用户名: 密码: 验证码:
蒸汽弹射系统内弹道数值模拟与参数设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸汽弹射系统是舰载机起飞的主要弹射装置,其作用是帮助舰载机快速起飞、缩短起飞距离、提高作战反应能力等。其内弹道过程对舰载机的弹射性能以及发射安全性等有着重要的影响。本文以蒸汽弹射系统为研究对象,分析了蒸汽弹射的物理过程,并对其进行数学建模与数值模拟分析,并同时对蒸汽弹射系统参数进行设计,主要内容如下:
     (1)建立蒸汽弹射过程零维内弹道模型,编制了用于计算水蒸汽物性参数的水蒸汽程序,并与零维内弹道程序耦合,采用四阶Runge-Kutta法进行数值模拟,并分析不同因素对蒸汽弹射内弹道性能的影响。
     (2)建立蒸汽弹射过程一维数学模型,采用MacCormack差分格式进行数值模拟计算,并使用激波管、完全气体膨胀做功等经典算例,对程序的正确性及计算精度进行验证,得到了活塞底部压力、舰载机速度和位移随时间变化规律,以及不同时刻汽缸内的压力分布图;分析了蒸汽在汽缸中凝结问题,为预防蒸汽凝结,提供了一定的理论依据。
     (3)对蒸汽弹射过程进行二维数值模拟,来研究发射汽缸内压力场、速度场等流场变化情况,以及舰载机速度、位移等参数随时间的变化规律,为蒸汽弹射系统的工程设计提供一定的参考。
     (4)结合蒸汽弹射内弹道过程,对蒸汽弹射参数进行设计分析,并对蒸汽供应系统进行分析讨论。
The Steam-powered Catapult is the main ejection mechanism for the carrier aircraft to take off. It helps the carrier aircraft taking off quickly, reducing takeoff distance and improving its combat to response capabilities. The interior ballistic process of Steam-powered Catapult is an important factor which affects the carrier aircraft takeoff and the safety of launching. The Steam-powered Catapult is introduced in this thesis and the physical process of Steam-powered Catapult is analyzed. The theoretical analysis and the numerical simulation on the interior ballistic performance of Steam-powered Catapult are studied, and the parameters of Steam-powered Catapult are designed.The main parts are concluded as follow:
     a) The classical interior ballistic model of Steam-power Catapult launching process is established and calculated. The different effects of its ballistic performance are analyzed.
     b) The one-dimension model of Steam-power Catapult launching process is established and calculated. The numerical examples of shock tube, perfect gas doing work in the cylinder are calculated to inspect and verify the program. The bottom of the piston pressure, the carrier aircraft moving law and the pressure distribution of cylinder at different times are analyzed. Through analyzing the process of condensed steam flow in the cylinder, it provides a theoretical basis for the Steam-powered Catapult design.
     c) The two-dimension model of Steam-power Catapult launching process is established and calculated. The pressure field and velocity field in the launch cylinder are analyzed, and the carrier aircraft moving law is given by the calculation.
     d) Combined with the classical interior ballistic process of Steam-power Catapult, the parameters of the Steam-power Catapult are designed and analyzed, and the steam supply systems are discussed.
引文
[1] 魏庆,史伟光.世界主要国家航母发展趋势.国防科技工业,2007(2):61-63.[2] 孙友师,屈香菊.舰载机斜板/弹射综合起飞的性能收益与关键问题.飞机设计,2008(5):15-18.[3] 马世强.美俄舰载机起飞方式优劣谈.舰载武器,2004(11):79-82.[4] 李梅武,崔英,薛飞.航母飞机起飞的最佳选择-—电磁弹射系统.舰船科学技术,2008(2):34-37.[5] 刘国伟.美国新航母告别蒸汽弹射电磁弹射让舰载机更快起飞.科学大观园,2008(21):41.[6] Friedman H M, Friedman A K. Shot Into the Air. American Heritage of Invention & Technology,2006,21(4):26-35. [7] Lawrence J T. Milestones and Developments in US Naval Carrier Aviation-Part II. AIAA,2005,2005-6120:1-18.[8] 寒羽.航空母舰特种装备介绍之三飞机弹射器.当代海军,1996(1):28.[9] Brown M R, Jenkins R M, Rose M F. Unsteady Flow Ballistics of a Pneumatic Launch Tube. AIAA,1998,98-3738:1-16.[10]鸥汛.航母的弹射装置.现代舰船,2005(7):41-44.[11]雪巴.五花八门的弹射器——美国海军航母弹射飞行发展史.舰载武器,2007(4):60-68.[12] Small D B. Full scale tests of nose tow catapulting. AIAA,1964,64-327:1-11.[13]海猎隼.国产舰载机采用前轮拖曳弹射可行性探讨.舰载武器,2007(4):73-77.[14] Bushway R R. Electromagnetic Aircraft Launch System Development Considerations. IEEE,2001,37(1):52-54. [15] Naval:Electromagnetic catapult gets green light. Marine Engineers Review, 2004(9):114. [16] Warwick, Graham. GA catapults to US Navy aircraft carrier contract. Flight International,2004(165):18. [17] Kariya S. A High-Tech Launch system for Carriers. IEEE,2004,41(1):24-25. [18] Withington, Thomas. Flattops back in fashion. Armada International,2008(6): 8-14. [19] Doyle M R, Samuel D J, Conway T, Klimowski R R. Electromagnetic Aircraft Launch System-EMALS. IEEE,1995,31(1):528-533. [20]于瀛,池建文,陈听.电磁飞机弹射系统.舰船科学技术,2003(4):51-56.[21]吴始栋.美国海军电磁弹射器现状.船电技术,2006(3):30-34.[22]张磊,栗琳.美军下一代航母新技术解析.中国科技信息,2007(24):344-345.[23]许全均,孙国基.美国研制电磁弹射器.舰载武器,1997(1):17.[24]白鹏英,乔军.双级气缸式弹射装置内弹道分析.现代防御技术,2007(4):44-49.[25]蒋瑞岗.导弹的弹射与燃气发生器设计.现代防御技术,1998(3):9-16.[26]乔应克,鲁国林.导弹弹射用低温燃气发生剂技术研究.中国宇航学会固体火箭推进第22届年会论文集(推进剂分册)[C],2005:194-198.[27]芮守祯,邢玉明.几种导弹弹射动力系统内弹道性能比较.北京航空航天大学学报,2009,35(6):766-770.[28]余浩章,聂万胜.燃气蒸汽式弹射的改进模型与仿真.指挥技术学院学报,2001(3):89-92.[29]赵世平,鲍福廷.燃气蒸汽式发射系统内弹道若干问题研究.固体火箭技术,2003(3):7-1 0.[30]赵世平.发射内弹道计算模型研究.舰船科学技术,2007(S1):130-133.[31]张仁军,鲍福廷.两种不同注水方式的燃气蒸汽式发射系统内弹道性能比较.固体火箭技术,2005,28(1):5-9.[32]张仁军.集中注水式发射动力系统内弹道CAD研究.中国优秀博硕士学位论文全文数据库(硕士),2005(4).[33]申万江.燃气—蒸汽发射系统动力特性计算研究.大连理工大学,2007.[34]仝建禄,刘少伟,王洁.某型战术导弹弹射器的仿真研究.战术导弹技术,2005(1):63-65.[35]谭大成,苗佩云.弹射器低压室二维内弹道模型及数值研究.弹箭与制导学报,2006(4):224-226.[36]翟晓超,陈亚军,姜毅.动网格在仿真发射装置内弹道中的应用.现代防御技术,2006(2):24-28.[37]张志利,王自杰,李国英,刘建伟.某型导弹发射筒的弹射工况建模仿真研究.系统仿真学报,2007(17):3880-3882.[38]徐凯.弹射作动筒组动力学分析和弹射寿命计算.中国优秀博硕士学位论文全文数据库(硕士),2005(4).[39]周建文.飞机导弹弹射系统动特性分析和仿真研究.中国优秀博硕士学位论文全文数据库(硕士),2004(3).[40]段建华.某型弹射机构结构设计计算及动态参数仿真.西北工业大学,2007. [41]戴龙成,宣益民,尹健.氮气弹射系统动特性实时动态仿真.弹道学报2000(4):18-24.[42]戴龙成,宣益民,尹健.弹射装置的数理建模和动力学分析.弹道学报,2001(4):17-23.[43]何洪林.弹射系统多场耦合的数值仿真与分析.中国优秀硕士学位论文全文数据库,2008(11).[44]赵险峰.航母舰载机蒸汽弹射系统的数学仿真研究.舰载武器,1 996(3):45-53.[45]白建成.蒸汽弹射内弹道数学模型.中国造船,2001(3):99-1 02.[46]周清和.蒸汽弹射器速率阀研究.液压与气动,2003(4):1-4.[47]余晓军,高翔,钟民军.蒸汽弹射器的动力学仿真研究.船海工程,2005(3):1-4.[48]齐强,孙建国,周源,周红梅.舰载机弹射内弹道仿真计算.海军航空工程学院学报,2009,24(5):507-510.[49]罗宏浩,吴峻,常文森.新型电磁弹射器的动态性能仿真.系统仿真学报,2006(8):2285-2288.[50]李梅武,魏建中,薛飞.一种航母电磁飞机弹射系统研究.舰船科学技术,2007(S1):33-35.[51]冯尚明,杨波.用于电磁飞机弹射系统的直线电机设计综述.舰船科学技术,2008(3):36-41.[52]赵宏涛,吴峻.利用超级电容供电的电磁弹射器研究.微特电机,2009(2):1-3.[53]王福金,姚智慧.舰载机的电磁弹射器研究.哈尔滨理工大学学报,2009,14(6):106-110.[54]谭生.航空母舰蒸汽弹射器:中国,CN101148200[P].2008-03-26.[55]廖志明.高效航母弹射器:中国,CN2866334[P].2007-02-07.[56]霍方华,霍宏岭.航空母舰舰载机蒸汽弹射器:中国,CN101100223[P].2008-01-09.[57]高俊臣.航空母舰蒸汽弹射器:中国,CN2855904[P].2007-01-10.[58]舰群.蒸汽弹射器揭秘.舰载武器,2008(12):71-74.[59] Wagner W, Cooper J R, et al. The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. Transactions of the ASME, 2000,122:150-182. [60] Erlangen, Germany. The International Association for the Properties of Water
    and Steam. Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam,1997.[61]孙淮清,王建中.流量测量节流装置设计手册.北京:化学工业出版社,2000.[62] Martin J J, Yu-Chun Hou. Development of an equation of state for gases. A.1.Ch.E. Journal,1955,1(2):142-151.[63]金志明.枪炮内弹道学.北京:北京理工大学出版社,2004.[64] Young J B. An Equation of Status for Steam for Turbomachinery and Other Flow Calculation. Journal of Engineering for Gas Turbines and Power, Transactions of ASME,1988,110(1):1-7. [65] Harten A. High Resolution Schemes for Hypersonic Conservation Laws. Journal of Computational Physics,1983,49(3):357-393. [66] Liou M S, Steffen C J. A new flux splitting scheme. Journal of Computational Physics,1991(10):23-39.[67]袁亚雄,张小兵.高温高压多相流体动力学基础.哈尔滨:哈尔滨工业大学出版社,2005.[68]翁春生,王浩.计算内弹道学.北京:国防工业出版社,2006.[69]张涵信,沈孟育.计算流体力学——差分方法的原理和应用.北京:国防工业出版社,2003.[70]杨冠华.基于激波管喷流实验的爆炸波研究.长沙:国防科技大学硕士论文,2002.[71] Kermani M J, Plett E G. Modified Entropy Correction Formula for the Roe Scheme. AIAA,2001,2001-0083:1-11. [72] Karimian S M H, Schneider G E. Application of a new control-volume-based finite-element formulation to the shock tube problem. AIAA,1994,94-0131:1-9. [73] Schneider G E. A control volume based finite element formulation of the compressible flow equations with application to the shock tube problem. AIAA, 1989,89-43180:1-9.[74]苗瑞生.发射气体动力学.北京:国防工业出版社,2006.[75]沈维道,蒋智敏,章钧耕.工程热力学(第三版).北京:高等教育出版社,2001.[76] Moore M J, Sieverding C H. Two-Phase Steam Flow in Turbines and Separators. Hemisphere Publishing Corporation,1976. [77] Daiguji H, Ishazaki K, Ikohagi T. A High-Resolution Numerical Method for Transonic Non-equilibrium Condensation Flows through a Steam Turbine Cascade. In Proceedings of the 6th International Symposium on Computational
    Fluid Dynamics,1995,1:479-484. [78] Young J B. Two-Dimensional, Non-equilibrium, Wet-Steam Calculations for Nozzles and Turbine Cascades. Journal of Turbomachinery,1992,114:569-579. [79] Mccallum M, Hunt R. The flow of wet steam in a one-dimensional nozzle. International Journal for Numerical Engineering,1999,44:1808-1821. [80] Young J B. The Spontaneous Condensation of Steam in Supersonic Nozzles. Physico Chemical Hydrodynamics,1982,3(2):57-82.[81]杨勇,沈胜强,孔泰佑.水蒸气超音速流动中自发凝结现象的数值模拟.工程热物理学报,2008,29(8):1393-1396.[82]李亮.存在自发凝结的湿蒸汽两相非平衡凝结流动数值研究.中国学位论文全文数据库,2002.[83]郁伟,朱斌,张小兵.耦合内弹道过程的膛口流场数值模拟与分析.南京理工大学学报(自然科学版),2009,33(3):335-343.[84]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001.[85]于勇主编.Fluent入门与进阶教程.北京:北京理工大学出版社,2010.[86]温正,石良辰,任毅如.Fluent流体计算应用教程.北京:清华大学出版社,2009.[87]朱宽仁,张静.阶跃式供汽对锅炉及运行状况影响的研究.热能动力工程,1996,1 1(S1):72-77.[88]赵宝昌.关于火药能量概念的探讨.火炸药学报,1995(4):1 5-1 8.[89]林宗虎,汪军,李瑞阳,催国民.强化传热技术.北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700