用户名: 密码: 验证码:
脉冲激光与水下金属靶材相互作用力学效应的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光与水下靶材相互作用将出现冲击波和光致空化的现象,激光诱导的冲击波和空泡溃灭射流冲击都将对靶材产生力学效应,这是激光液体环境加工、激光眼科医学等应用的重要基础。本文分析了激光与水下靶材相互作用产生力学效应的基本机理;设计了满足瞬态点载荷现场测试要求的测力光纤传感器;主要从实验角度测试并分析了脉冲激光辐照水下金属靶材时产生的脉冲力信号。
     提出激光辐照靶材力效应的点载荷模型,指出通过测量靶材受力点弹性形变来检测靶材受力的检测机理。通过与接触检测和干涉法检测方式优劣的对比,在光偏转技术的基础上,引入光纤对探测光束的反射光进行强度耦合,构建了基于光偏转光强度耦合的测力光纤传感器,其与靶材组成统一的现场测试系统;基于薄板弹性力学理论及单模光纤对高斯光束耦合原理,讨论了传感器线性工作范围和正常工作的主要条件,给出了满足现场测试要求所需的动态调整方案。
     使用自行建立的测力系统检测激光分别辐照空气和水中铜靶的力学信号,判别了激光烧蚀力(等离子体冲击波作用力)Fa和两次射流冲击力Fb、Fc。根据烧蚀力峰值a和第一次射流峰值b出现的时间间隔得到了30mJ激光能量诱导的空泡溃灭的周期。实验发现能量为30mJ的脉冲激光对水下铜靶的烧蚀力峰值约为空气中烧蚀力的4.12倍。
     测试并统计不同能量的激光辐照水下铜靶产生的力学信号,使用Origin软件拟合了激光诱导冲击波和两次射流的脉冲力信号峰值与入射脉冲能量的关系曲线,烧蚀力和射流冲击力的产生都存在一个阈值能量,三个脉冲力峰值幅度随脉冲能量的增加均成先上升后下降的趋势,主要是受水击穿的影响。靶材所受的激光烧蚀力取决于脉冲的能量,而空泡射流的产生及冲击力的大小是由脉冲能量和无量纲参数γ两个因素共同决定。
     测试了水下激光作用点处存在空泡约束空腔时靶材受力信号,结果表明作用点处存在圆筒空腔时,靶材所受的射流冲击力峰值b、c与无约束空腔相比都有增大,且当空腔截面直径越小,随高度增加,增大趋势越甚;而激光对靶材的烧蚀力峰值a几乎没有什么变化。使用微射流形成机制和水下激光诱导冲击波的形成发展机理解释了此现象。
     本文的研究结果对激光液体环境加工、激光眼科医学等效率和质量的提高提供了一定的依据,也有助于相关检测技术的发展。
The interaction of pulsed laser and underwater target will cause shockwave and the cavitation phenomenon, laser-induced shockwave and cavitation bubble collapse jet impact on target will produce mechanical effect, this is an important basis of laser liquid processing and laser eye medical surgery. Mainly from the angle of experiment, this article measure and analysis the pulse signal produced by interaction of laser pulse and underwater metal material.
     The basic mechanism of mechanical effect produced by the interaction of laser pulse and underwater metal material is analyzed; Present a point load model of mechanics effect by laser irradiation target, point out the elastic deformation measuring mechanism. Based on the coupling of light intensity of light deflection, build the optical fiber mechanical quantity sensor. With target, it is a field measurment system, the linear range and conditions of how to reduce sensor measuring error are discussed.
     The mechanical signal of copper target in air and water is measured. Identify laser ablation force (plasma shock wave force) and two jet wallop, According to the ablation force peak'a'and the first jet peak'b''s time interval, we get cavitation bubble collapse cycle of 30mJ pulse. Experiment find that the underwater ablation force peak is 3.72 times that of air when pulse energy is 30mJ; Measure mechanical signal of underwater copper target with different energy laser pulse, the result show the target receive laser ablation force and two jet wallop. The ablation and jet wallop both have threshold energy, three pulse force peaks amplitude all rise and then fall with laser energy's changes, mainly water's threshold is the influence. The laser ablation force depends on the pulse energy, while jet wallop's appear and the amplitude of the impact based on two factors of nondimensional parameters y and pulse energy; Measure the mechanical signal of underwater copper target when there is a constrained cylinder cavity for cavitation bubble. The experiment show that, under constrained mode, jet wallop peak b and c are increasing compared with unconstrained cavity, the more smaller diameter and bigger height of cavity, the more jet wallop increase. While the laser ablation force peak change little, mainly because the constraints of cylinder affect the formation mechanism of jet which is of no effect to ablation force.
引文
[1]安毓英,曾小东.照亮廿一世纪之光.激光与红外.2000,30(3):131~133
    [2]中国科学院上海光机所.我国激光发展战略研究.上海科学技术文献出版社,1988
    [3]Steven M B, Lawrence S B. Goldstein. Bead movement by single kinesin molecules studied with optical tweezers.Nature.1990,348(22):348~52
    [4]Whit R Me. Generation of elastic waves by transient heating.J.AppI.Phys.1963, 34(12):3559~3567
    [5]Dyer P E. Spectroscopic and ion probe measurements of KrF laser ablated Y-Ba-Cu-O bulk samples. Appl. Phys. Lett.1988,53(6):534~536
    [6]卢益民,郑友民.激光对潜通信系统探测信号动态范围自适应调节.激光与红外.2001,31(5):291~293
    [7]马惠萍,刘丽华,杨乐民,李鹏生.平行光束反射光强调制型光纤位移传感器研究.光学学报.2003,23(2):176~181
    [8]Mcguire A, Bonenfant C P. The blueprints for optical networking. IEEE Commun, Mag.1998,36(2):68~78
    [9]Patricia V. H, Cheston F. WDM deployment in the local exchange network.IEEE Commun.Mag.1998,36(2):56~61
    [10]陆建,倪晓武,贺安之.激光与材料相互作用物理学[M].第1版.北京:机械工业出版社,1996
    [11]周建忠.基于激光冲击波的板料塑性成形新技术.中国机械工程.2002,13(22):1938
    [12]柯朗R,弗里德里克斯KO,李维新等人译.第1版.超声速流与冲击波.北京:科学出版社,1986
    [13]泽尔道维奇,菜依捷尔.激波和高温流体动力学现象物理学(上下册).第1版.北京:科学出版社,1980
    [14]李维新编著.一维不定常流与冲击波.第1版.北京:国防工业出版社,2003
    [15]Taylor G I.The formation of a blast wave by a very intense explosion. Proceedings of the Royal Society, London Ser.A201,1950
    [16]Sakurai A. Basic developments in fluids dynamics.1 st ed. NewYork:Academic Press, 1965:309~375
    [17]Von Neumann J. The point source solution. In collected works of Von Neumann J, vol Ⅵ, London.1963:219~238
    [18]谢多夫[苏].力学中的相似方法与量纲理论.第1版.北京:科学出版社,1982
    [19]Bach G G, Lee J H.An analytical solution for blast waves.AIAA.1970,8(2):271-275
    [20]Brode H L. Numerical solutions fro spherical blast waves. J. Appl.Phys., 1955(26):766~775
    [21]Oshima K. Quasisimilar solution of blast waves. Aeronautical Research Institute University of Tokyo Report,386, March.1964
    [22]Freeman R A.Variable energy blast waves. British J. Appl. Phys., Ser,2,1968, 1:1697~1710
    [23]Dabora E K.Variable energy blast waves.AIAAJ.1972,10:1384~1386
    [24]Director M N, Dabora E K. Predietions of variable energy blast waves.AIAAJ.15, SePt.1977
    [25]李鸿志,高树滋.带膛口装置的膛口流场与冲击波形成机理.华东工学院学报.1979,2
    [26]Barenblatt G I, GuirGuis RH, Kamel M M, Kuhl A L, Oppenheim A K, Zel'dovich, YaB.Self-similar explosion waves of variable energy at front. J. Fluid Mech.1980, 99(4):841~858
    [27]刘晓利.变能量冲击波的研究.南京理工大学硕士论文,1987
    [28]#12
    [29]#12
    [30]Raizer Yu P. Heating of a Gas by a powerful Light Pulse.Soviet Physics JETP, 1965(21):1009~1017
    [31]Raizer Yu P. Heating of a gas under the action of a high-energy light pulse.Zho Iksp Teor. Fiz.,1965(48):1508~1509
    [32]Pirri A N. Analytic Solutions for Laser-Supported Combustion Wave Ignition Above Surfaces. AIAA J.,1977(15):83~91
    [33]Pirri A N, Root R G, Wu P K S. Plasma energy transfer to metal surfaces irradiated by pulsed lasers, AIAA J.,1978(16):1296~1304
    [34]C. T. Walters,R. H. Barnes,and R. E. Beverly. Initiation of laser-supported detonation (LSD) waves. J. Appl. Phys.,1978,49(5):2937~2949
    [35]Keefe J.D., Skeen C H. Laser-induced stress-wave and impulse augmentation. Appl. Phys. Lett.,1972(21):464~466
    [36]Yang L C. Stress waves generated in thin metallic films by a Q-switched ruby laser. J. Applied Phys.,1974(45):2601~2608
    [37]马民勋,顾援,王勇刚,激光驱动冲击波的增长与衰减的一维特征线解法.高压物理学报,1988(1):81~86
    [38]顾援,倪元龙,王勇刚.激光驱动高压冲击波的实验观察.物理学报,1988(37):1690~1693
    [39]闰大鹏,苗鹏程,张键,王海林,贺安之,“从流场干涉图定量计算冲击波传播速度和压力”,爆炸与冲击,1993(13):219~224
    [40]洪听,王声波,郭大浩,王劫,吴鸿兴,戴宇生,夏小平,谢艳宁.激光冲击波在铝靶中衰减特性研究.量子电子学报,1998(15):474~478
    [41]强希文,张建泉,李邦国,刘峰,朱润合.高功率脉冲激光产生的激波在靶材中的传播.红外与激光工程,2000(29):41~46
    [42]卞保民,陈建平,杨玲,倪晓武,陆建.空气中激光等离子体冲击波的传输特性研究.物理学报,2000,49(3):445~448
    [43]卞保民,杨玲,陈笑,倪晓武.激光等离子体及点爆炸空气冲击波波前运动方程的研究.物理学报,2002,51(4):809~813
    [44]王薇,张杰,V.K.senecha.冲击波在铝靶中传播的数值模拟研究.物理学报,2001(50):741~744
    [45]Li Z H, Zhang D M, Yu B M, Guan. Characteristics of plasma shock waves generated in the pulsed laser ablation process. Chin.Phys.Lett.中国物理快报:英文版).2002, 19(12):1841~1843
    [46]X Chen, B M Bian, Z H S hen, J Lu, X W Ni. the equation of laser-induced plasma Shockwave motion in air. Microwave and Optical Technology Leters.2003,38(1):75~79
    [47]Gregy D.W., Thomas S.J. Momentum transfer and plasma formation above a surface with a high-power CO2 laser.J.AppI.Phys.1966,37(7):2787~2789
    [48]Pirri A N et al. Momentum transfer and plasma formation above a surface with a high-power CO2 laser.Appl.Phys.Lett.1972,21(3):79~81
    [49]Fox J A and Barr D N. Laser induced stress waves in 6061-T6 aluminum. Appl. Opt. 1973,12(11):2547~2548
    [50]Marcus S and Lowder J E. Impulse loading of targets by HF laser pulses .J. Appl.Phys.1974,46(5):2293-2294
    [51]Mets S A. Impulse loading of targets by subnanosecond laser pulses. Appl. Phy,Lett.1973,22(5):211~213
    [52]L.R. Hettche et al. Mechanical response and thermal coupling of metallic targets to high-intensity 1.06μm laser radiation.J.Appl.Phys.1976,47(4):1415~1421
    [53]B.S. Holmes, D.C. Ehich. surface pressures from laser-supported detonations. J. Appl. Phys.1977,48(6):2396~2403
    [54]C. Duzy,J. A. Woodroffe, J. C. Hsia, A. Ballantyne. Interaction of a pulsed XeF laser with
    an aluminum surface, Appl. Phys. Lett.,1980,37(6):542~544
    [55]P.A.Gray, D.L.Edwards, M.R.Carruth. Laser photon force measurements using a CW laser.AIAA2002-2178
    [56]Koichi Mori, Kimiya Komurasaki, Yoshihiro Arakawa. Energy transfer from a laser pulse to a blast wave in reduced-pressure air atmospheres. Journal of applied Physics, 2004,95(11):5979~5983
    [57]Koichi Mori, Kohei Anjub, Akihiro Sasoha, Eugene Zaretsky. Acceleration history in laser-ablative impulse measured using Velocity Interferometer(VISAR). Proc. of SPIE Vol.6261:626125-1-626125-8
    [58]陆建,倪晓武,贺安之.激光靶冲量形成积试验研究.南京理工大学学报,1994,3:61~64
    [59]崔村燕,洪延姬,文明.脉冲激光作用下光船所受推力的测试.装备指挥技术学院学报,2004(15):103~106
    [60]Fairand B P, Wilcox B A, Gallagher W J, Williams D N. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum. J. Applied Physics, 1972(43):3893~3895
    [61]Fairand B P, Clauer A H. Use of laser generated shocks to improve the properties of metals and alloys. SPIE,1976(86):112~119
    [62]Kim T, Lee J M, Cho S H, Kim T H. Acoustic emission monitoring during laser shock cleaning of silicon wafers. Optics and Lasers in Engineering,2005(43):1010~1020
    [63]杜金波,李秀华.激光感应冲击波碎石.激光与红外,1993(23):24~28
    [64]Kennedy PK, Hammer DX, Rockwell BA. Laser-induced breakdown in aqueous media.Prog.Quant.Electron.1997,21:155~248
    [65]Vogel.A, Busch S, Parlitz U, Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 1996,100(1):148~165
    [66]Shima A. Studies on bubble dynamics. Shock Wavsl997,7:33~42
    [67]Philipp A, Lauterborn W. cavitation erosion by single-laser produced bubbles. J. Fluid Mech.1998,361:75~116
    [68]TomitaY, Shima A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse J.Fluid.Mech.1986,169:535~564
    [69]Vogel A, Noack J. Shock wave energy and acoustic energy dissipation after laser-induced breakdown. SPIE,1998(3254):180~189
    [70]Ridah S. Shock waves in water.J.Appl.Phys.1988,64:152~158
    [71]Rice M H, Walsh J M. Equation of state of water to 250kilobars. J. Chem. Phys.1957, 26:824~830
    [72]钱祖文.非线性声学.第1版.北京:科学出版社,1992
    [73]Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W. Collapse and rebound of a laser-induced cavitation bubble.Phys.Fluids.2001,13(10):2805~2819
    [74]Rayleigh Lord. On the pressure developed in liquid during the collapse of a spherical cavity. Philos Mag.1917(34):94~98
    [75]张秀丽.空蚀损伤过程中电偶作用机制的设想及验证.北京科技大学博士论文,2000
    [76]Vogel A, Lauterborn W, Timm R.Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 1989(206):299~338
    [77]Knapp R T, Daily J W, Hammitt F G.. Cavitation, Mc-Graw Hill Book Co.,1970中译本“空化与空蚀”,水利水电科学研究院译.水利出版社,1981
    [78]Shima A, Takayama K, Tomita Y. Mechanisms of the bubble collapse near a solid wall and the induced Impact Pressure Generation. Rep. Inst, High Speed Mech., Tohoku Univ., vol.48,1984
    [79]Brennen C E. Cavitation and bubble dynamics. Britain:Oxford University Press,1996:91
    [80]胡寿根,朱美洲.空化水射流研究现状及其应用.华工工业大学学报.1996,18(1):1~8
    [81]袁易全.近代超声原理及应用.南京:牛津大学出版社,1996
    [82]陈笑.激光对水和空气中靶材的作用机制研究.南京理工大学学报.2004,28(3):248~251
    [83]王开福.现代光测力学技术.哈尔滨:哈尔滨工业大学出版社,2009.10
    [84]陈明祥.弹塑性力学.北京:科学出版社,2007
    [85]Fabbro R, Foumier J, Ballard P. Physical study of laser-produced plasma in confined geometry. J.Appl. Phys.1990.68(2):775~784
    [86]罗惕乾.流体力学.北京:机械工业出版社,2000.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700