better exploits the relaying nodes in wireless network as opposed to the existing fixed-node-based retransmission (FN-RT) scheme, and thus phenomenally improve system's average throughput.
     Another novel cross-layer design scheme is proposed for multihop communication systems over Nakagami fading. One-relay-based cross-layer scheme is considered at first, where only a single node is allowed to retransmit packet in each hop, it is not until the packet is successfully received by the destination node that the next new packet transmission can be started. The idea is generalized to multiple-relay-based scenarios with the random selection of single relay transmission and two relays transmission. Finally, expressions for average throughput of different cross-layer schemes are derived.
     In summary, detailed investigations are made on the performances of cooperative communication systems at the physical layer. Some novel cross-layer design schemes are proposed, optimizing the system average throughput. Those achievements serve as productive theoretical tools for further researches and applications. In addition, broad prospects for various applications are uncovered for the cooperative models and cross-layer design schemes under consideration, e.g., cellular networks, wireless local area networks, Ad-Hoc networks, sensor networks and WiMAX networks.
引文
[1]Tse D N C,Viswanath P.Fundamentals of Wireless Communications.Cambridge,U.K.:Cambridge Univ.Press,2005.(中译本,李锵等译)
    [2]Goldsmith A J.Wireless Communications.Cambridge,U.K.:Cambridge Univ.Press,2005.
    [3]Rappaport T S.Wireless Communications:Principles and Practice.Englewood Cliffs,N J:Prentice-Hall,1996.
    [4]Simon M K,Alouini M S.Digital Communication over Fading Channels:A Unified Approach to Performance Analysis.John Wiley & Son,Second Edition,2005.
    [5]吴伟陵,牛凯.移动通信原理.电子工业出版社,2005.
    [6]杨维,陈俊仕,李世明,江连山.移动通信中的阵列天线技术.清华大学出版社&北京交通大学出版社,2005.
    [7]韦惠民,李国民,暴宇.移动通信技术.人民邮电出版社,2006.
    [8]Vucetic B,Yuan J.Space-Time Coding.New York:Wiley,2003.(中译本,王晓海等译)
    [9]Hottinen A,Tirkkonen O,Wichman R.Multi-antenna Transceiver Techniques for 3G and Beyond.John Wiley & Sons Ltd,2003.
    [10]Telatar I E.Capacity of multi-antenna Gaussian channels.Europ Tram Telecommun,1999,10(6):585-595.
    [11]Foschini G J.Layered space-time architecture for wireless communication in a fading environment when using multi element antennas.Bell Labs Technical Journal,1996:41-59.
    [12]Wolniansky P W,Foschini G J,et al.VBLAST:an architecture for realizing very high data rates over rich scattering wireless channels.Proc.ISSS-98,1998:295-300.
    [13]Tarokh V,Seshadri N,Calderbank A R.Space-time codes for high data rate wireless communication:performance criterion and code construction.IEEE Trans.Inform.Theory,1998,44(12):744-765.
    [14]Alamouti S M.A simple transmit diversity technique for wireless communications.IEEE J.Selet.Areas Commun.,1998,16(8):1451-1458.
    [15]Tarokh V,Jafarkhan H,Calderbank A R.Space-time block codes from orthogonal design.IEEE Trans.Inform.Theory,1999,45(5):1456-1467.
    [16]Gesbert D,Shaft M,Shiu D,Smith P J,and Naguib A.From theory to practice:an overview of MIMO space-time coded wireless systems.IEEE J.Selected Area Commun.:Special Issue on MIMO Systems and Applications,2003,21:281-302.
    [17]Yue D W,Zhang Q T,Cui X W.Characteristic functions for optimum-combining output SINR with AWGN and correlated interference.IEEE Trans.Commun.,2007,55(2):266-270.
    [18]Goldsmith A,Jafar S A,Jindal N,and Vishwanath S.Capacity limits of MIMO channels.IEEE J.Selected Area Commun.,2003,21:684-702.
    [19]黄韬,袁超伟,杨睿哲,刘鸣.MIMO相关技术与应用.机械工业出版社,2007.
    [20]Shin H,Lee J H.Capacity of multiple-antenna fading channels:spatial fading correlation,double scattering and keyhole.IEEE Trans.Inform.Theory,2003,49(10):2636-2647.
    [21]Shin H,Win M Z.MIMO diversity in the presence of double scattering.IEEE Trans.Inform.Theory,2008,54(7):2976-2996
    [22]Shin H,Lee J H.Performance analysis of space-time block codes over keyhole Nakagami-m fading channels.IEEE Trans.Veh.Tech.,2004,53(2):351-362.
    [23]Yang L,Giannakis G B.Analog space-time coding for multiantenna ultra-wideband transmission.IEEE Trans.Commun.,2004,52(3):507-517.
    [24]Rjeily C A,Daniele N,Belfiore J C.Space-time coding for multiuser ultra-wideband communications.IEEE Trans.Commun.,2006,54(11):1960-1972.
    [25]Zhang R,Liang Y C.Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks.IEEE Journal of Sel.Signal Proc.,2008,2(1):88-102.
    [26]Scutari G,Palomar D,Barbarossa S.Cognitive MIMO radio.IEEE Signal Proc.Magazine,2008,25(6):46-59.
    [27]Wei H,Gitlin R D.Two-hop-relay architecture for next-generation WWAN/WLAN integration.IEEE Wireless Commun.,2004:24-30.
    [28]Scaglione A,Goeckel D L,Laneman J N.Cooperative communications in mobile Ad Hoc networks.IEEE Signal Process.Magazine,2006:18-29.
    [29]Nosratinia A,Hunter T E,Hedayat A.Cooperative communication in wireless networks.IEEE Commun.Magazine,2004:74-80.
    [30]Lee D C,Kwon Y H.Performance benefits of uplink packet relay protocols for cellular-link systems:quantitative analysis.IEEE Trans.Wireless Commun.,2006,5(7):1569-1574.
    [31]Dohler M.Performance analysis of distributed space-time block-encoded sensor networks.IEEE Trans.Veh.Tech.,2006,55(6):1776-1789.
    [32]Zimmermann E.On the performance of cooperative relaying protocols in wireless networks.Euro.Trans.Telecommun.,2005:5-16.
    [33]Pabst R,Wlke B H,Schultz D C,et.al.Relay-based deployment concepts for wireless and mobile broadband radio.IEEE Commun.Magazine,2004:80-89.
    [34]Meulen E.Three-terminal communication channels.Adv.Appl.Prob.,1971,3:120-154.
    [35]Cover T,Gamal A E.Capacity theorems for the relay channel.IEEE Trans.Inform.Theory,1979,25(5):572-584.
    [36]Sendonaris A,Erkip E,Aazhang B.Increasing uplink capacity via user cooperation diversity.Proc.IEEE ISIT,1998:196.
    [37]Sendonaris A,Erkip E,Aazhang B.User cooperation diversity - part Ⅰ:system description.IEEE Trans.Commun.,2003,51(11):1927-1938.
    [38]Sendonaris A,Erkip E,Aazhang B.User cooperation diversity - part Ⅱ:implementation aspects and performance analysis.IEEE Trans.Commun.,2003,51(11):1939-1948.
    [39]Laneman J N,Tsc D N C,Wornell G W.Cooperative diversity in wireless networks:efficient protocols and outage behavior.IEEE Trans.Inform.Theory,2004,50(12):3062-3080.
    [40]Lancman J N,Worncll G W.Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks.IEEE Trans.Inform.Theory,2003,49(10):2415-2425.
    [41]Ⅰ.Kang Fu,W.H.Sheen.Throughput improvement with relay-argumentcd cellular architecture.IEEE 80216mmr-05 008,2005.http://www.wirelessman.org.
    [42]Fundamental research on multi-domain collaboration for broadband wireless communications.National Basic Research Program of China.http://www.973.gov.cn.
    [43]王大健.基于中继技术的802.16j标准展望.http://tech.c114.net/164/a250744.html.
    [44]Dohler M.Virtual Antenna Arrays.Ph.D.dissertation,King's College,London,U.K.,2003.
    [45]Dohler M,Gkelias A,Aghvami H.2-hop distributed MIMO communication system.IEE Electronics Letters,2003,39(18):1350-1351.
    [46]Dohler M,Lefranc E,Aghvami H.Space-time block codes for virtual antenna arrays.Conference on PIMRC,Lisbon,Portugal,2002.
    [47]Dohler M,Lefranc E,Aghvami H.Virtual antenna arrays for future wireless mobile communication systems.ICT 2002,Bcijing,China,June 2002.
    [48]Dohler M,Aghvami H.Distributed PHY-layer mesh network.IEEE Personal,Indoor and Mobile Communication Conference,2003:2543-2547.
    [49]殷勤业,张莹,丁乐,孟银阔.协作分集:一种新的空域分集技术.西安交通大学学报,2005,39(6):551-557.
    [50]Beres E,Adve R.Selection cooperation in multi-source cooperative networks.IEEE Trans.Wireless Commun.,2008,7(1):118-127.
    [51]Lin Z,Erkip E,.Stefanov A.Cooperative regions and partner choice in coded cooperative systems.IEEE Trans.Commun.,2006,54(7):1323-1334.
    [52]Hasna M O,Alouini M S.End-to-end performance of transmission systems with relays over Rayleigh-fading channels.IEEE Trans.Wireless Commun.,2003,2(6):1126-1131.
    [53]Anghel P A,Kaveh M.Exact symbol error probability of a cooperative network in a Rayleigh-fading environment.IEEE Trans.Wireless Commun.,2004,3(5):1416-1421.
    [54]Hasna M O,Alouini M S.Harmonic mean and end-to-end performance of transmission systems with relays.IEEE Trans.Commun.,2004,52(1):130-135.
    [55]Hasna M O,Alouini M S.A performance study of dual-hop transmission with fixed gain relays.IEEE Trans.Wireless Commun.,2004,3(6):1963-1968.
    [56]Karagiannidis G K.Performance bounds of multihop wireless communications with blind relays over generalized fading channels.IEEE Trans.Wireless Commun.,2006,5(3):498-503.
    [57]Karagiannidis G K,Tsiftsis T A,Mallik R K.Bounds for multihop relayed communications in Nakagami-m fading.IEEE Trans.Commun.,2006,54(1):18-22.
    [58]Maham B,Hjorungnes A.Performance analysis of repetition-based cooperative networks with partial statistical CSI at relays.IEEE Commun.Lett.,2008,12(11):828-830.
    [59]Farhadi G,Beaulieu N C.On the performance of amplify-and-forward cooperative systems with fixed gain relays.IEEE Trans.Wireless Commun.,2008,7(5):1851-1856.
    [60]Wang T,Cano A,Giannakis G B,Laneman J N.High-performance cooperative demodulation with decode-and-forward relays.IEEE Trans.Commun.,2007,55(7):1427-1438.
    [61]Yi Z,Kim I M.Diversity order analysis of the decode-and-forward cooperative networks with relay selection.IEEE Trans.Wireless Commun.,2008,7(5):1792-1799.
    [62]Zhao Y,Adve R,Lim T J.Outage probability at arbitrary SNR with cooperative diversity.IEEE Commun.Lett.,2005,9(8):700-702.
    [63]Beaulieu N C,Hu J.A closed-form expression for the outage probability of decode-and-forward relaying in dissimilar Rayleigh fading channels.IEEE Commun.Lett.,2006,10(12):813-815.
    [64]Hu J,Beaulieu N C.Performance analysis of decode-and-forward relaying with selection combining.IEEE Commun.Lett.,2007,11(6):489-491.
    [65]Suraweera H A,Smith P J,Armstrong J.Outage probability of cooperative relay networks in Nakagami-m fading channels.IEEE Commun.Lett.,2006,10(12):834-836.
    [66]Datsikas C K,Sagias N C,Lazarakis F I,Tombras G S.Outage analysis of decode-and-forward relaying over Nakagami-m fading channels.IEEE Signal Process.Letter,2008,15:41-44.
    [67]Su W,Sadek A.K,Liu K J R.Cooperative communication protocols in wireless networks:performance analysis and optimum power allocation.Wireless Pers Commun.,2008:181-217.
    [68]Lee I H,Kim D.BER analysis for decode-and-forward relaying in dissimilar Rayleigh fading channels.IEEE Commun.Lett.,2007,11(1):52-54.
    [69]Suraweera H A,Karagiannidis G K.Closed-form error analysis of the non-identical Nakagami-m fading channel.IEEE Commun.Lett.,2008,12(4):259-261.
    [70]Zhou Q F,Lau F C M.Two incremental relaying protocols for cooperative networks.IET Commun.,2008,2(10):1272-1278.
    [71]Hunter T E,Nosratinia A.Cooperation diversity through coding,in Proc.IEEE International Symposium on Information Theory(ISIT),Laussane,Switzerland,July 2002:220.
    [72]Li Y,Kishore S.Asymptotic analysis of amplify-and-forward relaying in Nakagami-fading environments.IEEE Trans.Wireless Commun.,2007,6(12):4256-4262.
    [73]Ikki S,Ahmed M H.Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel.IEEE Commun.,Lett,2007,11(4):334-346.
    [74]Costa D B,Yacoub M D.Dual-hop transmissions with semi-blind relays over Nakagami-m fading channels," Electronics Letters,2008,44(3).
    [75]Krikidis Ⅰ,Thompson J,Mclaughlm S,Goertz N.Amplify-and-forward with partial relay selection.IEEE Commun.Lett.,2008,12(4):235-237.
    [76]Mheidat H,Uysal M.Impact of receive diversity on the performance of amplify-and-forward relaying under APS and IPS power constraints.IEEE Commun.Lett.,2006,10(6):468-470.
    [77]程卫军,朱柏程.Nakagami衰落信道下多跳合作分集系统的中断率.电子与信息学报,2006,28(10):1892-1896.
    [78]赵贤敬,郑宝玉,钱小聪,傅洪亮.协作发射分集系统及其误码性能分析.通信学报,2007,28(1):40-48.
    [79]程卫军,朱柏乘.基于最小路由数的多节点合作MRC系统的性能分析.电子学报,2007,35(7):1246-1250.
    [80]Yang L,Hasna M O,Alouini M S.Average outage duration of multihop communication systems with regenerative relays.IEEE Trans.Wireless Commun.2005,4(4):1366-1371.
    [81]Patel C S,Stuber G L,Pratt T G.Statistical properties of amplify and forward relay fading channels.IEEE Trans.Veh.Tech.,2006,55(1):1-9.
    [82]Chau Y A,Huang K Y.Channel statistics and performance of cooperative selection diversity with dual-bop amplify-and-forward relay over Rayleigh fading channels.IEEE Trans.Wireless Commun.,2008,7(5):1779-1785.
    [83]Shin H,Song J B.MRC analysis of cooperative diversity with fixed-gain relays in Nakagami-m fading channels.IEEE Trans.Wireless Communications,2008,7(6):2069-2074.
    [84]Tsiftsis T A,Karagiannidis G K,Mathiopoulos P T,Kotsopoulos S A,Nonregenerative dual-hop cooperative links with selection diversity.EURASIP journal on wireless communications and networking,2006:1-8.
    [85]Ribeiro A,Cai X,Giannakis G B.Symbol error probabilities for general cooperative links.IEEE Trans.Wireless Commun.,2006,4(3):1264-1273.
    [86]Yang L L,Chen H H.Error Probability of digital communications using relay diversity over Nakagami-m fading channels.IEEE Trans.Wireless Commun.,2008,7(5):1806-1811.
    [87]Safari M,Uysal M.Cooperative diversity over log-normal fading channels:performance analysis and optimization.IEEE Trans.Wireless Commun.,2008,7(5):1963-1972.
    [88]Bletsas A,Shin H,Win M Z.Outage analysis for co-operative communication with multiple amplify-and-forward relays.Electronics Letters,2007,43(6).
    [89]Janani M,Hedayat A,Hunter T E,Nosratinis A.Coded cooperation in wireless communications:space-time transmission and iterative decoding.IEEE Trans.Signal Processing,2004,52(2):362-371.
    [90]Hunter T E,Sanayei S,Nosratinis A.Outage analysis of coded cooperation.IEEE Trans.Inform.Theory,2006,52(2):375-391.
    [91]Krikidis I,Belfiore J C.Three scheduling schemes for amplify-and-forward relay environments.IEEE Commun.Lett.,2007,11(5):414-416.
    [92]Boyer J,Falconer D D,Yanikomeroglu H.Multinode diversity in wireless relaying channels.IEEE Trans.Commun.,2004,52(10):1820-1830.
    [93]Sadek A K,Su W,Liu K J R.Multinode cooperative communications in wireless networks.IEEE Trans.Signal Process.,2007,55(1):341-355.
    [94]Anghel P A,Kaveh K.On the performance of distributed space-time coding systems with one and two non-regenerative relays.IEEE Trans.Wireless Commun.,2006,5(3):682-692.
    [95]Anghel P A,Leus G,Kaveh M.Distributed space-time cooperative systems with regenerative relays.IEEE Trans.Wireless Commun.,2006,5(11):3130-3141.
    [96]Uysal M,Canpolat O,Fareed M M.Asymptotic performance analysis of distributed space-time codes.IEEE Commun.Lett.,2006,10(11):775-777.
    [97]Yiu S,Schober R,Lampe L.Distributed space-time block coding.IEEE Trans.Commun.,2006,54(7):1195-1206.
    [98]Unger T,Klein A.On the performance of distributed space-time block codes in cooperative relay networks.IEEE Commun.Lett.,2007,11(5):411-413.
    [99]Lee I H,Kim D.Exact end-to-end BER analysis for dual-hop OSTBC transmissions over Rayleigh fading channels.IEEE Trans.Commun.,2008,56(3):347-351.
    [100]Lee I H,Kim D.Coverage extension and power allocation in dual-hop space-time transmission with multiple antennas in each node.IEEE Trans.Veh.Tech.,2007,56(6):3524-3532.
    [101]Zhang W,Letaief K B.Full-rate distributed space-time codes for cooperative communications.IEEE Trans.Wireless Commun.,2008,7(7):2446-2451.
    [102]Zhao Y,Adve R,Lim T J.Improving amplify-and-forward relay networks:optimal power allocation versus selection.IEEE Trans.Wireless Commun.,2007,6(8):3114-3123.
    [103]Zhao Y,Adve R,Lim T J.Improving amplify-and-forward relay networks:optimal power allocation versus selection.Proc.,ISIT,Seattle,USA,July 2006:1234-1238.
    [104]Zhao Y,Adve R,Lim T J.Symbol error rate of selection amplify-and-forward relay systems.IEEE Commun.Lett.,2006,10(11):757-759.
    [105]Beres E,Adve R.Outage probability of selection cooperation in the low on medium SNR regime.IEEE Commun.Lett.,2007,11(7):589-591.
    [106]Bletsas A,Khisti A,Reed D P,Lippman A.A simple cooperative diversity method based on network path selection.IEEE Journal on Sel.Areas in Commun.,2006,24(3):659-672.
    [107]Bletsas A.Intelligent Antenna Sharing in Cooperative Diversity Wireless Networks.Ph.D,dissertation,Massachusetts Institute of Technology,Cambridge,MA,Sep.2005.
    [108]Bletsas A,Shin H,Win M Z.Cooperative communications with outage-optimal opportunistic relaying.IEEE Trans.Wireless Commun.,2007,6(9):3450-3460.
    [109]Bletsas A,Shin H,Win M Z.Outage optimality of opportunistic amplify-and-forward relaying.IEEE Commun.Lett.,2007,11(3):261-263.
    [110]Bletsas A,Khisti A,Win M Z.Opportunistic cooperative diversity with feedback and cheap radios.IEEE Trans.Wireless Commun.,2008,7(5):1823-1827.
    [111]Ding Z,Chin W H,Leung K K.Distributed beamforming and power allocation for cooperative networks.IEEE Trans.Wireless Commun.,2008,7(5):1817-1822.
    [112]Larsson E G,Gao Y.Collaborative transmit diversity with adaptive radio resource and power allocation.IEEE Commun.Lett.,2005,9(6):511-513.
    [113]Adeane J,Rodrigues M R D,Wassell I J.Centralised and distributed power allocation for co-operative networks.Electronics Letters,2007,43(1).
    [114]Deng X,Haimovich A M.Power allocation for cooperative relaying in wireless networks.IEEE Commun.Lett.,2005,9(11):994-996.
    [115]Luo J,Blum R S,Cimini L J,Greeustein L J,Haimovich A M.Decode-and-forward cooperative diversity with power allocation in wireless networks.IEEE Trans.Wireless Commun.,2007,6(3):793-799.
    [116]Pak A,Lau T,Cui S.Joint power minimization in wireless relay channels.IEEE Trans.Wireless Commun.,2007,6(8):2820-2824.
    [117]Hasna M O,Alouini M S.Optimal power allocation for relayed transmissions over Rayleigh-fading channels.IEEE Trans.Wireless Commun.,2004,3(6):1999-2004.
    [118]Li Y,Vueetic B,Zhou Z,Dohler M.Distributed adaptive power allocation for wireless relay networks.IEEE Trans.Wireless Commun.,2007,6(3):948-958.
    [119]Annavajjala R,Cosman R C,Milstein L R.Statistical channel knowledge-based optimum power allocation for relaying protocols in the high SNR regime.IEEE J.Sel.Areas in Commun.,2007,25(2):292-305.
    [120]Seddik K G,Sadek A K,Su W,Liu K J R.Outage analysis and optimal power allocation for multimode relay networks.IEEE Signal Proc.Lett.,2007.
    [121]Yi Z,Kim I M.“Joint optimization of relay-precoders and decoders with partial channel side information in cooperative networks.IEEE Journal on Sel.Areas in Commun.2007,25(2):447-458.
    [122]Liu P,Tao Z,Lin Z,Erkip E,Panwar S.Cooperative wireless communications:a cross-layer approach.IEEE Wireless Commun.,2006:84-92.
    [123]Vicario J L,Lagunas M A,Haro C A.A cross-layer approach to transmit antenna selection.IEEE Trans.Wireless Commun.,2006,5(8):1993-1997.
    [124]Yuan Y,He Z,Chen M.Virtual MIMO-based cross-layer design for wireless sensor networks.IEEE Trans.Veh.Technol.,2006,55(3):856-864.
    [125]Xu F,Lau F C M,Yue D W.Cross-layer design scheme for multiple communications.IET Electronics Letters,2007,43(14):762-764.
    [126]Liu Q,Zhou S,Giannakis G B.Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links.IEEE Trans.Wireless Commun.,2004,3(5):1746-1755.
    [127]Zhao B,Valenti M C.Practical relay networks:a generalization of hybrid-ARQ.IEEE J.Sel.Areas Commun.,2005,23(1):7-18.
    [128]Dai L,Letaief K B.Cross-layer design for combining cooperative diversity with truncated ARQ in ad-hoc wireless networks.IEEE Globecom'05,2005:3175-3179.
    [129]Stanojev I,Simeone O,Ness Y B,You C.Performance of multi-relay collaborative hybrid-ARQ protocols over fading channels.IEEE Commun.,Lett.,2006,10(7):522-524.
    [130]Bolcskei H,Nabar R U,Oyman O,Paulraj A J.Capacity scaling laws in MIMO relay networks.IEEE Trans.Wireless Commun.,2006,5(6):1433-1444.
    [131]Adinoyi A,Yanikomeroglu H.Cooperative relaying in multi-antenna fixed relay networks IEEE Trans.Wireless Commun.,2007,6(2):533-544.
    [132]Tang X,Hua Y.Optimal design of non-regenerative MIMO wireless relays.IEEE Trans.Wireless Commun.,2007,6(4):1398-1407.
    [133]Medina O M,Vidal J,Aghstin A.Linear transceiver design in nonregenerative relays with channel state information.IEEE Trans.Signal Processing,2007,55(6):2593-2604.
    [134]Wang B,Zhan J,Madsen A.On the capacity of MIMO relay channels.IEEE Trans.Inform.Theory,2005,51(1):29-43.
    [135]Chalise B K,Vandendorpe L.Outage probability analysis of a MIMO relay channel with orthogonal space-time block codes.IEEE Commun.Lett.,2008,12(4).
    [136]Muhaidat H,Uysal M.Cooperative diversity with multiple-antenna nodes in fading relay channels.IEEE Trans.Wireless Commun.,2008,7(8):3036-3046.
    [137]Nabar R U,Bolcskei H,Kneubuhler F X.Fading relay channels:performance limits and space-time signal design.IEEE Journal on Sel.Areas in Commun.,2004,22(6):1099-1109.
    [138]Louie R H Y,Li Y,Vucetic B.Performance analysis of bemforming in two hop amplify and forward relay networks.IEEE ICC 2008.
    [139]Sanayei S,Nosratinia A.Antenna selection in MIMO systems.IEEE Commun.Magazine,2004,10:68-73.
    [140]Thoen S,Perre L,Gyselinckx B,Engels M.Performance analysis of combined transmit-SC/Receive-MRC.IEEE Trans.Commun.,2001,49(1):5-8.
    [141]Gore D A,Paulraj A J.MIMO antenna subset selection with space-time coding.IEEE Trans.Signal Process.,2002,50(10):2580-2588.
    [142]Win M Z,Beaulieu N C,Shepp L A,et al.On the SNR penalty of MPSK with hybrid selection/maximal ratio combining over i.i.d.Rayleigh fading channels.IEEE Trans.Commun.,2003,51(6):1012-1023.
    [143]Win M Z,Winters J H.Virtual branch analysis of symbol error probability for hybrid selection/maximal-ratio combining in Rayleigh fading.IEEE Trans.Commun.,2001,49(11):1926-1934.
    [144]Win M Z,Winters J H.Analysis of hybrid selection/maximal-ratio combining in Rayleigh fading.IEEE Trans.Commun.,1999,47(12):1773-1776.
    [145]Simon M K,Alouini M S.A compact performance analysis of generalized selection combining with independent but nonidentically disbributed Rayleigh fading paths.IEEE Trans.Commun.,2002,50(9):1409-1412.
    [146]Nakagami M.The m-distribution:a general formula of intensity distribution of rapid fading.In Statistical Methods in Radio Wave Propagation,Oxford:Pergamon Press,1960:3-36.
    [147]Gradshteyn I S,Ryzhik I M.Table of Integrals,Series and Products.San Diego:CA,Academic Press,2000.
    [148]Rice S O.Statistical properties of a sine wave plus random noise.Bell Syst.Tech.J.,1948,27:109-157.
    [149]Hoyt R S.Probability functions for the modulus and angle of the normal complex variate.Bell Syst.Tech.J.,1947,26:318-359.
    [150]Efthymoglou G P,Piboongungon T,Alao V A.Error rates of M-ary signals with multichannel reception in Nakagami-m fading channels.IEEE Commun.Lett.,2006,10(2):100-102.
    [151]Wang Z,Giannakis G B.A simple and general parameterization quantifying performance in fading channels.IEEE Trans.Commun.,2003,51(8):1389-1398.
    [152]Abramowitz M,Stegun I A.Handbook of Mathematical Functions with Formulas,Graphs,and Mathematical Tables.New York:Dover Publications,1972.
    [153]Papoulis A.Probability,Random Variables,and Stochastic Processes.Thrid Edition,New York:McGraw-Hill,1991.
    [154]Shin H,Lee J H.Exact symbol error probability of orthogonal space-time block codes.In Proc.Globecom,2002:1197-1201.
    [155]Goldsmith A J,Chua S G.Variable-rate variable-power MQAM for fading channels.IEEE Trans.Commun.,1997,45(10):1218-1230.
    [156]Ko Y C,Yang H C,Eom S S,Alouini M S.Adaptive modulation with diversity combining based on output-threshold MRC.IEEE Trans.Wireless Commun.,2007,6(10):3728-3737.
    [157]Femenias G.SR ARQ for adaptive modulation systems combined with selection transmit diversity.IEEE Trans.Commun.,2005,53(6):998-1006.
    [158]Wang Xin,Liu Q,Giannakis G B.Analyzing and optimizing adaptive modulation coding jointly with ARQ for QoS-guaranteed traffle.IEEE Trans.Veh.Tech.,2007,56(2):710-720.
    [159]Shen M,Zhao D.Opportunistic link scheduling for multihop wireless networks.IEEE Trans.Wireless Commun.,2009,8(1):234-244.
    [160]Chan C P,Liew S C,Chan A.Many-to-one throughput capacity of IEEE 802.11 multihop wireless networks.IEEE Trans.Mobile Computing,2009,8(4):514-527.
    [161]Peters S W,Heath R W.The future of WiMax multihop relaying with IEEE 802.16j.IEEE Commun.Magazines,2009,(1):104-111.
    [162]Korkmaz G,Ekici E,Ozguner F.A cross-layer multihop data delivery protocol with fairness guarantees for vehicular networks.IEEE Trans.Veh.Tech.,2006,55(3):865-875.
    [163]Yang M,Chong P H J.Uplink capacity analysis for multihop TDD-CDMA cellular system.IEEE Trans.Commun.,2009,57(2):509-519.
    [164]Kim Y,Liu H.Infrastructure relay transmission with cooperative MIMO.IEEE Trans.Veh.Tech.,2008,57(4):2180-2188.
    [165]Shin O S,Chan A M,Kung H T,Tarokh V.Design of an OFDM cooperative space-time diversity system.IEEE Trans.Veh.Technol.,2007,56(4):2203-2215.
    [166]Hammerstrom I,Wittneben A.Power allocation schemes for amplify-and-forward MIMO-OFDM relay links.IEEE Trans.Wirless Commun.,2007,6(8):2798-2802.
    [167]Ahlswede R,Cai N,Robert S Y,et al.Network information flow.IEEE Trans.Inform.Theory,2000,46(4):1204-1216.
    [168]Li S Y R,Yeung R Y,Cai N.Linear network coding.IEEE Trans.Inform.Theory,2003,49(2):371-381.
    [169]Ghasemi A,Sousa E S.Spectrum sensing in cognitive radio networks:requirements, challenges and design trade-offs.IEEE Commun.Magazine,2008,(32):32-39.
    [170]Zhang W,Mallik R K,Letaief.Cooperative spectrum sensing optimixation in cognitive radio networks.In IEEE Conference on Communications(ICC),Beijing,2008:3411-3415.
    [171]Goldsmith A,Jafar S A,Marie I,Srinivasa S.Breaking spectrum gridlock with cognitive radios:an information theoretic perspective.Submitted to the IEEE Journal on Selected Areas in Communications,2008.
    [172]Zhao H,Gong Y,Guan Y L,Li S.Performance analysis of space-time block codes in Nakagami-m keyhole channels with arbitrary fading parameters.In IEEE Conference on Communications(ICC),Beijing,2008:4090-4094.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700