用户名: 密码: 验证码:
基于代谢分析和计算流体力学的头孢菌素C发酵过程优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
头孢菌素C(Cephalosporin C,CPC)是头孢类药物的中间体,由顶头孢霉菌通过发酵法生产制得。采用化学法或酶法对CPC分子进行修饰,可以得到一些高效、低毒、广谱的β-内酰胺类抗生素药物,在临床抗感染药物中占有重要地位。CPC发酵在我国起步较早,但目前CPC发酵生产工艺仍存在一些问题。比如,生产性能严重依赖专家和熟练工人的知识与经验,主要杂质去乙酰氧头孢菌素(Deacetoxycephalosporin C, DAOC)积累量高,发酵过程耗氧剧烈、溶解氧浓度(DO)不易控制,原料和操作成本居高不下,等等。本论文对利用顶头孢霉菌(Cephalosporins acremonium HC-3)发酵生产CPC过程的最优底物流加工艺、发酵罐最优桨型组合以及混合碳源发酵生产CPC工艺进行了研究,探讨和比较了不同碳源、氮源自动流加方式和不同桨型组合对CPC发酵性能的影响,并对不同的豆油和混合碳源自动流加方式下的CPC发酵进行了代谢分析,分析得到了最优碳源自动流加条件下CPC发酵得以高效进行的原因。论文主要结果如下:
     (1)建立了一种新型、硫铵-豆油耦联型的硫铵自动补加策略。结果表明,通过这种新型硫铵流加策略,可将发酵液中的氨态氮(NH4+-N)浓度控制在3-5g/L的范围,既满足了细胞生长与CPC合成对氮源和硫源的需求,又促进了顶头孢霉菌的菌丝分化,为主酵期CPC的高效生产奠定了前期基础。
     (2)在新型硫铵-豆油耦联型的硫铵流加策略的基础上,比较了CPC主酵期内使用间歇、匀速和DO-Stat法进行豆油自动流加条件下的CPC发酵性能。采用硫铵-豆油耦联型硫铵流加策略+后期通富氧空气的DO-Stat法进行硫铵和豆油补料,可使CPC发酵以高浓度和低副产物积累的方式进行,最终CPC浓度和得率分别达到35.77g/L和13.3%。主代谢副产物DAOC的积累量和DAOC/CPC比分别仅有0.178g/L和0.5%。
     (3)利用CFD计算技术对适合于CPC生产的发酵罐的桨叶个数和桨型组合进行了模拟计算和优化。顶头孢霉菌发酵生产CPC是高耗氧的过程,搅拌发酵罐的桨叶个数和桨型组合直接影响发酵液中的O2传质和混合效果。与此同时,顶头孢霉菌对剪切力反应敏感,剪切力过大可造成细胞不可逆转的损伤、导致菌丝体提前断裂,对细胞生长和CPC合成产生负面影响。通过模拟计算寻找得到了适合于CPC合成的最优桨型组合、桨叶个数和安装尺寸:桨叶个数2,下层6直叶圆盘涡轮桨/上层4折叶桨,底层桨叶距罐底距离57mm,桨叶间距97mm。对不同桨叶个数/组合下的发酵性能进行了实验验证,结果表明,采用上述最优桨型组合进行CPC发酵,其整体发酵性能得到提高。与使用标准桨型组合相比,CPC浓度提高了52%、代谢副产物DAOC积累量降低了71%。
     (4)利用DO-Stat法同时自动流加葡萄糖和豆油进行CPC生产时,葡萄糖浓度可以控制在很低的水平,因葡萄糖过量所引起的CPC合成抑制不会发生。使用葡萄糖作为辅助碳源,葡萄糖可以被细胞快速利用、维持或提高细胞的代谢活性;可以间接地改善发酵液主体内的O2传质速度、消除了单独流加豆油时DO控制的“平台”效应、提高了豆油的流加速度,使得CPC合成速度得到进一步改善。在采用该新型混合碳源流加策略、标准搅拌桨型、全程通空气供氧的条件下,CPC浓度最大可以达到36.99g/L,与单独流加豆油相比、CPC对相对昂贵的底物-豆油的得率从11.39%提高到25.14%,代谢副产物去乙酰氧头孢菌素C (DAOC)的积累量少、DAOC/CPC比只有0.28%,达到工业生产要求。使用新型混合碳源流加策略,可以调节碳源物质的流向、提高走向CPC合成途径的碳通量,在维持较高CPC生产强度的前提下,大幅提高CPC得率,抑制代谢副产物的积累、改善CPC发酵产品的质量。
     (5)对CPC主酵期不同豆油流加方式下的CPC发酵进行了代谢分析。结果发现,采用DO-Stat法补加豆油,可以使更多的碳源物质流向CPC的合成前体,菌体可高效利用初始培养基中的蛋氨酸,TCA循环的代谢通量适度弱化。在此条件下,CO2的释放量减少,CPC得率得到提高。
     (6)在50L发酵罐上验证了一种新型匀速+DO-Stat结合补油法,该方法同时汲取了匀速补油和DO-Stat法补油的优点,既提高了豆油流加速度和CPC合成速度,又可以将DO稳定地控制在20%-40%之间。与石药集团中诺药业有限公司原有补料工艺相比,豆油转化率得到提高,主要代谢副产物积累量明显下降、DAOC/CPC比仅为0.46%,达到工业生产要求。
Cephalosporin C (CPC) is an important intermediate for producing the widely used β-lactamantibiotics, and Cephalosporins are fermentatively produced by several Streptomyces spp. andfilamentous fungi. The semi-synthetic derivatives of CPC are less toxic, high stability onβ-lactamase and broad-spectrum antibiotics. Even though the history of CPC fermentativeproduction in China is relatively long, a lot of practical problems still remained unsolved inindustrial CPC productions, such as fermentation performance/stability dependence onknowledge/experience of expert/skilled operators, high accumulation of the majorby-metabolite of deacetoxycephalosporin (DAOC), difficulty in controlling dissolved oxygenconcentration (DO) control due to the extensively high oxygen consumption, high costs ofraw materials and operations, etc. Focusing on CPC fermentations by Cephalosporinsacremonium HC-3, this thesis investigated the optimal substrates feeding strategies, theoptimal impeller combinations in a stirred bioreactor for CPC production, and CPCfermentation techniques of co-feeding mixed carbon sources. The effects of various automaticfeeding strategies of carbon/nitrogen sources and impeller combinations on CPC fermentationperformance were explored and compared. Metabolic analysis under different feedingmanners of soybean and mixed carbon sources was also conducted to find out the reasons ofenhanced CPC fermentation performance achieved under the optimal feeding conditions. Themajor results of this dissertation were summarized as follows:
     (1) A novel and automatic (NH_4)_2SO_4feeding strategy which coupled (NH_4)_2SO_4supplementwith soybean oil addition was proposed. The results indicated that the (NH_4)_2SO_4-soybeanoil coupled feeding strategy (mass ratio of soybean oil versus (NH_4)_2SO_4about1:0.17)could control NH4+-N concentration in a range of3-5g/L throughout the fermentations,which satisfied the requirements of cell growth/CPC synthesis on N-/S-sources andaccelerated mycelia differentiation. This strategy laid a platform or prerequisite forefficient CPC production during its major production phase.
     (2) On the basis of the proposed (NH_4)_2SO_4-soybean oil coupled feeding strategy, CPCfermentations during the major CPC production phase using different soybean oil feedingmethods including intermittent, constant rate and DO-Stat based feeding were conductedand their performance was compared. The method of adopting DO-Stat for soybean oilfeeding with oxygen-enriched-air for aeration could conduct CPC fermentations in a wayof higher CPC but lower DAOC accumulation. In this case, final CPC concentration andCPC yield reached the levels of35.77g/L and13.3%, respectively. DAOC accumulationand DAOC/CPC ratio ended at lower levels of0.178g/L and0.5%, respectively.
     (3) CFD calculation technique was used for simulation and optimization of the suitableimpeller numbers and combinations for CPC production. CPC fermentation is anextremely high oxygen consuming process, the impeller numbers/combinations directlyaffects oxygen mass transfer/mixng effects in the broth. C.acremonium is sensitive toshear rate. Extrassively high shear rate causes irreservable damage on cells and mycelia breakage at improper/early stage, and severely deteriorates cell growth/CPC synthesis.The optimal impeller combination/numbers/mounting positions for CPC fermentationwere determined on the basis of CFD simulation/calculation results, which were impellernumber of2; impeller combination of a bottem six-bladed turbine plus a upperfour-pitched-blade turbine; mounting distance of the bottom turbine and tank bottom of57mm; and mounting distance of the two turbines of97mm. The optimal impellers wereapplied for CPC fermentation experiments for verification. The experimental resultsindicated that the entire fermentation performance was largely enhanced when adoptingthe optimized impellers, CPC concentration increased by52%and DAOC accumulationdecreased by71%as compared with those of using the standard impellers.
     (4) When automatically feeding mixed carbon sources consisting of soybean oil and glucose,glucose concentration could be controlled at very low level and CPC synthesis repressiondue to excessive glucosed did not occur. When using glucose as an assistant carbon source,cellular activity could be maintained or even enhanced as glucose was quickly utilized bythe cells; soybean oil feeding and CPC synthesis rates were increased as O2mass transferrate in broth was indirectly improved and “platform” effect in DO control was eliminated.Under the conditions of adopting the novel mixed carbon sources feeding strategy andstandard impellers, aerating air for oxygen supply throughout the fermentation, maximalCPC concentration reached a higher level of36.99g/L; CPC yield on expensive soybeanoil increased up to25.14%; DAOC/CPC ratio stayed at very low level of0.28%qualifying industrial standard. With the new mixed carbon sources feeding strategy,carbon fluxes towards to CPC synthesis route was improved; CPC yield was significantlyenhanced; accumulation of by-metabolite was largely relieved; and quality of the CPCproduct was ensured, while CPC productivity was maintained at compabably high level.
     (5) During CPC major production phase, metabolic analysis under various soybean oilfeeding conditions was conducted. The results revealed that, when using DO-Stat basedfeeding method for supplementing soybean oil, more carbon fluxes could be directed intothe formation of CPC synthesis precursors; extracellular methionine could be directlyutilized to run the entire CPC biosynthesis in a more efficient way; carbon fluxesdistribution in TCA could be slightly weakened. Under this condition, CO2releasedecreased and CPC yield increased.
     (6) A novel soybean oil feeding strategy, namely, a combined strategy of constant rate feeding+DO-Stat feeding which absorbed the advantages of both was proposed and conducted in50L scaled-up fermentors. This strategy increased rates of soybean oil feeding and CPCsynthesis, and stably controlled DO in a range of20%-40%. In this case, CPC yieldsignificantly increased, DAOC accumulation decreased, and DAOC/CPC ratio reduced toa lower level of0.46%qualifying the industrial standard, as compared with the results ofusing the original feeding method.
引文
1Nagy M A, Emri T, Fekete E, et al. Glutathione metabolism of Acremoniumchrysogenum in relation of cephalosporin C production:is γ-Glutamyltransferasein the center?[J]. Folia Microbiol,2003,48(2):149-155.
    2牛维兵,许朴勤,王静点,等.头孢菌素C的分离研究进展[J].河北化工,2007,30(10):38-39.
    3方向群,刘又宁.第四代头孢菌素及其临床应用前景[J].中华结核和呼吸杂志,1998,21(5):263-264.
    4蔡仲曦,于荣富.我国头孢菌素类抗生素之原料药与中间体现状与发展趋势[J].精细与专用化学品,2003,2:7-10.
    5陈福群.头孢菌素类药品的进展[J].中国药业,1999,8(8):61-62.
    6Schmitt E K, Hoff B, Kuck U, Regulation of cephalosporin biosynthesis[J]. AdvBiochem Eng Biotechnol,2004,88:1-43.
    7Tollnick C, Seidel G, Beyer M, Schugerl K, Investigations of the production ofcephalosporin C by Acremonium chrysogenum[J]. Adv Biochem Eng Biotechnol,2004,86:1-45.
    8Newton G G F, Abraham E P. Cephalosporin C, a new antibiotic containingsulphur and D-α-aminoadipic acid[J]. Nature,1955,175(4456):548.
    9Abraham E P, Newton G G F. The Structure of Cephalosprin C[J]. Biochem J,1961,79:377-393.
    10Vinh H, Baker S, Cambell J, et al. Rapid emergence of third generationcephalosporin resistant Shigella spp. in Southern Vietnam[J]. J Med Microbiol,2009,58(2),281-283.
    11Nash C H, Huber F M. Antibiotic synthesis and morphological differentiation ofCephalosporium acremonium[J]. Appl Microbiol,1971,22(1):6-10.
    12Matsumura M, Imanaka T, Yoshida T, et al. Morphological differentiation inrelation to cephalosporin C synthesis by Cephalosporium acremonium[J].Ferment Technol,1980,58(3):197-204.
    13Bayer T, Herold T, Hiddessen R, et al. On-line monitoring of media componentsduring the production of cephalosporin C[J]. Anal Chim Acta,1986,190:213-219.
    14史仲平,潘丰.发酵过程解析、控制与检测技术(第2版)[M].北京:化学工业出版社,2010.
    15王树青,望英元.生化过程自动化技术[M].北京:化工出版社,1999.
    16Shi Z, Shimizu K. Neuro-fuzzy control of bioreactor systems with patternrecognition[J]. J Biosci Bioeng,1992:39-45.
    17Lenas P, Kitade T, Watanabe H, et al. Adaptive fuzzy control of nutrientsconcentration in fed-batch culture of mammalian cells[J]. Cytotechnology,1997,25:9-15.
    18Nakajima M, von Numers C, Yada H, et al. An on-line advisory control systemfor the lactic acid fermentation process[J]. Appl Microbiol Biotechnol,2002,42:204-211.
    19Ilkova T, Tzonkov S. Optimal control of a fed-batch process by neuro-dynamicprogramming[J]. Bioautomation,2004,1:57-66.
    20Zhang W, Bevins M A, Plantz B A, et al. Modeling Pichia pastoris growth onmethanol and optimizing the production of a recombinant protein, theheavy-chain fragment C of Botulinum neurotoxin serotype A[J]. BiotechnolBioeng,2000,70:1-8.
    21im ík M, Mota A, Ruzicka M C, et al. CFD simulation and experimentalmeasurement of gas holdup and liquid interstitial velocity in internal loop airliftreactor[J]. Chem Eng J,2011,66:3268-3279.
    22Wei X L, Ren J, Meng X R. Simulation and experiment study of flow field anddynamic performance in stirred reactor[J]. Challenges of Power Engineeringand Environment,2007,16:1408-1413.
    23于亚辉.双层交错桨搅拌槽层流流场的数值模拟与实验研[D]:硕士学位论文.秦皇岛:燕山大学机械工程学院,2010.
    24周雪漪.计算水力学.北京:清华大学出版社,1995.
    25陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001.
    26郭鸿志.传输过程数值模拟.北京:冶金工业出版社,1998.
    27Wang X, Ding J, Guo W Q, et al. A hydrodynamics-reaction kinetics coupledmodel for evaluation bioreactors derived from CFD simulation[J]. BioresourTechnol,2010,101:9749-9757.
    28Harvey P S, Greaves M. Turbulent Flow in an Agitated Vessel: Part I. PredictiveModel[J]. Transactions of Institution of Chemical Engineers,1982,60:195-200.
    29Harvey P S, Greaves M. Turbulent Flow in an Agitated Vessel: Part II. NumericalSolution and Model Prediction[J]. Transactions of Institution of ChemicalEngineers,1982,60:201-210.
    30Brucato A, Ciofalo M, Grisafi F, et al. Numerical prediction of flow fields inbaffled stirred vessels:A comparision of alternative modeling approaches[J].Chem Eng Sci,1998,53(21):3653-3684.
    31Ahoda M, Tomá ková L, Mo t k M. CFD prediction of liquid homogenisation ina gas-liquid stirred tank[J]. Chem Eng Res Des,2009,87:460-467.
    32Mousavi S M, Shojaosadati S A, Golestani J, et al. CFD simulation andoptimization of effective parameters for biomass production in a horizontaltubular loop bioreactor[J]. Chem Eng Prog: Process Intensification,2010,49:1249-1258.
    33Packer H L, Thomas C R. Morphological measurements on filamentousmicroorganisms by fully automatic image analysis[J]. BiotechnolBioeng,1990,35:870-881.
    34Kim J H, Lim J S, Kim C H, Kim S W, Morphology and kinetics studies oncephalosporin C production by Cephalosporium acremonium M25in a30-lbioreactor using a mixture of inocula[J]. Lett Appl Microbiol,2005,40:307-311.
    35Martin-Zanca D M, Martin J F. Carbon catabolite regulation of the conversion ofpenicillin N into cephalosporin C[J]. J Antibiot,1983,36(6):700-708.
    36Kim N R, Lim J S, Hong S I, et al. Optimization of feed conditions in a2.5-lfed-batch culture using rice oil to improve cephalosporin C production byCephalosporium acremonium M25[J]. World J Microbiol Biotechnol,2005,21(5):787-789.
    37Huber F M, Tietz A J. Defined media strategies for the biosynthesis ofcephalosporin C[J]. Biotechnol Lett,1983,5(6):385-390.
    38Pan C H, Speth S V, McKillip E, Nash C H-III, Methyl oleate-based fermentationmedium for cephalosporin C production[J]. Developments in Ind Microbiol,1982,23:315-324.
    39Ortiz S C A, Hokka C O, Badino A C. Utilization of soybean derivatives onclavulanic acid production by Streptomyces clavuligerus[J]. Enzyme MicrobTech,2007,40(5):1071-1077.
    40Hsieh C Y, Liu C J, Tseng M H, et al. Effect of olive oil on the production ofmycelial biomass and polysaccharides of Grifola frondosa under high oxygenconcentration aeration[J]. Enzyme Microb Tech,2006,39(3):434-439.
    41Ono H, Nozaki Y, Harada S. Cephalosporins and their production: U.S. Patent4,587,333[P].1986-5-6.
    42Karaffa L, Sandor E, Kozma J, et al. The role of the alternative respiratorypathway in the stimulation of cephalosporin C formation by soybean oil inAcremonium chrysogenum[J]. Appl Microbiol Biotechnol,1999,51:633-638.
    43Shen Y Q, Heim J, Solomon N A, et al. Repression of beta-lactam production inCephalosporium acremonium by nitrogen sources[J]. J Antibiot,1982,37:59-13.
    44Zhang J Y, Wolfe S, Demain A L, Effect of ammonium as nitrogen source onproduction of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase byCephalosporium acremonium C-10[J]. J Antibiot,1987,40:1746-1750.
    45Quneener S W, Sarah W, Donald S, et al. Cephalosporin C fermentation:biochemical and regulatory aspects of sulfur metabolism[J]. Drug Pharm Sci,1984,22:141-170.
    46Demain A L. Pharmaceutically active secondary metabolites ofmicroorganisms[J]. Appl Microbiol Biotechnol,1999,52:455-463.
    47Kurane R, Takeda K, Suzuki T. Screening for and characteristics of microbialflocculants [J]. Agric Biol Chem,1986,50(9):2301-2307.
    48Stephen W D, Arnold L D. Methionine control of cephalosporin C formation[J].Biotechnol Bioeng,1973,15(4):743-754.
    49Velasco J, Gutierrez S, Fernandez F J, et al. Exogenous Methionine increaseslevels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encodingenzymes of the cephalosporin biosynthetic pathway in Acremoniumchrysogenum[J]. J Bacteriol,1994,176(4):985-991.
    50Feren C J, Squires R W. The relationship between critical oxygen level andantibiotic synthesis of capreomycin and cephalosporin C[J]. Biotechnol Bioeng,1969,11(4):583-592.
    51Mishra P, Srivastava P, Kundu S. A comparative evaluation of oxygen masstransfer and broth viscosity using Cephalosporin-C production as a casestrategy[J]. World J Microbiol Biotechnol,2005,21(4):525-530.
    52Khosla C, Baily J E. The Vitreoscilla hemoglobin gene: Molecular cloning,nucleotide sequence and genetic expression in Escherichia coil[J]. Mol GenGenet,1988,214:158-161.
    53DeModena J A, Gutiérrez S, Velasco J, et al. The Production of Cephalosporin Cby Acremoniurn chrysogenum is Improved by the Intracellular Expression of aBacterial Hemoglobin[J]. Nature Biotechnoiogy,1993,11:926-929.
    54Hilgendorf P, Heiser V, Diekmann H, et al. Constant dissolved oxygenconcentrations in cephalosporin C fermentation: Applicability of differentcontrollers and effect on fermentation parameters[J]. Appl MicrobiolBiotechnol,1987,27:247-251.
    55Zhou W, Holzhauer-Rieger K, Dors M, et al. Influence of dissolved oxygenconcentration on the biosynthesis of cephalosporin C[J]. Enzyme MicrobTechnol,1992,14:848-854.
    56Basch J, Chiang S J D. Genetic engineering approach to reduce undesirableby-products in cephalosporin C fermentation[J]. J Ind Microbiol Biot.1998,20:344-353.
    57Demain A L. Biosynthesis of cephalosperins “Developments in IndustrialMicrobiology”[J]. Ed G pierce,1987,01(27):175.
    58Gutiérrez S, Díez B, Montenegro E, et al. Characterization of theCephalosporium acremonium pcbAB gene encodingalpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptidesynthetase: linkage to the pcbC gene as a cluster of early cephaiosporinbiosynthetic genes and evidence of multiple functional domains[J]. J Bacteriol,1991,173(7):2354-2365.
    59Martín J F, Ullán R V, Casqueiro J. Novel genes involved in cephalosporinbiosynthesis: the three-component isopenicillin N epimerase system[J]. AdvBiochem Eng Biotechnol,2004,88:91-109
    60Gutiérrez S, Velasco J, Fernandez F J, et al. The cefG gene of Cephalosporiumacremonium is linked to the cef-EF gene and encodes a deacetylcephalosporin Cacetyl-transferase closely related to homoserine O-acetyltransferase[J]. JBacteriol,1992,l74(9):3056-3064.
    61Behmer C J, Demain A L. Further studies on carbon catabolite regulation ofβ-lacatm antibiotic synthesis in Cephalosporium acremonium[J]. Curr Microbiol,1983,8:107-114.
    62Guo Y X, Li J S, Chu J, et al. Preliminary study on the effect of soybean oil oncephalosporin C fermentation[J]. Chin J Antibiot,2010,10:9-9.
    63Chiruvolu V, Eskridge K M, Cregg J M, et al. Effects of glycerol concentrationand pH on growth of recombinant Pichia pastoris[J]. Appl Biochem Biotechnol,1998,75:163-173.
    64桑美纳.不同补料控制方式下发酵生产头孢菌素C的性能比较研究[D]:硕士学位论文.江南大学,2012.
    65Wu Z F, Du G C, Chen J. Effects of dissolved oxygen concentration and DO-Statfeeding strategy on CoQ10production with Rhizobium radiobacter[J]. World JMicrobiol Biotechnol,2003,19:925-928.
    66张嗣良,储炬.多尺度微生物过程优化[M].北京:化学工业出版社,2003.293-295.
    67Jones A M, Porter M A. Vegetable oils in fermentation: beneficial effects oflow-level supplementation[J]. J Ind Microbiol Biotechnol,1998,21:203-207.
    68郭元昕,李景森,储炬等.豆油对头孢菌素C发酵影响的初步研究[J].中国抗生素杂志,2010,35(10):747-750,
    69Brakhage A A, Spr te P, Al-Abdallah Q, et al. Regulation of penicillinbiosynthesis in filamentous fungi[J]. Adv Biochem Eng Biotechnol,2004,88:45-90.
    70Duan S, Yuan G, Zhao Y, et al. Enhanced cephalosporin C production with acombinational ammonium sulfate and DO-Stat based soybean oil feedingstrategy[J]. Biochem Eng J,2012,61:1-10.
    71Shin H Y, Lee J Y, Suk H, et al. Production of Cephalosporin C using glycerol infed-batch culture of Acremonium chrysogenum M35[J]. J Microbiol,2011,49(5):753-758.
    72Shuvalova I A, Bartoshevich I E. Regulation of alkaline exoprotease andcephalosporin C synthesis in Acremonium chrysogenum by different carbon andnitrogen sources][J]. Antibiotiki,1981,26(3):83-86.
    73Aharonowitz Y, Demain A L. Nitrogen nutrition and regulation of cephalosporinproduction in Streptomyces clavuligerus[J]. Can J Microbiol,1979,25(1):61-67.
    74Jekosch K, Kück U. Glucose dependent transcriptional expression of the cre1gene in Acremonium chrysogenum strains showing different levels ofcephalosporin C production [J]. Curr Gene,2000,37(6):388-395.
    75Cruz A J G, Silva A S, Araujo M, et al. Modelling and optimization of thecephalosporin C production bioprocess in a fed-batch bioreactor with invert sugaras substrate[J]. Chem Eng Sci,1999,54(15):3137-3142.
    76Karaffa L, Sándor E, Kozma J, et al. Cephalosporin-C production, morphologyand alternative respiration of Acremonium chrysogenum in glucose-limitedchemostat[J]. Biotechnol Lett,1996,18(6):701-706.
    77Demain A L, Elander R P. The β-lactam antibiotics: past, present, and future[J].Antonie Van Leeuwenhoek,1999,75(1-2):5-19.
    78Queener S W. Molecular biology of penicillin and cephalosporin biosynthesis[J].Antimicrob Agents Chemother,1990,34(6):943.
    79Kim J C, Song Y S, Lee D H, et al. Fatty acids reduce the tensile strength offungal hyphae during cephalosporin C production in Acremoniumchrysogenum[J]. Biotechnol Lett,2007,29:51-55.
    80程绍杰.搅拌式生物反应器的模拟、优化设计与放大研究[D]:硕士学位论文.大连:大连理工大学流体机械及工程专业,2009.
    81刘心洪.搅拌槽内湍流特性的试验研究[D].博士学位论文.北京:北京化工大学,2010.
    82夏建业.搅拌生物反应器流场模拟研究及其在发酵过程优化与放大中的应用[D].博士学位论文.上海:华东理工大学,2008.
    83苗一,潘家祯,张国娟等.双层涡轮桨搅拌槽内混合过程的数值模拟[J].华东理工大学学报(自然科学版),2006,32(3):352-356.
    84DeBertodano M L. Two fluid models for two-phase turbulent jets[J]. Nucl EngDes,1998,179(1):65-74.
    85夏建业,张嗣良,储炬等.新型离心式搅拌生物反应器的CFD模拟[C].发酵工程学科的进展——第四次全国发酵工程学术讨论会论文集.266-270.
    86曹晓畅,张延安,赵秋月等.基于FLUENT软件的管式搅拌反应器流场的数值模拟[J].过程工程学报,2008,8(增刊1):98-100.
    87倪伟佳.不同搅拌桨叶组合条件下的CFD数值模拟及头孢菌素C发酵性能比较[D]:硕士学位论文.无锡:江南大学,2012.
    88周力行.湍流两相流动与燃烧的数值模拟[M].北京:科学出版社,1991.
    89Ranade V V, Perrard M, Le sauze N, et al. Trailing vortices of Rushton turbine:PIV measurements and CFD simulation with snapshot approach[J]. Transactionsof Institution of Chemical Engineers,2001,79a:3-12.
    90Montante G, Magelli F. Liquid homogenization characteristics in vessels stirredwith multiple rushton turbines mounted at different spacings: CFD study andcomparison with experimental data[J]. Chem Eng Re Des,2004,82(A9):1179-1187.
    91马青山,王英琛,施力田.多层搅拌桨流动场的测量与数值模拟[J].化工学报,2003,54(12):1661-1666.
    92Ranade V V, Bourne J R. Fluid mechanics and blending in agitated tanks[J].Chem Eng Sci,1991,46(8):1883-1893.
    93Sommerfeld M, Decker S. State of the art and future trends in CFD simulation ofstirred vessel hydrodynamics[J]. Chem Eng Technol,2004,27(3):215-224.
    94Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence.Academic Press, London,1972.
    95Jaworski Z, Bujalski W, Otomo N, et al. CFD Study of homogenization with dualrushton turbines—Comparison with experimental results: Part I: Initial Studies[J].Chem Eng Res Des,2000,78(3):327-333.
    96Gutiérrez S, Fierro F, Casqueiro J, et al. Gene organization and plasticity of theβ-lactam genes in different filamentous fungi[J]. Antonie Van Leeuwenhoek,1999,75(1-2):81-94.
    97薛雨,陈宇瑛.头孢类抗生素的最新研究进展[J].中国抗生素杂志,2011,36(2):86-90.
    98Kim H J, Lim J S, Woo S. The Improvement of Cephalosporin C Production byFed-batch Culture of Cephalosporium acremonium M25Using Rice Oil[J].Biotechnol Bioprocess Eng,2004,9(6):459-464.
    99Ramos F R, López-Nieto M J, Martín J F. Coordinate increase of isopenicillin Nsynthetase, isopenicillin N epimerase and deacetoxycephalosporin C synthetasein a high cephalosporin-producing mutant of Acremonium chrysogenum andsimultaneous loss of the three enzymes in a non-producing mutant[J]. MicrobiolLett,1986,35(2):123-127.
    100Basak S,Velayudhan A,Ladisch M R. Simulation of diauxic production ofcephalosporin C by Cephalosporium acremonium: Leg model for fed-batchfermentation[J]. Biotechnol Prog,1995,11(6):626-631.
    101Chu W B Z, Constantinides A. Modeling, optimization and computer control ofthe cephalosporin C femmentation process[J]. Biotechnol Bioeng,1988,32(3):277-288.
    102Brakhage A A. Molecular regulation of β-Lactam biosynthesis in filamentousfungi[J]. Microbiol Mol Bioly R,1998,62(3):547-585.
    103Ott J L, Godzeski C W, Pavey D, et al. Biosynthesis of Cephalosporin C I.Factors affecting the fermentation[J]. Appl Microbiol,1962,10(6):515-523.
    104Bailey J E. Toward a science of metabolic engineering[J]. Science,1991,252:1668-1674.
    105Nielsen J.2001. Metabolic engineering[J]. Appl Micobiol Biotech,55:263-283.
    106张星元.发酵原理[M].北京:科学出版社,2005.
    107储炬,李友荣.现代工业发酵调控学[M].北京:化学工业出版社,2002.
    108李寅.微生物过量合成丙酮酸及代谢网络分析[D].博士学位论文.江南大学,2000.
    109严群.聚羟基烷酸酯的生物合成和食品废物厌氧酸化的耦合研究[D].博士学位论文.江南大学,2003.
    110Schulze U, Nissen T L, Nilsen J, et al. Application of metabolic flux analysis inphysiological studies. In:5th world congress of chemical engineering, SanDiego, USA,1996,2:663-670.
    111Bonarius H P J, Timmerarends B. Metabolic flux distributions inCorynebacterium glutamicum during growth and lysine overproduction[J].Biotechnol Bioeng,1996,50:299-305.
    112李寅,曹竹安.微生物代谢工程:绘制细胞工厂的蓝图[J].化工学报.2004,55(10):1573-1580.
    113Henriksen C M, Christensen L H, Nielsen J, et al. Growth energetic andmetabolic fluxes in continuous cultures of Penicillium chrysogenum[J].Biotechnol,1996,45:149-164.
    114Nasution U, Gulik W M V, Ras C, et al. A metabolome study of the steady-staterelation between central metabolism, amino acid biosynthesis and penicillinproduction in Penicillium chrysogenum[J]. Meta Eng,2008,10(1):10-23.
    115惠(Hui,Y.H).贝雷系列:油脂化学与工艺学[M].徐生庚等译.北京:中国轻工业出版社,第5版.2004,514-520.
    116Li J H, YangY Y, Chu J, et al. Quantitative metabolic flux analysis revealeduneconomical utilization of ATP and NADPH in Acremonium chrysogenum fedwith soybean oil [J]. Bioprocess Biosyst Eng,2010,33:119-130.
    117Hong S, Ryu J H, Song B J, et al. Interaction of α-ketoglutarate dehydrogenasecomplex with allosteric regulators detected by a fluorescence probe,1,1’-bi(4-aniline) naphthalene-5,5’-disulfonic acid, an inhibitor of catalytic activity [J].J Biochem Mol Biol,1996,29:230-235.
    118赵成建,张定丰,金志华.利福霉素B发酵放大Ⅰ.从摇瓶到15L发酵罐的发酵放大[J].中国抗生素杂志,2002,27(7):398-400.
    119金志华.抗生素发酵的若干微生物及工程问题研究[D].浙江:浙江大学,2001.
    120Oldshue J Y. Fermentation mixing scale-up techniques[J]. Biotechnol Bioeng,1966,8(1):3-24.
    121Schmidt F R. Optimization and scale up of industrial fermentation processes[J].Appl Microbiol Biotechnol,2005,68(4):425-435.
    122Thiry M, Cingolani D. Optimizing scale-up fermentation processes[J]. TRENDSBiotechnol,2002,20(3):103-105.
    123Sofer G K, Hagel L, Sofer G K, et al. Handbook of process chromatography: aguide to optimization, scale up, and validation[M]. London: Academic Press,1997.
    124Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate inmicrobial processes: an overview[J]. Biotechnol Adv,2009,27(2):153-176.
    125Shukla V B, Parasu Veera U, Kulkarni P R, et al. Scale-up of biotransformationprocess in stirred tank reactor using dual impeller bioreactor[J]. Biochem Eng J,2001,8(1):19-29.
    126张嗣良,储炬,庄英萍,等.鸟苷发酵过程的多尺度问题研究[J].生物加工过程,2004,2(3):23-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700