用户名: 密码: 验证码:
聚能装药穿墙弹参数设计与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在反恐行动及各种紧急情况下,必须瞬间破除建筑物的门或墙体,为作业人员快速进入室内创造条件。便携式聚能装药穿墙弹具有体积小、重量轻、侵彻效果好的特点,多发弹组合使用能有效破除砖墙障碍,该穿墙弹研制成功后可装备至防暴警察及特种部队。
     利用聚能射流侵彻金属及非金属介质在军事、工程爆破及民用方面得到广泛的应用,如大型线性切割器、石油射孔弹、串联战斗部系统、轻型弹丸等,聚能射流的速度梯度、质量分布、形状大小均可通过流体力学计算模型及模拟软件得出,但由于聚能装药问题的复杂性,至今还没有令人满意的爆轰驱动药型罩的一般理论。目前对聚能装药的研究内容主要集中在优化和提高性能上,数值方法广泛应用于聚能装药的结构设计、优化及材料选择等。
     本文简要介绍了聚能装药的基本理论和国内外的研究现状,利用ANSYS/LS-DYNAl1.0有限元分析软件对各种穿墙弹侵彻目标介质进行了模拟,采用多物质ALE算法,用三维实体单元划分网格,墙体的材料为混凝土,混凝土可采用弹性与塑性动力学、H-J-C、弹性损伤3种模型,模拟了射流和杵体的形成、侵彻、堆积及墙体的破碎,对各类介质的侵彻孔径进行了对比分析,将模拟数据与射流质量、速度、侵彻深度理论计算结果进行了逐一验证,并对穿墙弹的炸高、质量比、开口口径、装药形状、药型罩壁厚等进行了设计优化,在保证穿墙效果的情况下,确保射流利用率最高、装药结构合理、装药质量最少、弹体积最小。
     穿墙弹采用收敛性塑性炸药、圆锥形紫铜药型罩、pvc外壳、非电导爆管雷管引爆系统,锥角分别为60°、90°、120°,进行了两次单发穿墙弹的实验,用于检验穿墙的深度和裂纹扩展情况,为组合实验提供数据。在组合实验中,穿墙弹呈圆形布置,圆的中间布置一个悬空的药包,此药包用水作为传压介质,分段起爆,根据侵彻效果,修改弹的位置、间距。
In anti-terrorism operations and all kinds of emergency situations, it is very necessary to remove obstacles of the building doors or walls in an instant. So personnel responsible for security can quickly enter the room. Portable shaped charge shells has the advantage of small size、light weight、well penetration effect、safety of usage. Combined use of several such shells can effectively get rid of brick wall barriers. The small shells can be equipped with the anti-riot police、special forces.
     Shaped charge jet penetration of metal and non-metallic media is widely used in the military、engineering、and civilian aspects of blasting, such as the large linear shaped charge cutter、perforator of shaped charges in the exploitation of petroleum、tandem warhead system、light projectiles and so on. With hydrodynamic models and simulation software, we can calculate the gradient of speed within a Shaped Charge Jet、mass distribution、shape and size. Because of complexity of shaped charge, there is no satisfactory general theory of detonation driven liner. Research on shaped charge mainly focused on aspects of optimizing and improving performance. The numerical methods are widely used in structural design of shaped charge、optimization、material selection and so on.
     This paper tried to describe the basic theory of the shaped charge and research results at home and abroad. penetration through walls of various target media has been simulated with finite element analysis software of ANSYS/LS-DYNAl1.0.In this process we use multi-material ALE algorithm、three-dimensional solid element mesh、elastic and plastic dynamics material model、the Johnson-Holmquist Constitutive Model (JH-2).Constants are obtained for the model using existing test data which include both laboratory and ballistic experiments. We get formation of the jet and the pestle body、penetration、accumulation、broken walls. Through comparing the simulation results and theoretical results one by one. We Optimized the diameter of the shells、the height of explosive、quality of the charge. In cases with good penetration results, we ensure that the shell has the highest efficiency of jet utilization、reasonable charge structure、the quality of a minimum charge、Minimum size.
     The shells has convergence c-4 explosives、cone-shaped charge liner made up of copper、nonel tube detonator. We choose three different kinds of shells, their cone angle is respectively 60°、90°、120°.Two sets of single-shell experiments have been conducted, which is mainly used for testing the depth of penetration、cracks of the wall and Providing data for the combination experiments. In the process of the combination experiment, eight shells was a circle arrangement on the wall, there has a certain quality of explosives in the middle of circle, the explosives locate at the top of the wall and has a certain distance from the wall. It use of water as a pressure transmission medium. According to penetration effects, we modify the shells location、spacing.
引文
[1]王树魁,贝静芬等译.成型装药原理及其应用[M].北京:兵器工业出版社,1992.
    [2]Verfahren zur Hersteliung von Sprengkorpern (Procedure for the Manufacture of Explosives Charges). Westfalisch-Anhaltische Sprengstoffe A. G., Patent DRP-Anmeldung W36329 14 December 1910 in "Zeitschriftfur Das gesanueschiess-und sprengstoffwesen" 6.1911:358.
    [3]W. payman, D. Sc., Fh. D., and D. W. Woodhead, Ph. D., F. I. C. Expiosion Waves and Shock Waves, V, The Shock Wave and Explosive Products from Detonaring High Explosive. The proceeding of Royal Society of London, A., Vol.163. Obseryed jetting from end of metal Detonators, refer to Munroe effect, measured veiocity gains from Cavity in end of explosive,1937
    [4]Birkhoff. G, Mac Doygall. D, Pugh. E and Taylor. G. Explosive with lined avities. J. Appl. Phys, 1948,19(6).
    [5]Evans. W. M. The Hollow Charge Effect.Bull. Inst.Min. Metall, No.520, March,1950.
    [6]Evans. W. M. and Ubbelohde, A. R. Formation of Munroe Jets And Their Action On Massive Targets. Res. sup. (Lonodon),3-8, May.1950a.
    [7]Evans. W. M. and Ubbelohde, A. R. Some Kinematic Properties of Munroe Jets. Res. supp. (London).3-8, May,1950b.
    [8]Pugh. E., Eichelberger. R. and Rostoker. N. Theory of Jet Formation By Charges With Lined Conical Cavities. J.APPL. Phys., Phys.,23(5),1952.
    [9]Chou, P. C, Carleone. J. and Karpp. R. R. Criteria for Jet Formation from impinging shells and plates. J. Appl. Phys,1976,47(7).
    [10]Chou, P. C, Carleone. J, Hirsch E, Flis W J, Cicarelli R D. Improved Formulas for Velocity, Acceleration and Projection Angle of Explosively Driven Liners. in:Proc of 6th International Symposium on Ballistics.1981.
    [11]王铁福,王雷,阮文俊,赵同虎.药型罩材料的晶粒度对射流性能的影响[J].高压物理学报,1996,10(04):291-298.
    [12]郑哲敏.聚能射流的稳定性问题[J].爆炸与冲击,1981,(01):6-17.
    [13]郑哲敏.关于射流侵彻的几个问题[J].兵工学报,1980,(01):13-22.
    [14]秦承森,段庆生,韩冰.聚能射流的断裂时间[J].爆炸与冲击,1997,17(04):318-325.
    [15]石艺娜,秦承森.金属射流失稳断裂的理论分析[J].力学学报,2009,41(03):361-369.
    [16]慈明森.用于敏感弹药爆炸成形弹丸的一种实验方法[J].弹箭技术,1998,(03):21-24.
    [17]慈明森.气动力优化EFP性能的模拟[J].弹箭技术,1998,(03):50-56.
    [18]贾光辉,张国伟,裴思行.扁平结构自锻破片成型研究[J].弹箭与制导学报,1999,(1):57-60.
    [19]蒋浩征,刘乃生.大直径半球形药型罩聚能战斗部威力模拟试验研究[J].兵工学报,1981,(02):48-57.
    [20]叶本治,冯民贤,杨桂红,戴君全.爆炸成型弹丸贯穿混凝土的实验研究[J].爆炸与冲击,1994,14(3):269-274.
    [21]安二峰,杨军,陈鹏万.一种新型聚能战斗部[J].爆炸与冲击,2004,24(6):546-552.
    [22]李裕春,时党勇,赵远.Ansys10.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006.
    [23]G.R.Liu,M. B.Liu[著]韩旭杨刚强洪夫[译].光滑粒子流体动力学——种无网格粒子法.长沙:湖南大学出版社,2005.
    [24]梁争峰,胡焕性.爆炸成形弹丸技术现状与发展[J].火炸药学报,2004,27(04):21-25.
    [25]荀扬,晏麓晖,曾首义.聚能装药技术研究进展综述[J]. 科学技术与工程,2008,8(15):4251-4257.
    [26]北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用[M].北京:国防工业出版社,1979.
    [27]惠君明,陈天云.炸药爆炸理论[M].南京:江苏科学技术出版社,1994.
    [28]王志军,尹建平.弹药学[M].北京:北京理工大学出版社,2005.
    [29]胡书堂,王凤英.药形罩对聚能破甲效应的影响浅析[J].理论与探索,2006,(06).
    [30]张世泽,曹雄,胡双启,赵海霞.锥形罩锥角对射流形成和侵彻影响的数值模拟[J]四川兵工学报,2005,(06).
    [31]张会锁,赵捍东,王芳,张树霞.药型罩壁厚对聚能射流影响的数值模拟[J]测井技术,2006,(01).
    [32]石一丁.小型线性聚能切割器参数研究与设计[D]南京理工大学,2006.
    [33]江德安,李晓杰,闫鸿浩.一种新型聚能爆破切割水下废弃油井方法的探索[J].爆破器材,2008,37(3):7-10.
    [34]邵丙璜,张凯.爆炸焊接原理及其工程应用[M].大连工学院出版社,1987.
    [35]郑平泰,杨涛,秦子增,晏杰.射流侵彻混凝土介质数值模拟及影响因素研究[J].弹箭与制导学报,2007,(04).
    [36]路纯红,刘昌丽,胡仁喜.AutoCAD 2010中文版机械设计完全实例教程[M].北京:化学工业出版社,2010.
    [37]李铮.空气冲击波作用下的安全距离[J].爆炸与冲击,1984,4(2):39-52.
    [38]刘大辉.聚能装药对岩土混杂介质的侵彻研究[D]:(硕士学位论文).大连:大连理工大学,2006.
    [39]Christman. D. R. and Gehring. J. W. Analysis of High-Velocity projectile penetration Mechanics.J. Appl. Phys,1966,37(4).
    [40]中国标准.中华人民共和国国家标准爆破安全规程(GB6722—2003)(S).中国标准出版社,2003.
    [41]王晓雷.水压爆破装药参数理论分析及实验研究[D]河北理工学院,2004.
    [42]王林.水中冲击波传播规律及在水压爆破中的应用[J].爆破,1994,(4):45-48.
    [43]Cole.水下爆炸[M].罗耀杰,等译.北京:国防工业出版社,1960.
    [44]刘津明.混凝土结构施工技术[M]机械工业出版社,2009.
    [45]北京土木建筑学会.混凝土工程现场施工处理方法与技巧[M]机械工业出版社,2009.
    [46]崔熙光.混凝土结构与砌体结构[M]大连理工大学出版社,1999.
    [47]李顺波,东兆星,齐燕军,焦金锋.爆炸冲击波在不同介质中传播衰减规律的数值模拟[J].振动与冲击,2009,28(07):115-117
    [48]蒋金宝.爆炸激波对水泥试样损伤规律研究[D]:(博士学位论文).青岛:中国石油大学,2008.
    [49]常敬臻,卢永刚,孙传杰.聚能装药对砖墙结构靶体开孔效能试验研究[J].兵器材料科学与工程2009,(06)
    [50]王礼立,朱兆祥.应力波基础.北京:国防工业出版社,1985
    [51]李硕本,康达昌,于连仲.爆炸成形用临时水介质几何参数的确定[J].锻压技术,1980,(04):1-9
    [52]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [53]ANSYS/LS-DYNA中国技术支持中心.ANSYS/LS-DYNA算法基础和使用方法.北京理工大学,1999.1
    [54]尚晓江,苏建宇.ANSYS/LS-DYNA动力分析方法与工程实例[M].中国水利水电出版社,2006.
    [55]陈建林,李旭东,刘凯欣.素混凝土本构模型参数的实验研究.北京大学学报(自然科学版),2008,44(5):689-694
    [56]Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures//Proceedings of the 14th international symposium on ballistics. Quebec, Canada,1993,591-600.
    [57]张迪,林逸汉,曹菊珍.混凝土靶体计及压实效应的球腔动态膨胀模型和侵彻计算[J].计算力学学报2004,(04):493-497
    [58]张凤国,李恩征.大应变_高应变率及高压强条件下混凝土的计算模型[J].爆炸与冲击,2002,(03):198-202
    [59]马莉.MATLAB语言实用教程[M].清华大学出版社,2010.
    [60]赵凯,王肖钧,卞梁,肖卫国.混凝土介质中不同药形装药爆炸波传播特性的数值模拟[J].
    [61]冯国忠.基于ANSYS/LS-DYNA的混凝土靶板侵彻问题的数值模拟与分析[D].中国优秀博硕士学位论文全文数据库(硕士),2006,(09).
    [62]贾宪振.基于通用程序的水下爆炸及其对结构作用的数值模拟研究[D].南京理工大学,2007.
    [63]柴修伟.水下炮孔爆破水中冲击波传播特性[D].武汉理工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700