用户名: 密码: 验证码:
贺家圪台铝土矿长壁松动爆破综合机械化开采技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,近几年我国铝土矿资源消耗速度大大超过世界平均水平,目前我国浅部铝资源逐步开发殆尽,国内铝资源的开发开始转入深部,铝土矿地下开采刚处于起步阶段,仅有的几个矿井仍沿用有色系统传统的房柱法进行开采,该方法生产效率低,资源回收率低、浪费严重,而目前煤炭行业综合机械化采煤方法已经非常成熟,若能把该方法引入铝土矿的地下开采,必将大大提高生产效率和资源回收率。为此本文提出了铝土矿长壁松动爆破综合机械化开采新技术,研究了实施该技术所面临的的一系列技术问题。虽然长壁综合机械化开采在有色金属矿山还未曾有过先例,但铝土矿采用综合机械化开采势必成为铝土矿地下开采一个总的发展趋势。
     论文以兴县贺家圪台铝土矿地下开采为主要研究对象,采用现场取样、实验室试验、理论分析、数值模拟、方法比选和现场试验等方法,对兴县贺家圪台铝土矿矿石层赋存状况、地质构造发育及分布状况、矿石特征、采矿方法等方面进行系统研究,提出了一种全新的铝土矿地下开采方法,即铝土矿长壁松动爆破综合机械化开采方法。并进行了支撑该方法的松动爆破、矿山压力控制及设备配套等方面的探索性研究。主要研究成果如下:
     (1)通过现场取芯及实验室试验,明确了铝土矿及顶底板岩层分布状况、各岩层物理力学性质,为铝上矿地下开采采矿方法的合理选择提供了原始基础依据。
     (2)针对贺家圪台铝土矿赋存条件,结合矿山开采设计的基本原则,对贺家圪台铝土矿地下开采的采矿方法进行科学、合理的分析,确定了本矿可采用的采矿方法有房柱式采矿法和长壁单层崩落法,并创造性的提出了一种全新的方法—长壁松动爆破综合机械化开采方法。结合理论分析,确定了各种开采方法的主要技术参数及回采工艺。通过比选,长壁单层崩落法和长壁松动爆破综采法比房柱采矿法单工作面产量大,生产效率和回收率高,经济效益明显,其优越性大大超过其它的采矿方法。
     (3)在分析岩石的破碎机理和裂隙岩体的强度特征的基础上,提出了采用综合反映岩块和裂隙性质的准岩体强度作为评价矿体可切割性的指标,该指标可通过测量矿体中的超声波传输速度进行计算,解决了爆破松动岩体的可切割性评价问题。
     (4)在研究岩体节理裂隙分布规律和爆破块度的分形分布的基础上,提出了确定爆破块度和爆破参数关系的回归分析方法,为根据爆破块度要求确定爆破参数提供了依据。并通过松动爆破原理分析,提出了针对贺家圪台地下开采条件松动爆破参数计算方法。
     (5)通过现场爆破试验,利用松动爆破可切割性的评价指标和评价方法对爆破效果进行了评价分析。得出松动爆破后的矿体整体强度可以减弱到岩块强度的1/4,对于贺家圪台铝土矿强度为87.64MPa,合理松动爆破后强度可降低到21.91MPa。试验结果为滚筒采矿机在铝土矿开采中使用得以实行,为实现铝土矿长壁综合机械化开采提供了现实依据。
     (6)理论研究了铝土矿长壁综合机械化开采采场顶板结构的基本形式,采场矿压显现特征。
     (7)针对贺家圪台铝土矿及顶底板赋存条件,综合运用直接顶载荷倍数估算、理论计算、数值模拟等方法,确定了铝土矿长壁松动爆破综合机械化开采工作面液压支架的合理支护强度,支护强度不应小于0.56MPa。进行液压支架立柱防砸装置设计,解决松动爆破飞石损坏支架立柱的问题。
     (8)贺家圪台铝土矿采区巷道围岩特征为“两软一硬”,针对该类巷道的围岩强度特征,给出了贺家圪台铝土矿长壁松动爆破综合机械化开采采区巷道支护方案及支护参数。
     (9)进行铝土矿长壁松动爆破综合机械化开采工作面设备选型与总体配套设计,确定滚筒采矿机、工作面刮板运输机、顺槽转载机和破碎机、顺槽可伸缩带式输送机主要技术参数,为实现铝土矿长壁松动爆破综合机械化安全高效开采提供了主要技术和安全保障。
     总之,本文较深入、系统地研究了贺家圪台铝土矿长壁松动爆破综合机械化开采技术,解决了铝土矿长壁综合机械化开采中存在的主要技术难题,为今后铝土矿长综合机械化的开采、设计提供科学依据。
As the rapid development of China's economic in recent years, the consumption rate of China's bauxite resources has been much faster than the world average. Currently, China's shallow bauxite resources are gradually exhausted, so the exploitation of bauxite resources begins to turn to the deep. The underground mining of the bauxite is just in its infancy; only a few bauxite mines still use traditional room and pillar mining method which is low productivity, low resource recovery rate and serious waste. Meanwhile, now fully mechanized mining technology in coal industry has been very mature. If this method can be applied to the underground mining of bauxite, it will greatly improve production efficiency and resource recovery. Therefore this paper puts forward the new technology of long-wall loosing blasting fully-mechanized mining which researches a series of technical problems of implementing this technology. Although the application of loosing blasting fully mechanized longwall mining technology to the non-ferrous metal ore has not yet a precedent, the use of mechanized mining of bauxite is bound to become a general trend.
     The paper takes the underground mining of bauxite in Hejiagetai in Xing county as the main research object, using field sampling, laboratory test, theoretical analysis, numerical simulation, comparison and selection methods and field test and so on, researching systematically occurrence state, development and distribution of geological structures, ore characteristics, mining methods of bauxite ore layer in Hejiagetai.It proposes a new method of underground mining of bauxite, namely loosing blasting fully mechanized longwall mining technology of the bauxite, exploratory research of the loose blasting, strata pressure control and equipments have been launched, which support this method. The main results are as follows:
     (1) By site coring and laboratory tests, we clear the distribution of the roof and floor rock, and physical and mechanical properties of the rock, which offers the basic theory to the reasonable choice of the underground mining of bauxite mining method.
     (2) In connection with the occurrence state of bauxite in Hejiagetai and with the basic principles of mining design, scientifically and rationally analyzing the underground mining method of bauxite in Hejiagetai, we establish that the mining methods are room and pillar mining and long-wall single caving, and put forward creatively a new method:long-wall loose blasting fully-mechanized mining. Combined with theoretical analysis, we establish the main technical parameters extraction technology of the various mining methods. By comparison, long-wall single caving method and long-wall loose blasting fully-mechanized mining have larger face production, higher production and recovery efficiency, more obvious economic benefits than room and pillar mining. Its advantages are far more than any other mining methods.
     (3) On the basis of analyzing the rock crushing mechanism and the strength characteristics of fractured rock, we regard the rock mass strength of the nature of the fractured rock as an evaluation of the cutability of the ore, which can be calculated by measuring the transmission speed of the ultrasonic wave in ore. Thus, the cuttability evaluation of the loose blasting rock can be solved
     (4) On the basis of studying the distribution of the jointed rock mass and blasting fragmentation, we propose the regression analysis of determining the relationship between blasting fragmentations and blasting parameters, which provide the basis on the blasting parameters which are determined by the blasting fragmentation requirements. And we also propose the calculation method of loose blasting parameters against the underground mining conditions in Hejiagetai by the analysis of loose blasting principle.
     (5) By the field bursting test and the cuttability evaluation and method of the loose blasting rock, we evaluate and analysis the blasting effect. We conclude that the ore strength can be weakened to1/4of the rock strength. To the bauxite in Hejiagetai, the bauxite strength is87.64MPa and the strength can be reduced to21.91MPa after reasonable loose blasting. Because of the test results, the drum mining machine can be used in the bauxite mining, which provides a realistic basis for the realization of long-wall mechanized mining in bauxite.
     (6) We study the basic forms of the stope roof structure and strata characteristics by long-wall mechanized mining in bauxite.
     (7) Against the occurrence state of the roof and floor of the bauxite in Hejiagetai, using synthetically immediate roof load factor estimates, theoretical calculations, numerical simulation analysis method, we determine the reasonable support strength of hydraulic support by long-wall loose blasting mechanized mining, and the strength is not less than0.56MPa. Meanwhile, we solve problem that loose blasting rock may damage the support column by designing the smashing device of the hydraulic support column.
     (8) The roadway characteristics of the bauxite mining area in Hejiagetai is "two soft and a hard". In connection with the surrounding rock strength characteristics of this roadway, we get the roadway solutions and support parameters of mining face by long-wall loose blasting mechanized mining in Hejiagetai.
     (9) Through the equipment selection and overall design of the bauxite mining face by long-wall loose blasting mechanized mining, determining the drum mining machine, face scraper conveyor, crossheading transfer machine and crusher, crossheading scalable belt conveyor, it provides the main technical and security for the realization of the safe and efficient mining of the bauxite by long-wall loose blasting mechanized mining.
     In conclusion, by more in-depth and systematic study of long-wall loose blasting fully-mechanized mining technology of the bauxite in Hejiagetai, we solve the main technical challenges of the fully-mechanized mining of the bauxite, which provides a scientific basis on the fully-mechanized mining and design of the bauxite.
引文
[1]鲍荣华,刷进生.我国国土资源储备初探[J].地理学与国土研究,2005.
    [2]谷树忠.不要漠视资源安全[N].光明日报,2006-5-12(1).
    [3]孟旭光,李香菊.关于国土资源经济安全问题的思考[J].中国国土资源经济,2002(1):32-35.
    [4]金峰.世界铝工业发展与我国的对策[R].北京:世界有色金属编辑部,2005.
    [5]刘君,雷家骗,曹宁等.国外国家经济安全研究[J].科研管理,2006(1):
    [6]曲猷通.21世纪我国铝土矿资源可持续发展战略[J].世界采矿快报,2006(Z1):32-35.
    [7]王恭敏.解决我国有色金属资源严重短缺的对策[J].世界有色金属,2008(3):9-13.
    [8]许国栋,敖宏,佘元冠.可持续发展北京下世界铝工业发展现状、趋势及我国的对策[J].中国有色金属学报,2012(7):2041-2042.
    [9]蒋承花等.矿产资源与国家安全.国土资源网,2006.
    [10]吴迪,吴荣庆.发达国家的资源战略[N].光明日报,2006-4-16(5).
    [11]杜雅君.晋北铝基地开发建设方案探讨[J].轻金属.2003(7):6.
    [12]中国国际工程咨询公司.利用国外氧化铝资源专题研究[R].2003.
    [13]International Aluminum Institute.Third bauxite mine rehabilitation survey [EB/OL]. http//www.world-aluminum, org.2004-06-08/2005-05-13.
    [14]罗建川.基于铝土矿资源全球化叫我国铝工业发展战略研究[D].长沙:中南大学,2006.
    [15]王金华.中国煤矿现代化开采技术装备现状及其展望[J].煤炭科学技术,2011,39(1):1.
    [16]崔萍萍,黄肇敏,周素莲.我国铝土矿资源综述[J].轻金属,2008(2):6-8
    [17]赵运发,柴东浩.山西铝土矿成矿因素探讨.有色矿山[J],2002(6):1-6.
    [18]李昊等.我国铝土矿资源开发利用现状及其产业研究[J].陕西科技大学学报,2009(6):5-6.
    [19]李吴,王庆飞.我国铝土矿资源开发利用现状及其产业研究[J].陕西科技大学学报,2009,(27):154-156.
    [20]陈绚柱,对我国铝工业发展战略的思考[J].世界有色金属,2008,(3):9-10.
    [21]罗建川.全球原铝、氧化铝市场及中国铝业的作用[R].重庆:2003年营销年中工作会议,2003.
    [22]卿仔轩.我国铝土矿生产、消费现状及产业发展趋势分析[J].中国金属通报,2012(7).
    [23]徐永圻.煤矿开采学[M].徐州:中国矿业大学出版社,2009
    [24]胡省三,成玉琪.21世纪前期我国煤炭科技重点发展领域探讨[J].煤炭学报,2005,30(1):1-2.
    [25]王金华.我国高效综采成套技术的发展与现状[J].煤炭科学技术,2003(1):5.
    [26]郭晓凯.煤矿综合机械化采煤工艺浅探[J].才智,2012,20(52).
    [27]田小明.神东矿区短壁机械化采煤成套技术的研究[D].太原:太原理工大学,2004.
    [28]齐俊德.采煤方法的合理选择及实践[J].矿冶,2007.9,16(3):14-15
    [29]梁椿豪.采煤技术及采煤方法的选择[J].山西冶金,2004(2):20-21.
    [30]Johson.R.A and Schweitzer. Mining at Ultral-depth Evaluation of Aternatives[C]. Proc. 2nd North M.Roch.Mech.Symp.NARM'96,Montreal,1996:359-366.
    [31]Bandis S C, Lumsden A C and Barton N R. Fundamentals of rock joint deformation[J]. Int J Rock Mech Min Sci & Geomech Abstr,1983(20):249-268,
    [32]Bartom N, Bandis S. Effects of block size on the shear behavior of jointed rock[C]. Proc. 23rd U S Symp Rock Mech, Berkeley, California,1982:39-760
    [33]Barton N, Choubey V. The shear strength of rock joints in thery and practice. Rock Mech, 1977(2):1-54
    [34]Goodman R E. The mechanical property of joints, In Proc.3rd Cong ISRM, Part A, 127-140, Denver,1974
    [35]Ladanyi B. Archambault G. Simulation of shear behavior of a jointed rock mass[C], Proc. 11th Symp Rock Mech,, Bekeley, California,1969:105-125
    [36]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [37]E Hoek, E T Brown. Underground Excavation in Rock, The Institute of Mining and Metallurgy, London,1980
    [38]张继春.岩体爆破块体预测模型研究综述.爆破,1992,9(4):63-69
    [39]刘为洲.台阶爆破的能流分布及块度组成的三维数学模型[J].金属矿山,1987(6):25-28
    [40]Cunningham C V B.预估爆破破碎的Kus-Ram模型[C].第一届爆破破岩国际会议论文集,长沙岩石力学工程技术咨询公司编译,1985:251-257
    [41]Cunningham C V B. Fragmentation estimations and the KUS-RAM model-four year on[C]. Proc 2nd Int Symposium on Rock Fragmentation by Blasting, U S A, Keystone,1987:475-487
    [42]郑瑞春.爆岩块度分布预测的Bond-Ram模型[J].金属矿山,1988(6):25-28
    [43]Harries G. A mathematical model of catering and blasting. National Symposium on Rock Fragmentation, Adelaide, Australia,1973:41-54
    [44]Harreies G. The calculation of the fragmentation of rock from catering.15th APCOM Symposium, Brisbane, Australia,1977:325-334
    [45]Harries G Henst B. The use of a computer to describe blasting.15th APCOM Symposium, Brisbane, Australia,1977:317-324
    [46]邹定祥.计算露天矿台阶爆破块度分布的三维数学模型.爆炸与冲击,1984(3);48-59
    [47]Margolin L G, etal.爆破的数值模拟.第一届爆破破岩国际会议论文集,长沙岩石力学工程技术咨询公司编译,1985:203-210
    [48]Da Gama C D. Size distribution general low of fragments resulting from rock blasting. Trans Soc Min Eng, AIME,1971(4):314-316
    [49]Da Gama C D. Use of combination theory to predict fragmentation of jointed rock masses subjected to blasting. Proc 1st Int Symposium on Rock Fragmentation by Blasting, Lulea, Sweden,1983:565-579
    [50]Just G D, Henderson D S. Model studies of fragmentation by explosive. Proc 1 st Aust N Z Conference on Geomechanics, Melbourne,171:238-245
    [51]Just G D. The application of size distribution equations to rock breakage by explosives[J]. Rock Mechanics,1971 (3):151-162
    [52]赵军.兴县黄辉头铝土矿矿床地质特征及找矿意义[J].太原科技,2010(3):7.
    [53]刘方.金属矿山地下采矿方法选择系统[D].武汉:武汉理j工大学,2011.
    [54]李强,齐清,邱慎前.王村铝土矿采矿工艺改进[J].中国矿山工程,2005(2):17-18.
    [55]钱鸣高,石平五,矿山压力与岩层控制[M],徐州:中国矿业大学出版社,2003
    [56]吴国基,美国房柱式采煤法和短壁采煤法[M,煤矿设计,1985
    [57]徐永圻,短壁开采技术[M].中国矿业大学出版社,19921
    [58]刘荣森,房柱式后退采煤法[J],鸡西科技,1985(3)
    [59]刘长友,万志军,卫建清.房柱式开采煤柱的承载变形规律及其稳定性分析[J].煤炭学报,2001,26(增刊):71-75
    [60]Gregory J, Chekanl. Design aspects in multiple-seam mining [C] Proceedings of the Ninth Conference on Ground Control in mining 1990:122-191
    [61]谢和平,段法兵,周宏伟等.条带煤柱稳定性理论与分析方法研究进展[J].中国矿业,1998(5):37-40.
    [62]翟德元,美国房柱式开采技术[M].煤炭工业出版社,19951
    [63]syd.s. pen g. Continuous Mining Methods in the United States[M],1985
    [64]田小明.神东矿区短壁机械化采煤成套技术的研究[D].太原:太原理工大学,2004.
    [65]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程(2000)煤行管字(2000)第81号,2005.
    [66]耿海清.我国大型煤矿项目建设环境、社会问题及其对策[J].煤炭学报,2008,33(5):592-596.
    [67]张宝明,陈炎光,徐永圻.中国煤矿高产高效技术[M].徐州:中国矿业大学出版社,2001:10-30.
    [68]古德生,李夕兵.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006:152-163.
    [69]凌胜.硬岩连续采掘机械的研究和开发应用[J].有色矿山,1993(6):38-41.
    [70]罗周全,古德生.地下金属矿山连续开采技术研究进展[J].湖南有色金属,1995,11(2):10-12.
    [71]周爱民.建国以来我国金属矿采矿技术的进展与未来展望[J]矿业研究与开发,1999(8):1-4
    [72]吴爱祥我国地下金属矿山连续开采技术研究的发展有色矿,2002(2):1-5
    [73]吴爱祥,胡华,古德生.地下金属矿山连续开采模式初探[J].中国矿业,1999(4):28-31.
    [74]古德生.地下金属矿山采矿连续工艺[J].中国矿业,1992(2):49-53.
    [75]解世俊.地下采矿工艺的发展和未来采矿技术改革的预测[J].有色矿冶,1994(5):1-7.
    [76]古德生,王惠英.振动出矿技术[M].长沙:中南工业大学出版社,1989.
    [77]谌江.我国地下金属矿山采场连续出矿运矿设备研究的现状与发展[J].矿冶,1997(2):11-16.
    [78]李夕兵,姚金蕊,杜坤.高地应力硬岩矿山诱导致裂非爆连续开采初探[J].岩石力学与工程学报,2013(6):1101-1111
    [79]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984.
    [80]张继春.岩体爆破的块度理论及其应用[M].成都:西南交通大学出版社,1999.
    [81]戴俊.爆破工程[M].北京:机械工业出版社,2005
    [82]宋振骐.采场上覆岩层运动的基本规律[J].山东矿业学院学报,1979(1):22-41.
    [83]史红,姜福兴.采场上覆岩层结构理论及其新进展[J].山东科技大学学报(自然科学版),2005(1):21-25
    [84]黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析[J].煤炭学报,1999(6):581-585.
    [85]Kang Li xun. Different roof behavior under different upper mining boundary condition in Datong[J] Journal of Coal Seienee and Engineering,1997 (2):36-40.
    [86]Georg Kaufmann. A model eom Parison of karstaquifere volution for different matrix-flow formulations[J],Journal of Hydrology,2003 (3):281-288.
    [87]朱涛.软煤层大采高综采采场围岩控制理论及技术研究[D].太原:太原理工大学,2010.
    [88]康立勋,翟英达.块体结构岩体中的应力传递与采场基本顶[J].岩石力学与工程学报,2004,23(10):1720-1722.
    [89]贾喜荣.矿山岩层力学[M].北京:煤炭工业出版社,1997.
    [90]赵阳升.有限元法及其在采矿工程中的应用.北京:煤炭工业出版社.1994
    [91]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.
    [92]袁和生,靖洪文.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004;
    [93]杨双锁.回采巷道围岩控制理论及锚固结构支护原理[M]北京:煤炭工业出版社2004.4
    [94]侯朝炯,郭励生,勾攀峰等.煤巷锚杆支护[M],徐州:中国矿业大学出版社,1999
    [95]Hou Chaojiong, He Yanan, Li xiao. Mathod to Control Heave in Heterogeneous Strata. Jian Xinyuan Editor, Rotterdam:A.ABalkema 1998:1519-1522
    [96]K. Hurt. New developments in rock bolting[J]. Colliery Guardian.1994(7):133-138,143).
    [97]J. P. Seidel, C. M. Haberfield, The Application of Energy Principles to the Determination of the Sliding Resistance of Rock Joints. Rock Mechanics and Rock Engineering,1995.
    [98]王金华.中国煤矿现代化开采技术装备现状及其展望[J].煤炭科学技术,2011(1):1-2.
    [99]高霞,李克光,王振华等.我国煤炭输送设备的发展历程与展望[J].煤矿机械,2009,30(3):2.
    [100]我国煤矿采煤机的研制回顾、现状及其发展[J].煤矿机械,2008,29(3):1-3.
    [101]柏振军.中国煤矿机械装备发展现状和“十二五”展望[J].中国煤炭,2011(4):16-17.
    [102]煤矿开采方案经济评价及不确定性分析[J].企业战略,2011(10):29-30.
    [103]刘一新.综采工作面液压支架初撑力实测研究[J].矿山压力与顶板管理,2004(2):15-16.
    [104]曹建波.支架工作阻力与覆岩作用机理研究[J].矿山压力与顶板管理,2004(1):57-59.
    [105]张登山,王纪生,原岩飞.ZY3200/14/28型两柱掩护式液压支架的研制[J].煤炭工程,2005(10):67-69.
    [106]岳文辉.大采高强力液压支架的参数确定及结构设计[J].矿山压力与顶板管理,2003(3):72-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700