用户名: 密码: 验证码:
乳化炸药在水下爆破中抗水抗压性能的实验研究与机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水下爆破中由于静水压力的作用,乳化炸药爆速和猛度都会下降,不仅如此,还会使炸药密度变大,起爆感度和传爆感度都会降低,因此研究深水中乳化炸药的抗水抗压性能,对于水下爆破施工、乳化炸药的研制都有重要的指导意义。乳化炸药性能下降到什么程度、采取何种测试方法、如何科学合理的提高抗水抗压性能一直困扰着科技工作者。
     乳化炸药受静压作用后有较好的复原性,因此必须在受压状态下研究,测试乳化炸药抗动压性能的一些手段和方法就不可照搬。通过改变静水表面的压力来模拟深水装药环境,为实验室研究乳化炸药的抗水抗压性能提供了可能,根据此实验原理,设计了五套测试炸药抗水抗压性能的测试系统,都能很好的满足试验要求;利用炸药爆速、猛度以及砂浆试块的分维数计算炸药由于浸水或受压爆炸性能下降程度,回归到0~1之间,进行定量描述,而不再局限在“全爆”、“半爆”、“拒爆”或利用爆破碎片定性描述。主要研究了敏化剂、乳化剂种类及含量、油相材料种类等因素对乳化炸药抗压性能的影响;敏化剂、浸水时间、浸水压力对乳化炸药抗水性能的影响。测试受压炸药爆速、猛度的两套一次性装置引入了PVC材料,既降低了实验耗材,又减少了对周围环境的破坏;测试受压炸药猛度的可重复使用装置,采用了最少焊缝设计原则,这种巧妙设计保证了装置可重复使用,也更加安全;微型爆炸装置与砂浆试块相结合,利用分形分维理论进行数据处理,提出了研究乳化炸药抗压性能的新方法;对重要实验现象进行了深入系统的理论分析。
     本文主要研究结论有:玻璃微球、化学敏化、珍珠岩敏化的乳化炸药,在深水压力作用下浸泡较长时间依然表现出较好的抗水性能,抗水性能不是影响水下爆破中乳化炸药爆炸性能下降的主要因素;乳化炸药受静压作用后有较好的复原性,因此研究抗静压性能必须在受压状态进行;在乳化工艺一定的条件下,亚硝酸钠含量为0.2%,珍珠岩含量为5%-6%,玻璃微球含量为2%-3%时,炸药的抗压性能和爆炸性能都相对较优,复合敏化剂对抗压性能影响较为复杂;在乳化工艺一定的条件下,乳化剂T155含量为2%、Span-80含量为3%~4%,炸药的抗压性能和爆炸性能都相对较优;在乳化剂含量相同的条件下,含有复合乳化剂的炸药有较优的抗压性能;油相材料对乳化炸药的抗压性能有一定的影响,氧化剂种类、含水量对乳化炸药抗压性能影响较小。
     本文主要理论研究成果有:在深水压力长时间的作用下,化学敏化乳化炸药爆炸性能下降主要是渗透溶胀和气泡逃逸引起热点减少造成的;珍珠盐敏化的乳化炸药爆炸性能下降主要是渗透溶胀和珍珠盐的破碎和失效会引起热点减少造成的;玻璃微球敏化的乳化炸药爆炸性能下降主要是渗透溶胀引起的。在一定的压力作用下,敏化气泡缩小和密度过分增大是化学敏化乳化炸药爆轰性能下降的主要原因;单位体积的热点相对较少和密度过分增大是珍珠岩敏化乳化炸药爆轰性能下降的主要原因;单位体积的热点相对较多,是玻璃微球敏化的乳化炸药密度过分增大时,爆轰性能依然下降不明显的主要原因。
Detonation velocity and brisance of emulsion explosives influenced by the hydrostatic pressure will decrease in underwater blasting; not only that, sensitivity to initiation and sensitivity to pass of explosives will also decrease, because explosive density will increase by influence of the hydrostatic pressure. Emulsion explosives are widely used for underwater blasting in recent years, so research of water resistance and compression resistance of emulsion explosives in deep water will have directive function for underwater blasting and development of emulsion explosives. It troubles scientific workers that to what extent to descend for explosion capability of emulsion explosives, which of test methods to take, how to improve their water resistance and compression resistance.
     Emulsion explosives have excellent recovery effect under static pressure and thus we should test capability of emulsion explosives under deep water pressure in which means and methods for dynamic pressure will not be copied simply. Environment of deep water charge is simulated by change of standing water surface pressure which provides feasibility to study compression resistance and water resistance of emulsion explosives in laboratory. According to the principle we mentioned above, five pieces of water resistant experimental equipment and compression resistant experimental equipments were devised, which were all fully adaptable to the experiments. This study used detonation velocity, brisance and the fractal dimension of mortar test block to calculate fallen extent of explosion capability of emulsion explosives due to immersion and Compression, to return to between 0 and 1, to describe water resistance and compression resistance quantificationally, and no longer to confine to the "full blasting", "semi-blasting", "no-blasting" or qualitative description of blasting debris. this research mainly focused on how compression resistance of emulsion explosives is influenced by sensitizing agent types and content, emulsifier types and content, types of the oil material and so on, and how water resistance of emulsion explosives is influenced by the sensitizing agent types, soaking time, and soaking pressure. two one-time experimental equipments which were used to measure detonation velocity and brisance of emulsion explosives influenced by hydrostatic pressure respectively both used PVC material which can reduce experimental material and environment destruction of the experimental equipment; reusable experimental equipment which was used to measure brisance of emulsion explosives influenced by hydrostatic pressure which was designed by the principle of minimum seam so the ingenious design can be kept reusable and safe. Through micro-explosive device and mortar test block,,and to use of fractal theory to deal with data processing, the new method of compression resistance was proposed; the important experimental phenomena were analyzed in deply and systematically.
     The main conclusions are as follows:emulsion explosives sensitized by glass micro-balloons, by bubbling agent, and by expanded pearlites all have excellent water resistance; water resistance of emulsion explosives is not the main reason for decreased performance of Emulsion Explosives in underwater blasting; Emulsion explosives have excellent recovery ability when effected by the static pressure, and we should test capability of emulsion explosives under deep water;under certain emulsification process conditions:when emulsion explosives contain sodium nitrite content of 0.2%, perlites content of 5% to 6%, and the glass microspheres content of 2% to 3%, compression resistance and explosive properties are both relatively excellent, and compression resistance is influenced by compound sensitizing agent intricately; under certain emulsification process conditions:when emulsion explosives contain T155 emulsifier content of 2%, Span-80 emulsifier content of 3% to 4%, compression resistance and explosive properties are both relatively excellent, and explosives which contain compound emulsifiers have excellent compression resistance; types of the oil material have a little effect on compression resistance of emulsion explosives, and oxidant species and water content have little effect.
     This main theory achievements are as follows:In the deep water pressure for a long time, fall explosion capability of emulsion explosives sensitized by bubbling agent are mainly because of hotspot reductions in result from infiltration swelling and escape of bubbles; fall explosion capability of emulsion explosives sensitized by expanded pearlites are mainly because of hotspot reductions in result from infiltration swelling and fragmentation and invalidation of pearlites; fall explosion capability of emulsion explosives sensitized glass micro-balloons are mainly because of hotspot reductions in result from infiltration swellingln the certain pressure, fall extent of explosion capability of emulsion explosives sensitized by bubbling agent and emulsion explosives sensitized by expanded pearlites are both great; for the former, the main reason is that sensitized bubbles shrink and explosive density increases excessively; for the latter, the main reason is that hotspots in unit volume is reversely little and explosive density increases excessively. In the same condition, fall extent of explosion capability of emulsion explosives sensitized by glass micro-balloons is not great; the main reason is that hotspots in unit volume is reversely much although the explosive density also increases.
引文
[1]杨光煦.水下工程爆破[M].北京:海洋出版社出版,1992.
    [2]宋学义译.水下爆破[M].(日本)综合安全工业研究所编.长沙:中南工业大学出版社,1989.
    [3]王中黔.水下爆破文集[M].北京市:人民交通出版社,1980.
    [4](前苏联)B.B.加尔基.水下爆破工程[M].王中黔,吕毅,张旭译.北京:人民交通出版社,1992.
    [5]张正宇,张文煊,吴新霞等.现代水利水电工程爆破[M].北京:中国水利水出版社,2003.
    [6]李玉珍,尹旅超译,新爆破手册[M].武汉:湖北科学技术出版社,1998.
    [7]刘美山,吴新霞,张恒伟.混凝土水下爆破炸药单耗试验分析[J].爆破,2007(1):10-14.
    [8]Harole F Bluhm. Ammonium Nitrate Emulsion Blasting Agent and Method of Preparing Same[P], U.S.P3447978.
    [9]George R Cattermole, Cedar Rapids, Iowa Austin M, etal. Water-in-oil emulsion type blasting agent [P], U.S.P3674578.
    [10]Wade Charles G. Water-in-oil emulsion explosive containing entrapped gas [P], U.S.P3715247.
    [11]Wade Charles G. Water-in-oil emulsion type explosive compositions having strontiumion detonation catalysts [P], U.S.P3765964.
    [12]Tomic Ernst A. Emulsion type explosive composition containing ammonium stearate or alkali metal stearate [P], U.S.P 3770522.
    [13]Wade Charles G. Cap sensitive emulsions containing perchlorates and occluded air and method [P], U.S.P 4149916.
    [14]Olney Robert S, Wade Charles G. Production of explosive emulsions [P]. U.S.P 4138281.
    [15]Wade Charles G. Emulsions-Viva La Difference.Proceedings of the Fourth Conference on Explosive and Blasting Technique[C],1978.
    [16]Wang Xuguang. Emulsion explosives[M]. Metallurgy Industry Press,1994.
    [17]长沙矿山研究院炸药组.RJ系列乳化炸药的研制与应用[J].金属矿山,1982(8),16-20.
    [18]金跃清.MD系列乳胶炸药的研究[J].爆破器材,1985(3):1-2.
    [19]汪旭光,康廷璋,周大明等.BME系列乳化粒状炸药的研究与应用[J].金属矿山,1987(2):17-23.
    [20]吴龙祥,阮建忠.MSA型乳化炸药的研究[J].爆破器材,1994(5):7-11.
    [21]Toshio Matsuzaw, Masaharu Murakaml. Detonability of emulsion under dynamic pressure[J]. Journal of the industrial explosives society.1982,43(5):317-322.
    [22]F.Sumiya, Y.Hirosaki, Y.Kato, etal. Characteristics of pressure wave propagation in emulsion explosives. Proceedings of the 27th Annual Conference on Explosives and Blasting Technique[C]. Orlando, Florida, USA,2001.
    [23]汪旭光.乳化炸药[M].北京:冶金工业出版社,2008.
    [24]程才林,王伟平,张正平.“长宇”轮沉船水下爆破解体[J].工程爆破,2001,7(1):34-39.
    [25]刘松林,王勇.三峡二期下游围堰水下岩石控制爆破[J].中国三峡建设,2003,10:26-27.
    [26]王林桂,蒋昭镳,王军海等.浸水乳化炸药能量损失爆破漏斗法浅析[J].工程爆破,2006(3):84-86.
    [27]M.S.Wieland.许用炸药受动压钝化的相对感度[J].炸药与爆破,1990(1):35-39
    [28]松本荣,田中雅夫(日).韩学波译.关于含水炸药在加压下的爆轰及复原性研究[J],爆破器材,1987(1):36-39.
    [29]Reddy G Om, Frank P B Jr,14th Symp(Int.) on Explos and Pyrotech[C],1990.
    [30]刘学强.乳化炸药静压下的爆轰和复原性研究.全国工程爆破第五届学术会议论[C],武汉:中国地质大学出版社,1993.
    [31]解立峰.乳化炸药受压钝化问题的探讨[J].爆破器材,1991,(2):6-9.
    [32]Matsumoto M Tanaka. Detonation properties of slurry explosives under enhanced ambient pressure[J]. Journal of the industrial explosives society (Japan),1982,43(5):29-33.
    [33]杨民钢.静压力对乳化炸药性能影响的试验研究[J].爆破器材,1994(2):1-5.
    [34]闫泉刚,刘汉强.装药压力对乳化炸药性能的影响[J].煤矿爆破,2004(1):8-10.
    [35]白云龙.矿用爆破器材抗水耐压性能的实验研究[J].陕西煤炭,2000(2):18-20.
    [36]T.Matsuzawa, M.Murakami, Y.Ikeda. Dymamic shock tests for dynamite slurry and emulsion explosive. Proceedings of the ninth conference on explosives and blasting technique[C],1983.
    [37]S Nie.贯荔译.乳化炸药的压力减敏作用[J].爆破器材,1994(2):35-37.
    [38]M.S.Wieland炸药受压钝化的性能恢复试验[J].炸药与爆破,1992(1):8-13.
    [39]R.J.Mainiero, M.S.Wieland. The relationship between hole spacing and misfires of permissible explosives. Proceedings of the second mini-symposium on explosives and blasting research[C],1986.
    [40]S.Yan, Y.Wang, Y.Liu. Research on the relationship between water-based explosive desensitization and delay time under dynamic. The seventh international symposium on rock fragmentation by blasting[C],2002.
    [41]王尹军,汪旭光,于亚伦等.两种含水炸药动压下减敏作用的实验研究[J].工程爆破,2003(4):67-71.
    [42]刘义.乳化炸药减敏机理的研究[D].安徽理工大学,2003.
    [43]颜事龙,张少波,刘义.煤矿许用乳化炸药动态压力下减敏的研究[J].安徽理工大学学报2003(3):27-31.
    [44]Nie S. Pressure Desensitization of Emulsion Explosives. Proc.4th Int. Symposium on Rock Fragmentation by Blasting Fragbalst[C],1993.
    [45]Nie S. Pressure Desensitization of ANFO and Emulsion Explosives[D]. Stockholm,1997.
    [46]Nie S, Chen L. Dynamic Dead-Pressing of a Chemically Gassed emulsion Explosives [C]. SveBeFO,1996.
    [47]聂树林.化学气泡敏化的乳化炸药压死过程的实验和模拟研究[J].国外金属矿山,1999(2):49-56.
    [48]王尹军.乳化炸药压力减敏的实验研究与机理分析[D].北京科技大学,2005.
    [49]惠君明,陈天云.炸药爆炸理论[M].南京:江苏科学技术出版社,1995.
    [50]United nations. Recommendations on the Transport of Dangrous Goods Manual of Tests and Criteria, second revised edition. New York and Geneva:united nations publication [C],1995.
    [51]陈正衡,译.工业炸药测试新技术[M].北京:煤炭工业出版社,1982.
    [52]GB12436-90,炸药作功能力试验—(?)铅法[S].
    [53]Paul W, Cooper Stanley R, Kurowski. Introduction to the technology of Explosives [M]. New York:VCH,1996.
    [54]郑孟菊,俞统昌,张银亮.炸药的性能及测试技术[M].北京:兵器工业出版社,1990.
    [55]Cook M A工业炸药学[M].陈正衡,孙姣花译.北京:煤炭工业出版社,1987.
    [56]王尹军,汪旭光,于亚伦等.两种含水炸药动压下减敏作用的实验研究[J].工程爆破,2003(4):67-71.
    [57]钟帅.模拟深水爆炸装药输出能量的研究[D].安徽理工大学,2007.
    [58]陈国理.压力容器及化工设备[M].广州:华南理工大学出版社,1995.
    [59]刁玉玮,王立业.化工设备机械基础[M].大连:大连理工大学出版社,2005.
    [60]王鼎聪,王德军,李毅.一种乳化炸药[P],专利公开号:CN1174181.
    [61]Barlow, Kenneth N. Emulsified methanol containing explosive composition [P], U.S.P4128442
    [62]王平.四种敏化方式对乳化炸药爆速的影响[J].煤矿爆破,2002(2):6-9.
    [63]Harold Theodore Fillman. Low Water Emulsion Explosive Compositions Optionally Containing Inertsalts [P], U.K.P2086363.
    [64]Wade, Charles G. Water-in-oil emulsion explosive composition [P], U.S.P4110134.
    [65]Hattori Katsuhide, Fukatsu Yoshiaki, Torii Akio. Water-in-oil emulsion explosive composition [P], U.S.P4398976.
    [66]Alymova Ya V, Annikova.V E, Vlasova N Yu,etal. Comb Explos and Shock Waves [J],1994, Vol 30,340.
    [67]Alymova Ya V, Annikova V E, Kondrikov B N.20th(Int.)Pyrotech [C]. Seminar,1994
    [68]王鼎聪,王德军,李毅.一种乳化炸药[P],专利公开号:CN1174181.
    [69]Sudweeks Walter B, Lawrence Larry D. Emulsion blasting agent sensitized with perlite [P], U.S.P4231821.
    [70]Van Ommeren, Catharine L. Emulsion explosive composition containing expanded perlite [P], U.S.P4940497.
    [71]吕春绪.工业炸药理论[M].北京:兵器工业出版社,2003.
    [72]王立文.乳化炸药化学法快速敏化技术[J].爆破器材,1998,2(6):11.
    [73]Cranney Don H, Maxfield Blake T. Surfactant for gassed emulsion explosive [P], U.S.P4960475.
    [74]王胜震,王成禹,秦广艺等.有机发泡剂敏化的煤矿许用型乳化炸药[P],专利公开号:CN1036942.
    [75]王胜震,王成禹,秦广艺等.有机发泡剂敏化的岩石型乳化炸药[P],专利公开号:CN1036384.
    [76]徐海军,陈庆军,黄河新等.乳化炸药连续敏化机[P],专利公开号:CN2795203.
    [77]荀祥奎,叶涛,李寿等.高威力乳化炸药连续敏化器[P],专利公开号:CN201099663.
    [78]闫泉刚、刘汉强.复合敏化剂在乳化炸药中的应用[J].爆破器材,2004,33(6):20- 22.
    [79]宋锦泉,汪旭光,崔安娜等.复合敏化乳化炸药爆速的研究[J].中国矿业,2000,9(6):3-7.
    [80]朱建民,傅斌ZD-Ⅱ催化合成Span-80反应的研究[J].精细化工,1990(5):39-42.
    [81]Makoto H, kazushi A. Solid catalyst treated with anions[J]. Appl Catal,1985(2):401-409.
    [82]Carlsen Arne, Nygaard Erik C. Explosive comprising a mixture of a nitrate-oil explosive and a water-in-oil emulsion explosive, and a method for its manufacture [P], U.S.P4992119.
    [83]Peng Zhonji, Li Guibao, Shao Shiyi, etal. Chemically foamed emulsion explosive composition and process for its preparation [P], U.S.P 4992118.
    [84]Tasaki Yoji, Tanaka Akihiro,Kurokawa Koichi, et al. Water in oil type emulsion explosive [P], U.S.P 4908079.
    [85]Tag Arne, Petterson Bjorn R, Nygaard Erik C. Emulsion explosive [P], U.S.P 4500369.
    [86]贾进宝,刘正凯,田大为等.廉价乳化炸药的配方及其制造工艺[P],专利公开号:CN1038269.
    [87]胡能钦,傅启光,姚普华.乳化炸药及化学发泡工艺[P],专利公开号:CN1070902.
    [88]熊立武,欧飞能,杨小四等.高性能现场混装的乳化炸药[P],专利公开号:CN101475423.
    [89]Marlow Jill M, Bush James H. Thickened emulsion compositions for use as propellants and explosives [P], U.S.P 5936194.
    [90]Forsberg, John W. Salt composition and explosives using same [P], U.S.P 5047175.
    [91]Jahnke Richard W. Water-in-oil emulsions [P], EP0561600.
    [92]倪欧琪,吴洁红,张兴明等.煤矿许用粉状乳化炸药及其制造方法[P],专利公开号:CN1336355.
    [93]姚普华,江涌涛,刘世坤等.一种高威力乳化炸药及其制备方法[P],专利公开号:CN1837163.
    [94]Pollack Robert A, Mullay John J, Filippini Brian B. Water in oil explosive emulsions [P], U.S.P 6951589.
    [95]Nguyen Anh D. Aromatic hydrocarbon-based emulsion explosive composition [P], U.S.P 4936932.
    [96]Houston Richard C.M, Taylor Julian. Explosive [P], U.S.P5084117.
    [97]刘赫.环保乳化炸药复合乳化剂[P],专利公开号:CN101462914.
    [98]高铭,张少波,滕威等.耐压型乳化炸药[P],专利公开号:CN1618775.
    [99]Binet R, Cloutier J, Edmonds A. Explosive compositions based on time-stable colloidal dispersions and a process for the preparation thereof [P], EP0018085.
    [100]宋元达,廖宏.ES-2000高效复合乳化剂的工业生产及应用[J].矿冶,1996,5(3):12-16.
    [101]魏秀珍,侯学诗.’MZR系列复合乳化剂的应用[J].天津化工,1996(3):30-31.
    [102]王永青.炸药能量密度与爆破效果关系的试验研究[D].北京科技大学,2003.
    [103]Harries G. A mathematical model of cratering and baating.National Symposium on Rock Fragmentation[C]. Adelaide,Australia,1973.
    [104]Harries G. The calculation of the fragmentation of rock from cratering.15th APCOM symposium[C]. Brisbane, Australia,1977.
    [105]Harries G, Henst B. The use of a computer to describe blasting.15th APCOM symposium[C]. Brisbane, Australia,1977.
    [106]邹定祥.计算露天矿台阶爆破块度分布的三维数学模型[J].爆炸与冲击,1984,4(3):48-59.
    [107]Margolin L G.爆破的数值模拟.长沙岩石力学工程技术咨询公司编译.第一届爆破破岩国际会议论文集[C],1985.
    [108]刘为洲.台阶爆破的能流分布及块度组成的三维数学模型[J].金属矿山,1987,(6):25-28.
    [109]Da Gama C D. Size distribution general law of fragments resulting from rock blasting.Trans Soc MIN Eng[C]. AIME,1971.
    [110]Da Gama C D. Use of comminution theory to predict fragmentation of jointed rock masses subjected to blasting. Proc 1st Int Symposion on Rock Fragmentation by Blasting[C]. Lulea, Sweden,1983.
    [111]Just G D, Henderson D S. Mode studies of fragmentation by explosives. Proc 1st Aust N Z Conference on Geomechanics[C]. Melbourne,1971.
    [112]Just G D. The application of size distribution equations to rock breakage by explosive[J]. Rock Mechanics.1971,5(3):151-162.
    [113]Cunningham C VB.预估爆破破碎的Kus-Rum模型.长沙岩石力学工程技术咨询公司编译.第一届爆破破岩国际会议论文集[C],1985.
    [114]Cunningham C VB.Fragmentation estimations and the Kus-Rum model. Proc 2nd Int Symposion on Rock Fragmentation by blasting[C]. Keystone, USA,1987.
    [115]郑瑞春.爆破块度分布预测的Bond-Ram模型[J].金属矿山,1988,(6):25-28.
    [116]邹定祥.矿岩爆破块度分布规律及其在爆破工程中的应用[J].爆破,1985,(2):35-41.
    [117]Turcotte D L. Fractals in Geology and Geophysics[J]. PAGEOPH.1989,131:171-195.
    [118]杨更社.岩石爆破块度分布的分形与分维[J].有色金属,1994,(4):41-43.
    [119]彭晓钢,焦永斌.岩石爆破快率的分形研究[J].南方冶金学院学报,1997,18(3):169-174.
    [120]刘慧,冯叔瑜.炸药单耗对爆破块度分布影响的理论探讨[J].爆炸与冲击,1997,17(4):359-362.
    [121]刘永清,贺福明,陈亚宇.爆破块度及块度分布的试验研究[J].煤炭工程,2005,(4):58-60.
    [122]张继春岩体爆破的块度理论及其应用[M].成都:西南交通大学出版社,2001.
    [123]Turcotte D L. Fractals and fragmentation[J]. J Geophysical Researches,1986,91:1921-1928.
    [124]Turcotte D L. Fractals in geology and geophysics[J]. PAGEOPH,1989,131:171-195.
    [125]谢和平.地质材料力学中的分形几何现象[J].力学与实践.1990,12(4):1-9.
    [126]Poulton M. Scale Invariant behavior of massive and fragmented rock. Int J Rock Mech Min Sci and Geomech Abstr[C],1990.
    [127]杨军,陈朋万,胡刚.现代爆破技术[M].北京:北京理工大学出版社,2004.
    [128]杨文渊,工程爆破常用数据手册[M].北京:人民交通出版社,2003.
    [129]宋元达,钟荫庭.FL-1型复合蜡的研究[J].矿冶,1994,3(2):20-25.
    [130]王德军,张志银.我国乳化炸药专用复合蜡现状及发展趋势.1998年全国石油蜡类技术交流会论文集[C],抚顺:中国石油化工集团公司,1999.
    [131]汪旭光,聂森林,云主惠等.浆状炸药的理论与实践[M].北京:冶金工业出版社,1985.
    [132]Rudolf Meyer爆炸物手册[M],陈正衡等译.北京:煤炭工业出版社,1980.
    [133]吕春绪.表面活性理论与技术[M].南京:江苏科技出版社,1991.
    [134]汪旭光,申英锋.乳化炸药结构与稳定性关系的研究[J].中国工程科2002(2):24-29.
    [135]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1984.
    [136]赵剑宇.乳化炸药胶粒微电泳的测定(一)[J].煤矿爆破,1994,(3):1-5.
    [137]赵剑宇.乳化炸药胶粒唯电泳的测定(二)[J].煤矿爆破,1994,(4):2-5.
    [138]赵剑宇.W/O型乳胶粒子表面电性的研究[J].云南化工,1998,(2):31-33.
    [139]陈厚和.乳化炸药爆速的估算[J].爆破器材,1986(1),4-7.
    [140]徐国财.对乳化炸药爆轰机理的认识[J].煤矿安全,2001(1):28-30.
    [141]Lee J. The effect of Microballoon Size on Detonation Behavior of Emlsion Explosives, Mastners Thesis. New Mexico Institute of Mining and Tecjhnology[C], Socorro, NM,1987.
    [142]Price D. contrasting Pattens in the Behabior of High Explosives, Proc.11th Int Symp on Combustion[C],1967.
    [143]Katsabanis P D. Liu Q,9th Int Annual Symp.Explos.and Blasting Besearch[C],1993.
    [144]Mends R, Campos J, Gois J C, Moutinho C.24th Int Annual Conference of ICT[C], 1993.
    [145]姚干兵.乳化炸药爆炸威力的研究[D].安徽理工大学,2003.
    [146]松全才,杨崇惠,金邵华.炸药理论[M].北京:兵器工业出版社,1997.
    [147]汪大立,徐国财.丁二酰亚胺乳化剂的乳化机理的讨论[J].爆破器材,1994,2(5)1-4.
    [148]叶良彪,徐国财.丁二酰亚胺乳化剂的研究[J].淮南矿业学院学报,1997,17(3):55-58.
    [149]颜事龙,徐国财.丁二酰亚胺在乳化炸药体系中的乳化机理[J].中国矿业大学学报,1999,28(4):357-360.
    [150]薛毅生、曾世奇.M系列商品乳化炸药及其丁二酰亚胺类乳化剂研究综述[J].金属矿山,1995,(3):5-11.
    [151]Teramoto M. J Chem[J]. Eng. Japan,1981,14:122.
    [152]Matsumoto S, M. Kohda, F. Nokashio. J Chem. Sic. of Japan[J],1983, (5):7-31.
    [153]李清,杨仁树,田运生等.乳化炸药溶胀过程的稳定性研究[J].中国矿业大学学报,1997,26(3):54-57.
    [154]杨仁树,李清,田运生等.乳化炸药异常流变性与其微观稳定性的关系[J].煤炭学报,1997,22(2):160-164.
    [155]吕春绪.乳化剂理论及其选择研究[J].爆破器材,1995,24(2):1-6.
    [156]叶志文,吕春绪,刘祖亮.聚异丁烯双丁二酰亚胺作为乳化炸药乳化剂的技术特点研 究[J].精细化工中间体,2003,33(1):54-56.
    [157]叶志文,吕春绪,刘祖亮.丁二酰亚胺在乳化炸药中的应用研究[J].精细化工中间体,2003,33(4):38-39.
    [158]李清,田运生.乳化炸药的乳化剂界面活性研究[J].工程爆破,1997,(3):33-36.
    [159]高学海,闫泉刚,王玉鑫.STL型复合乳化剂在乳化炸药中的应用[J].煤矿爆破,2003,(2):6-8.
    [160]Bether P.北京大学化学系胶体化学教研室译.乳化液理论与实践[J].北京:科学出版社,1978.
    [161]张显丕,郭子如,李道平.乳化炸药基质分散相液滴大小及分布的影响因素[J].含能材料,2006,14(2):147-149.
    [162]王波.乳化炸药油相材料的研究[J].矿业快报,2002(12):5-7.
    [163]王德军,张志银,胡能钦.提高乳化炸药硬度的途径[J].爆破器材,1999,28(5):8-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700