用户名: 密码: 验证码:
气体流场与组分对单室燃料电池微堆性能影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单室固体氧化物燃料电池(SC-SOFC)所具有的结构简单、无需密封等优点使其在便携式发电装置领域呈现出很好的应用前景,但是此前关于该领域的研究主要集中在对单电池的材料、结构和运行条件等方面,对于电池堆的研究比较少,且输出功率不高。本文通过理论模拟和实验验证相结合的方法,针对气体流场分布、供气方式以及气体组分等因素对SC-SOFC微堆性能的影响机制进行研究,创造性的提出了一种双路多点供气的电池微堆结构设计方案,显著提高了SC-SOFC微堆的输出电压和输出功率。
     由于SC-SOFC的阴极和阳极处于燃料和氧气的混合气氛下进行工作,气室内部的混合气体在电极附近的分布情况是影响电池输出性能的一个重要因素。本文对混合气体平行流经单电池的两个电极和分别垂直流经电池的阴极和阳极进行了研究,首先通过数值模拟分析了影响机制,继而进行了实验验证。理论模拟和实验验证的结果都表明,气流垂直流过阳极时存在阳极对阴极氧气的争夺,导致阴极的氧分压降低,尽管此时电池的实际温度较高,但电池的开路电压和输出性能却比其他两种结构更差。在此基础上,运用阳极与阴极的气体争夺机制,研究了由两个电池组成的阳极与阴极相对的微堆,数值模拟的结果证明电池间距是影响此种结构微堆输出性能的重要因素。电池间距越小,位于微堆中间位置的阴极表面氧分压越低;当电池间距较大、更靠近气室壁时,影响的是位于电池微堆外侧阴极的氧分压,间距越大,外侧阴极的氧分压越低。针对阳极部分氧化放热反应提高电池实际温度的现象,对具有阳极与阳极相对的微堆结构进行数值模拟,发现此时电池自发放热产生的高温区主要分布于两个电池之间的区域,并且整个区域内的温度均匀,有利于实现微堆的热自维持。
     对多个电池组成的微堆进行温度场和气体组分分布的数值模拟,发现传统的单一通气管供气方式很难保证微堆中每个单电池获得的反应气体组分均匀。为了使气流前端和后端的电池获得相同的气体比例和组分,减小气流前端电池对下游电池的影响,本文发明了一种采用分散通气口为SC-SOFC微堆中的每个单电池提供反应气体的多点供气新方法,通过与传统SC-SOFC流场沿管状气室流动的供气方式进行了对比,发现这种多点供气方式可以使电池微堆中的每个单电池达到较为一致的输出性能,从而使微堆的输出功率也高于采用传统SC-SOFC供气方式时的性能。
     考虑到电池阳极和阴极之间气体争夺的问题,提出了使用两个通气管同时给单电池的阴极和阳极提供相同比例的反应气体的方法,结果表明单电池的输出性能比传统的SC-SOFC提高了67%。继而在单路多点提供混合反应气的基础上,发明了双路多点供气的SC-SOFC微堆,并对几组不同构型的微堆进行研究。结果表明,平面嵌入式电池微堆的输出性能最佳,由两个有效面积为1.2cm~2的单电池组成的微堆输出功率可以达到1W,6个有效面积约为3.9cm~2单电池组成的SC-SOFC微堆模块最大功率达到8.18W,这种电池将来有望成为便携式的备用电源的核心部件。
     针对SC-SOFC采用碳氢化合物燃料时阳极可能存在的碳沉积问题以及金属Ni在燃料和氧气的混合气氛中的氧化还原现象,研究了CH_4和O_2的混合气体组分对SC-SOFC阳极的影响机制。用气体质谱分析仪研究了Ni/YSZ阳极对甲烷和氧气混合气体的催化性能,发现甲烷和氧气的比例(燃氧比R)为1时发生的反应以甲烷的完全氧化反应为主导,而燃氧比大于1时则以甲烷的部分氧化反应为主。在700°C进行5h短期测试,发现燃氧比为2.5时既没有明显积碳,也没有金属镍被氧化的现象,对于SC-SOFC的Ni/YSZ阳极是比较合理的气体比例。
SC-SOFC has received considerable attention for the portable applications due tothe sealing-free and simple gas management. However, current researches focusprimarily on the single cells. Studies of the SC-SOFC stack are also confined to the lowpower output. This paper provides a detailed study on the SC-SOFC stack essentialparameters, including the gas flow field distribution, gas supply method and gascomponent of SC-SOFC, by using the theoretical and experimental methods. ASC-SOFC stack with dual gas supply method is proposed for the first time.
     As the SC-SOFC worked in the fuel and air mixture, gas flow distribution is animportant factor limiting the cell performance. Numerical simulation and experimentalverification are studied with different gas flow distribution. Results showed that thepartial pressure of oxygen at the cathode side of the cell with gas flow direction facingthe anode was very low, which was caused by the catalytic reaction at the anode. Theperformance of the cells with gas flow direction facing the cathode and parallel to theelectrodes were nearly the same. Numerical simulation of the SC-SOFC stack wasstudied due to the gas competition between the anode and cathode. The cell distance ofan anode-facing-cathode two cell stack influences the performances of the cells.Numerical simulation showed that the partial pressure of oxygen and surface temperatureof the cathode facing the narrow gas path is influenced obviously with smaller spacing.While the oxygen partial pressure of the cathode on the outside is influenced with largerspacing. Numerical simulation of the two cell stack with anode-facing-anodeconfiguration was also studied. Results showed that the heat released by the exothermicreaction of the anodes is concentrated between the cells, which is propitious to achievethe thermally self-sustained of SC-SOFC stack.
     Numerical simulation showed that the performances of the cells of SC-SOFC microstack with traditional gas supply method are seriously limited by the uneven flowgeometry, where the downstream portion of the stack is exposed to by-products resultingfrom fuel oxidation in the upstream portion of the stack. In view of this problem, a novelgas supply method with multi-point gas vents in the gas tube is proposed in this paper.The traditional gas supply method was also investigated for comparison. Experimentalresults showed that the single cells could obtain a uniform open-circuit voltage andpower output by using the separated gas supply method. For the traditional gas supplymethod, the cell at the outlet position yielded inferior performance compared to that ofthe inlet cell. Finally, the stack operated with the multi-point gas supply methodproduced a higher power output than that operated with the traditional gas supplymethod.
     In view of the gas competition between the anode and cathode, dual gas supplymethod for anode and cathode by using multi-point gas transmission tubes is proposed.The performance of the cell with dual gas supply method was increased by67%than thatof the conventional SC-SOFC. As a result, several SC-SOFC micro-stacks with two gastubes were studied. The cells with an anode-facing-cathode configuration were connectedin serial by zigzag sliver sheets. The maximum power output are192,230and276mWat CH_4flow rate of50,70and100sccm, respectively. The performance of SC-SOFCmicro-stacks with congener-electrode-facing configuration was better than that of theanode-facing-cathode configuration stack. A two-cell SC-SOFC stack with cellsembedded in plane configuration demonstrated a maximum power output of1.04W atthe flow rate of260sccm CH_4and130sccm O_2. Finally, a scaled-up stack with six cellsin series generated an OCV of6.4V and a maximum power output of8.18W.
     Consider of carbon deposition and oxidation of Ni metal at the Ni/YSZ anode inCH_4/O_2gas mixture, influencing mechanism of CH_4/O_2gas component over Ni/YSZanode was studied by using gas mass spectrometer. Results showed that completeoxidation of CH_4was the main reaction with the CH_4/O_2ratio of1. Partial oxidationreaction of CH_4was the main reaction with higher CH_4/O_2ratio. Neither carbondeposition occurs nor nickel protoxide be observed at CH_4/O_2ratio of2.5at700°C,which is a reasonable proportion of CH_4and O_2for the Ni/YSZ anode of SC-SOFC.
引文
[1]李瑛,王林山.燃料电池[M].北京:冶金工业出版社,2000:2-5,48-51.
    [2]詹姆斯·拉米尼,安德鲁·迪克斯.燃料电池系统-原理·设计·应用[M].朱红译,衣宝廉校.北京:科学出版社,2005:18-48.
    [3]衣宝廉.燃料电池-原理·技术·应用[M].北京:化学工业出版社,2003:6-9.
    [4]李瑛,王林山.燃料电池[M].北京:冶金工业出版社,2000:6-20.
    [5]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004:1-24.
    [6]石井弘毅.燃料电池原理与应用[M].北京:科学出版社,2003:21-35.
    [7] Singhal S C. Solid oxide fuel cells for stationary, mobile, and military applications[J].Solid State Ionics,2002,152:405-410.
    [8] Heed B, Zhu B, Mellander B E. Proton conductivity in fuel cells with solid sulphateelectrolytes[J]. Solid State Ionics,1991,46:121-125.
    [9] Minh N. Ceramic Fuel Cells[J]. Journal of the American Ceramic Society,1993,76(3):563-588.
    [10] Singhal S C. Advances in Solid Oxide Fuel Cell Technology[J]. Solid State Ionics,2000,135:305-313.
    [11] Mclntosh S, Grote RJ. Direct Hydrocarbon Solid Oxide Fuel Cells[J]. ChemicalReviews,2004,104:4845-4865.
    [12] Badwal S P S. Materials for solid oxide fuel cells[J]. Materials Science Forum,1997,21:187-224.
    [13] Sar bo ga V, zdemir H, ksüz mer M A F. Cellulose templating method for thepreparation of La0.8Sr0.2Ga0.83Mg0.17O2.815(LSGM) solid oxide electrolyte[J].Journal of the European Ceramic Society,2013,33:1435-1446.
    [14] Anjaneya K C, Nayaka G P, Manjanna J, Govindaraj G, Ganesha K N. Preparationand characterization of Ce1-xGdxO2-δ(x=0.1-0.3) as solid electrolyte for intermediatetemperature SOFC [J]. Journal of Alloys and Compounds,2013,578:53-59.
    [15] Kahlaoui M, Inoubli A, Chefi S, Kouki A, Madani A, Chefi C. Electrochemical andstructural study of Ce0.8Sm0.2-xLaxO1.9electrolyte materials for SOFC[J]. CeramicsInternational,2013,39:6175-6182.
    [16] Paulo A N D, Nasani N, Horozov T S, Fagg D P. Non-aqueous stabilizedsuspensions of BaZr0.85Y0.15O3δproton conducting electrolyte powders for thinfilm preparation[J]. Journal of the European Ceramic Society,2013,33:1833-1840.
    [17] Yang Y C, Chang T H, Wu Y C, Wang S F. Porous Ni/8YSZ anode of SOFCfabricated by the plasma sprayed method[J]. International Journal of HydrogenEnergy,2012,37:13746-13754.
    [18] Spacil H S. Electrical Device Including Nickel-Con-Taining Stabilized ZirconiaElectrode[J]. Solid State Ionics,2008,132(8):261-265.
    [19] Zhang L, Gao J, Liu M, Xia C. Effect of impregnation of Sm-doped CeO2inNiO/YSZ anode substrate prepared by gelcasting for tubular solid oxide fuel cell[J].Journal of Alloys and Compounds,2009,482:168-172.
    [20] Gómez L, María T C, Jairo E, Rodrigo M. Manufacture of a non-stoichiometricLSM cathode SOFC material by aqueous tape casting[J]. Journal of the EuropeanCeramic Society,2013,33:1137-1143.
    [21] Egger A, Bucher E, Yang M, Sitte W. Comparison of oxygen exchange kinetics ofthe IT-SOFC cathode materials La0.5Sr0.5CoO3δand La0.6Sr0.4CoO3δ[J]. Solid StateIonics,2012,225:55-60.
    [22] Ghouse M, Al-Yousef Y, Al-Musa A, Al-Otaibi M F. Preparation ofLa0.6Sr0.4Co0.2Fe0.8O3nanoceramic cathode powders for solid oxide fuel cell (SOFC)application [J]. International Journal of Hydrogen Energy,2010,35:9411-9419.
    [23] Choi J, Park I, Lee H, Shin D. Effect of enhanced reaction area in double layeredBa0.5Sr0.5Co0.8Fe0.2O3–δcathode for intermediate temperature solid oxide fuelcells[J]. Solid State Ionics,2012,216:54-57.
    [24] Shiono M, Kobayashi K, Nguyen T L, Hosoda K, Kato T, Dokiya M. Effect of CeO2interlayer on ZrO2electrolyte/La(Sr)CoO3cathode for low-temperature SOFCs[J].Solid State Ionics,2004,170:1-7.
    [25] Matsuda M, Hosomi T, Murata K, Fukui T, Miyake M. Fabrication of bilayeredYSZ-SDC electrolyte film by electrophoretic deposition for reduced-temperatureoperating anode-supported SOFC[J]. Journal of Power Sources,2007,165:102-107.
    [26] Chan S H, Khor K A, Xia Z T. A complete polarization model of a solid oxide fuelcell and its sensitivity to the change of cell component thickness[J]. Journal ofPower Sources,2001,93:130-140.
    [27] Costamagna P, Honnegger K. Modeling of solid oxide heat exchanger integratedstacks and simulation at high fuel utilization[J]. Journal of the ElectrochemicalSociety,1998,145(11):3995-4007.
    [28]魏波,吕喆,黄喜强,刘志国,艾刚,苏文辉.单气室固体氧化物燃料电池的研究及新进展[J].电源技术,2006,30:243-246.
    [29]王康,邵宗平.单室固体氧化物燃料电池[J].化学进展,2007,19:267-275.
    [30] Yano M, Tomita A, Sano M, Hibino T. Recent Advances in Single-Chamber SolidOxide Fuel Cell: A Review[J]. Solid State Ionics,2007,177:3351-3359.
    [31] Kuhn M, Napporn T W. Single-chamber solid oxide fuel cell technology d From itsorigins to today’s state of the art[J]. Energies,2010,3:57-134.
    [32] Hibino T, Wang S O. One-chamber solid oxide fuel cell constructed from a YSZelectrolyte with a Ni anode and LSM cathode[J]. Solid State Ionics,2000,127:89-98.
    [33] Hibino T, Iwahara H. Simplification of solid oxide fuel cell systems using partialoxidation of methane[J]. Chemistry Lletters,1993,7:1131-1134.
    [34] Hibino T, Hashimoto A, Inoue T, Tokuno J I, Yoshida S I, Sano M. A low-operatingtemperature solid oxide fuel cell in hydrocarbon-air mixtures[J]. Science,2000,288:2031-2033.
    [35] Hibino T, Hashimoto A, Inoue T, Tokuno J I, Yoshida S I, Sano M. Single-chambersolid oxide fuel cells at intermediate temperatures with various hydrocarbon-airmixtures[J]. Journal of the Electrochemical Society,2000,147:2888-2892.
    [36] Hibino T, Asano K, Iwahara H. Improvement of Capcius cell usingSrCe0.95Yb0.05O3-δas a solid electrolyte[J]. Chemistry Lletters,1994,3:485-488.
    [37] Bay L, Horita T, Sakai N, Ishikawa M, Yamaji K, Yokokawa H. Hydrogensolubility in Pr-doped and un-doped YSZ for a one chamber fuel cell[J]. Solid StateIonics,1998,113–115:363-367.
    [38] Asano K, Iwahara H. Performance of a One-Chamber Solid Oxide Fuel Cell with aSurface-Modified Zirconia Electrolyte[J]. Journal of the Electrochemical Society,1997,144:3125-3130.
    [39] Hibino T, Kuwahara Y, Wang S. Effect of electrode and electrolyte modification onthe performance of one-chamber solid oxide fuel cell[J]. Journal of theElectrochemical Society,1999,146:2821-2826.
    [40] Hibino T, Wang S, Kakimoto S, Sano M. Single chamber solid oxide fuel cellconstructed from an yttria-stabilized zirconia electrolyte[J]. Electrochemical andSolid-State Letters,1999,2:317-319.
    [41] Hibino T, Hashimoto A, Yano M, Suzuki M, Yoshida S I, Sano M. Highperformance anodes for SOFCs operating in methane-air mixture at reducedtemperatures[J]. Journal of the Electrochemical Society,2002,149:A133-A136.
    [42] Morel B, Roberge R, Savoie S, Napporn T, Meunier M. Catalytic activity andperformance of LSM cathode materials in single chamber SOFC[J]. AppliedCatalysis A: General,2007,323:181-187.
    [43] Suzuki T, Jasinski P, Anderson H U, Dogan F. Role of composite cathodes in singlechamber SOFC[J]. Journal of the Electrochemical Society,2004,151:A1678-A1682.
    [44] Deganello F, Esposito V, Miyayama M, Traversa E. Cathode performance ofnanostructured La1-aSraCo1-bFebO3-xon a Ce0.8Sm0.2O2electrolyte prepared bycitrate-nitrate autocombustion[J]. Journal of the Electrochemical Society,2007,154:A89-A96.
    [45] Larramendi I R, Lamas D G, Cabezas M D, Ruiz de Larramendi J I, Wals e de RecaN E, Rojo T. Development of electrolyte-supported intermediate-temperaturesingle-chamber SOFCs using Ln0.7Sr0.3Fe0.8Co0.2O3-δ(Ln=Pr, La, Gd) cathodes[J].Journal of Power Sources,2009,193:774-778.
    [46] Naporn T W, Jacques-Bédard X, Morin F, Meunier M. Operating Conditions of aSingle-Chamber SOFC[J]. Journal of the Electrochemical Society,2004,151:A2088-A2094.
    [47] Shao Z P, Kwak C, Haile S M. Anode-supported thin-film fuel cells operated in asingle chamber configuration2T-I-12[J]. Solid State Ionics,2004,175:39-46.
    [48] Suzuki T, Jasinski P, Petrovsky V, Anderson H U, Dogan F. Anode SupportedSingle Chamber Solid Oxide Fuel Cell in CH4-Air Mixture[J]. Journal of theElectrochemical Society,2004,151(9):A1473-A1476.
    [49] Riess I, van der Put P J, Schoonman J. Solid Oxide Fuel Cells Operating on UniformMixtures of Fuel and Air[J]. Solid State Ionics,1995,82:1-4.
    [50] Suzuki T, Jasinski P, Petrovsky V, Anderson H U, Dogan F. Performance of aPorous Electrolyte in Single-Chamber SOFCs[J]. Journal of the ElectrochemicalSociety,2005,152:A527-A531.
    [51] Hibino T, Ushiki K, Sato T, Kuwahara Y. A novel design for simplifying SOFCsystem[J]. Solid State Ionics,1995,81:1-3.
    [52] Hibino T, Ushiki K, Kuwahara Y. New concept for simplifying SOFC system[J].Solid State Ionics,1996,91:69-74.
    [53] Hibino T, Hashimoto A, Suzuki M, Yano M, Yoshida S I, Sano M. A solid oxidefuel cell with a novel geometry that eliminates the need for preparing a thinelectrolyte film[J]. Journal of the Electrochemical Society,2002,149:A195-A200.
    [54] Shao Z P, Haile S M, Ahn J, Ronney P D, Zhan Z L, Barnett S A. A thermallyself-sustained micro solid-oxide fuel-cell stack with high power density[J]. Nature,2005,435:795-798.
    [55] Wei B, Lü Z, Huang X, Liu M, Jia D, Su W. A Novel Design of Single-ChamberSOFC Micro-Stack Operated in Methane-Oxygen Mixture[J]. ElectrochemistryCommunications,2009,11:347-350.
    [56] Liu M, Lü Z, Wei B, Zhu R, Huang X, Chen K, Ai G, Su W. Anode-SupportedMicro-SOFC Stacks Operated under Single-Chamber Conditions[J]. Journal of theElectrochemical Society,2007,154(6):B588-B592.
    [57] Liu M, Lü Z, Wei B, Huang X, Chen K, Su W. Effect of the Cell Distance on theCathode in Single Chamber SOFC Short Stack[J]. Journal of the ElectrochemicalSociety,2009,156(10):B1253-B1256.
    [58] Liu M, LüZ, Wei B, Huang X, Zhang Y, Su W. Effects of the single chamber SOFCstack configuration on the performance of the single cells[J]. Solid State Ionics,2010,181:939-942.
    [59] Liu M, LüZ, Wei B, Huang X, Zhang Y, Su W. Performance of an annularsolid-oxide fuel cell micro-stack array operating in single-chamber conditions[J].Journal of Power Sources,2010,195:4247-4251.
    [60] Liu M, Lü Z, Wei B, Huang X, Chen K, Su W. A Novel Cell-Array Design forSingle Chamber SOFC Microstack[J]. Fuel Cells,2010,5:717-721.
    [61] Ahn S, Kim Y, Moon J, Lee J, Kim J. Influence of Patterned Electrode Geometry onPerformance of Co-Planar Single-Chamber Solid Oxide Fuel Cell[J]. Journal ofPower Sources,2007,171:551-516.
    [62] Ahn S, Kim Y, Moon J, Lee J, Kim J. Co-planar Type Single Chamber Solid OxideFuel Cell with Micro-Patterned Electrodes[J]. Journal of Electroceramics,2006,17:689-693.
    [63] Suzuki T, Jasinski P, Anderson H U, Dogan F. Single Chamber ElectrolyteSupported SOFC Module[J]. Electrochemical and Solid-State Letters,2004,7(11):A391-A393.
    [64] Yano M, Nagao M, Okamoto K, Tomita A, Uchiyama Y, Uchiyama N, Hibino T. ASingle-Chamber SOFC Stack Operating in Engine Exhaust[J]. Electrochemical andSolid-State Letters,2008,11(3):B29-B33.
    [65] Nagao M, Yano M, Okamoto K, Tomita A, Uchiyama Y, Uchiyama N, Hibino T. ASingle-Chamber SOFC Stack: Energy Recovery from Engine Exhaust[J]. FuelCell,2008,53:22-329.
    [66] Tomita A, Hirabayashi D, Hibino T, Nagao M, Sano M. Single-Chamber SOFCswith a Ce0.9Gd0.1O1.95Electrolyte Film for Low-Temperature Operation[J].Electrochemical and Solid-State Letters,2005,8-1:A63-A65.
    [67] Yano M, Kawai T, Okamoto K, Nagao M, Sano M, Tomita A, Hibino T.Single-chamber SOFCs using dimethyl ether and ethanol[J]. Journal of theElectrochemical Society,2007,154:B865-B870.
    [68] Jacques-Bedard X, Napporn T W, Roberge R, Meunier M. Performance and ageingof an anode-supported SOFC operated in single-chamber conditions[J]. Journal ofPower Sources,2006,153:108-113.
    [69] Naporn T W, Morin F, Meunier M. Evaluation of the Actual Working Temperatureof a Single-Chamber SOFC[J]. Electrochemical and Solid-State Letters,2004,7(3):A60-A62.
    [70] Buergler B E, Siegrist M E, Gauckler L J. Single chamber solid oxide fuel cells withintegrated current-collectors[J]. Solid State Ionics,2005,176:1717-1722.
    [71] Hibino T, Hashimoto A, Inoue T, Tokuno J I, Yoshida S I, Sano M. A solid oxidefuel cell using an exothermic reaction as the heat source[J]. Journal of theElectrochemical Society,2001,148:A544-A549.
    [72] Morel B, Roberge R, Savoieb S, Napporna T W, Meunier M. Temperature andperformance variations along single chamber solid oxide fuel cells[J]. Journal ofPower Sources,2009,186:89-95.
    [73] Jacques-Bédard X, Napporn T W, Roberge R, Meunier M. Coplanar ElectrodesDesign for a Single-Chamber SOFC Assessment of the Operating Parameters[J].Journal of the Electrochemical Society,2007,154:B305-B309.
    [74] Buergler B E, Grundy A N, Gauckler L J. Thermodynamic Equilibrium ofSingle-Chamber SOFC Relevant Methane-Air Mixtures[J]. Journal of theElectrochemical Society,2006,153:A1378-A1385.
    [75] He H, Hill J M. Carbon deposition on Ni/YSZ composites exposed to humidifiedmethane[J]. Applied Catalysis A: General,2007,317:284-292.
    [76] Macek J, Novosel B, Marinsek M. Ni-YSZ SOFC anodes-Minimization of carbondeposition[J]. Journal of the European Ceramic Society,2007,27:487-491.
    [77] Kim T, Liu G, Boaro M, Lee S I, Vohs J M, Gorte R J, Al-Madhi O H, Dabbousi BO. A study of carbon formation and prevention in hydrocarbon-fueled SOFC[J].Journal of Power Sources,2006,155:231-238.
    [78] Marco A B, Anand S, Josephine M H. Anode-versus electrolyte-supportedNi-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbonformation for the direct utilization of dry methane[J]. Journal of Power Sources,2011,196:968-976.
    [79] Gregory J O, Joshua M, Edward B, Nigel P.. Thermodynamics and Kinetics of theInteraction of Carbon and Sulfur with Solid Oxide fuel Cell Anodes[J]. Journal ofthe American Chemical Society,2009,92:763-780.
    [80] Chen T, Wang W G, Miao H, Li T S, Xu C. Evaluation of carbon depositionbehavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueledwith simulated syngas[J]. Journal of Power Sources,2011,196:2461-2468.
    [81] McIntosh S, Gorte R J. Direct hydrocarbon sofc[J]. Chemical Reviews,2004,104:4845-4865.
    [82] Monnerat B, Kiwi-Minsker L, Renken A. Hydrogen production by catalyticcracking of methane over nickel gauze under periodic reactor operation[J].Chemical Engineering Science,2001,56:633-639.
    [83] Zhang T, Amiridis M D. Hydrogen production via the direct cracking of methaneover silica-supported nickel catalysts[J]. Applied Catalysis A,1998,167:161-172.
    [84] Ke K, Gunji A, Mori H, Tsuchida S, Takahashi H, Ukai K, Mizutani Y, Sumi H,Yokoyama M, Waki K. Effect of Oxide on Carbon Deposition Behavior of CH4Fuel on Ni/ScSZ Cermet Anode in High Temperature SOFCs[J]. Solid State Ionics,2006,177:541-547.
    [85] Gunji A, Wen C, Otomo J, Kobayashi T, Ukai K, Mizutani Y, Takahashi H. Carbondeposition behaviour on Ni–ScSZ Anodes for internal reforming solid oxide fuelcells[J]. Journal of Power Sources,2004,131:285-288.
    [86] Vernoux P, Guillodo M, Fouletier J, Hammou A. Alternative anode material forgradual methane reforming in solid oxide fuel cells[J]. Solid State Ionics,2000,135:425-431.
    [87] Sehested J. Four Challenges for Nickel Steam-Reforming Catalysts[J]. CatalysisToday,2006,111:103-110.
    [88] Gorte R J, Vohs J M. Novel SOFC Anodes for the Direct Electrochemical Oxidationof Hydrocarbons[J]. Journal of Catalysis,2003,216:477-86.
    [89] Mallon C, Kendall K. Sensitivity of Nickel Cermet Anodes to ReductionConditions[J]. Journal of Power Sources,2005,145:154-160.
    [90] Yoon S P, Kim H J, Park B T, Nam S W, Han J, Lim T H, Hong S A. Mixed-FuelsFuel Cell Running on Methane-Air Mixture[J]. Journal of Fuel Cell Science andTechnology,2006,3:83-86.
    [91] Zhan Z L, Liu J, Barnett S A. Operation of anode-supported solid oxide fuel cells onpropane–air fuel mixtures[J]. Applied Catalysis A: General,2004,262:255-259.
    [92] Claridge J B, Green M L H, Tsang S C, York A P E, Ashcroft A T, Battle P D. Astudy of carbon deposition on catalysts during the partial oxidation of methane tosynthesis gas[J]. Catalysis Letters,1993,22:299-305.
    [93] Cimenti M, Hill J M. Thermodynamic analysis of solid oxide fuel cells operatedwith methanol and ethanol under direct utilization, steam reforming, dry reformingor partial oxidation conditions[J]. Journal of Power Sources,2009,186:377-384.
    [94] Zhang X L, Mingos D M P, Hayward D O. Rate oscillations during partial oxidationof methane over chromel–alumel thermocouples[J]. Catalysis Letters,2001,72:147-152.
    [95] Zhang X L, Hayward D O, Mingos D M P. Further Studies on Oscillations overNickel Wires During the Partial Oxidation of Methane[j]. Catalysis Letters,2003,86:235-243.
    [96] Zhang X L, Lee C S M, Hayward D O, Mingos D M P. Oscillatory behaviourobserved in the rate of oxidation of methane over metal catalysts[J]. CatalysisToday,2005,105:283–294.
    [97] Kellogg I D, Koylu U O, Petrovsky V, Dogan F. Effectiveness of Anode in a SolidOxide Fuel Cell with Hydrogen/Oxygen Mixed Gases[J]. International Journal ofHydrogen Energy,2009,34:5138-5143.
    [98] Hao Y, Goodwin D G. Efficiency and fuel utilization of methane-poweredsingle-chamber solid oxide fuel cells[J]. Journal of Power Sources,2008,183:157-163.
    [99] Chung C Y, Chung Y C. Performance characteristics of micro single-chamber solidoxide fuel cell: Computational analysis[J]. Journal of Power Sources,2006,154:35-41.
    [100]于勇,张俊明,姜连田. FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008:1-2.
    [101]韩占忠,王敬,兰小平. FLUENT-流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2010:20-22.
    [102] Deutschmann O, Schmidt R, Behrendt F. Numerical modeling of catalyticignition[J]. Proceedings of the Com bustion Institute,1996,26:1747-1754.
    [103]钟北京,洪泽凯.微燃烧器内甲烷催化燃烧的数值模拟[J].热能动力工程,2003,18(3):584-588.
    [104]伍亨.甲烷在微燃烧器内催化燃烧的数值模拟[D].北京:清华大学,2004:27-30.
    [105] Suwanwarangkul R, Croiset E, Fowler M W. Performance comparison of Fick’s,dusty-gas and Stefan-Maxwell models to predict the concentration overpotential ofa SOFC anode[J]. Journal of Power Sources,2003,122:9-18.
    [106]高宝军.平板式固体氧化物燃料电池数值模拟及性能分析[D].武汉:华中科技大学,2007:29-33.
    [107]黄镜欢.固体氧化物燃料电池的传热传质数值模拟[D].南京:南京理工大学,2004:30.
    [108]李琛.固体氧化物燃料电池传热传质数值模拟[D].长沙:国防科学技术大学,2008:27.
    [109]李彦,胡桂林,骆仲泱,余春江.固体氧化物燃料电池的三维数值模拟[J].电源技术,2009,33:865-868.
    [110]伍亨,钟北京.空间反应和入口速度对甲烷催化反应的影响[J].清华大学学报(自然科学版),2005,45(5):670-672.
    [111] Adler S B. Factors Governing Oxygen Reduction in Solid Oxide Fuel CellCathode[J]. Chemical Reviews,2004,104:4791-4843.
    [112] Chen X J, Chan S H, Khor K A. Cyclic Voltammetry of (La, Sr)MnO3Electrodeon YSZ Substrate[J]. Solid State Ionics,2003,164:17-25.
    [113] Jiang S P. Issues on Development of (La,Sr)MnO3Cathode for Solid Oxide FuelCells[J]. Journal of Power Sources,2003,124:390-402.
    [114]朱红钧,林元华,谢龙汉. Fluent12流体分析及工程仿真[M].北京:清华大学出版社,2011:4.
    [115] Sun C W, Hui R, Roller J. Cathode Materials for Solid Oxide Fuel Cells: Areview[J]. Journal of Solid State Electrochemistry,2010,14:1125-1144.
    [116] Fleig J. Solid oxide fuel cell cathodes: Polarization mechanisms and modeling ofthe electrochemical performance[J]. Annual Review of Materials Research,2003,33:361-382.
    [117] Sfeir J, Buffat P A, M ckli P. Lanthanum Chromite Based Catalysts for Oxidationof Methane Directly on SOFC Anodes[J]. Journal of Catalysis,2001,202(2):229-244.
    [118] Abudula A, Ihara M, Komiyama H. Oxidation Mechanism and Effective AnodeThickness of SOFC for Dry Methane Fuel[J]. Solid State Ionics,1996,86(17):1203-1209.
    [119] Riess I. On the Single Chamber Solid Oxide Fuel Cells[J]. Journal of PowerSources,2008,175(1):325-337.
    [120] Savoie S, Napporn T W, Morel B. Catalytic Activity of Ni-YSZ Anodes in aSingle-Chamber Solid Oxide Fuel Cell Reactor[J]. Journal of Power Sources,2011,12(2):756-759.
    [121] Niu Y, Zhou W, Sunarso J. A Single-Step Synthesized Cobalt-Free BariumFerrites-Based Composite Cathode For Intermediate Temperature Solid Oxide FuelCells[J]. Electrochemistry Communications,2011,5(21):385-388.
    [122] Suzuki M, Iwata S, Higaki K. Development and Field Test Results of ResidentialSOFC CHP System[J]. Journal of the Electrochemical Society,2009,7(2):356-359.
    [123] Zhao X, Zhang X, Duan C. Performance Research of SOFC Distributed CHPSystem[J]. Journal of North China Electric Power University,2007,34(5):76-80.
    [124] Chen K F, Lü Z, Ai N, Chen X J, Hu J Y, Huang X Q, Su W H. Effect ofSDC-impregnated LSM cathodes on the performance of anode-supported YSZfilms for SOFCs[J]. Journal of Power Sources,2007,167:58-63.
    [125] Liu M L, Lü Z, Wei B, Huang X Q, Chen K F, Su W H. Study on impedancespectra of La0.7Sr0.3MnO3and Sm0.2Ce0.8O1.9-impregnated La0.7Sr0.3MnO3cathodein single chamber fuel cell condition[J]. Electrochimica Acta,2009,54:4726-4730.
    [126] Wei B, Lü Z, Huang Q X, Liu M L, Chen K F, Su W H. Enhanced Performance ofa Single-Chamber Solid Oxide Fuel Cell with an SDC-Impregnated Cathode[J].Journal of Power Sources,2007,167:58-63.
    [127]艾刚,吕喆,魏波,黄喜强,陈孔发,苏文辉.阳极支撑型单气室固体氧化物燃料电池的性能[J].催化学报,2006,27:885-889.
    [128] Jasinski P, Suzuki T, Dogan F, Anderson H U. Impedance spectroscopy of singlechamber SOFC[J]. Solid State Ionics,2004,175:35-38.
    [129] Hao Y, Goodwin D G. Numerical Modeling of Single-Chamber SOFCs withHydrocarbon Fuels[J]. Journal of the Electrochemical Society,2007,154:B207-B217.
    [130] Minh N Q, Takahashi T. Science and Technology of Ceramic Fuel Cells[M].Amsterdam:Elsevier,1995:24.
    [131] Hao Y, Goodwi D G. Efficiency and fuel utilization of methane-poweredsingle-chamber solid oxide fuel cells[J]. Journal of Power Sources,2008,183:157-163.
    [132] He H P, Hill J M. Carbon deposition on Ni/YSZ composites exposed to humidifiedmethane[J]. Applied Catalysis A: General,2007,317:284-292.
    [133] Iida T, Kawano M, Matsui T, Kikuchi R, Eguchi K. Internal reforming of SOFCs-Carbon deposition on fuel electrode and subsequent deterioration of cell[J]. Journalof the Electrochemical Society,2007,154:B234-B241.
    [134] Takeguchi T, Kani Y, Yano T, Kikuchi R, Eguchi K, Tsujimoto K, Uchida Y,Ueno A, Omoshiki K, Aizawa M. Study on steam reforming of CH4andC-2hydrocarbons and carbon deposition on Ni-YSZ cermets[J]. Journal of PowerSources,2002,112:588-595.
    [135] Horita T, Kishimoto H, Yamaji K, Sakai N, Xiong Y P, Brito M E, Yokokawa H,Rai M, Amezawa K, Uchimoto Y. Active parts for CH4decomposition andelectrochemical oxidation at metal/oxide interfaces by isotope labeling-secondaryion mass spectrometry[J]. Solid State Ionics,2006,177:3179-3185.
    [136] Tsai T K, Chuang C C, Chao C G, Liu W L. Growth and field emission of carbonnanofibers on electroless Ni–P alloy catalyst[J]. Diamond and Related Materials,2003,12:1453-1459.
    [137] Li H, Shi C, Du X, He C, Li J, Zhao N. The influences of synthesis temperatureand Ni catalyst on the growth of carbon nanotubes by chemical vapor deposition[J].Materials Letters,2008,62:1472-1475.
    [138] Milberg H, Juan A, Amadeo N, Irigoyen B. The influence of Mg on the Cadsorption on Ni (100): A DFT study[J]. Journal of Molecular Catalysis A:Chemical,2010,315:171-177.
    [139] Meng L Y, Moon C W, Im S S, Lee K H, Byun J H, Park S J. Effect of Ni catalystdispersion on the growth of carbon nanofibers onto carbon fibers[J]. Microporousand Mesoporous Materials,2011,142:26-31.
    [140] Alzate-Restrepo V, Hill J M. Effect of anodic polarization on carbon deposition onNi/YSZ anodes exposed to methane[J]. Applied Catalysis A: General,2008,342:49-55.
    [141] Triantafyllopoulos N C, Neophytides S G. The nature and binding strength ofcarbon adspecies formed during the equilibrium dissociative adsorption of CH4onN/YSZ cermet catalysts[J]. Journal of Catalysis,2003,21:324-333.
    [142] Sumi H, Puengjinda P, Muroyama H, Matsui T, Eguchi K. Effects of crystalStructure of yttria-and scandia-stabilized zirconia in nickel-based SOFC anodes oncarbon deposition and oxidation behaviour[J]. Journal of Power Sources,2011,196:6048-6054.
    [143] Koh J H, Yoo Y S, Park J W, Lim H C. Carbon deposition and cell performance ofNi-YSZ anode support SOFC with methane fuel[J]. Solid State Ionics.,2002,149:157-166.
    [144] Takeguchi T, Kani Y, Yano T, Kikuchi R, Eguchi K, Tsujimoto K, Uchida Y,Ueno A, Omoshiki K, Aizawa M. Study on steam reforming of CH4and C2hydrocarbons and carbon deposition on Ni-YSZ cermets[J]. Journal of PowerSources,2002,112:588-595.
    [145] Clarke S H, Dicks A L, Pointon K, Smith T A, Swann A. Catalytic aspects of thesteam reforming of hydrocarbons in internal reforming fuel cells[J]. CatalysisToday,1997,38:411-423.
    [146] Mermelstein J, Millan M, Brandon N. The impact of steam and current density oncarbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solidoxide fuel cell anodes[J]. Journal of Power Sources,2010,195:1657-1666.
    [147] Moon D J, Ryu J W. Electrocatalyticreforming of carbondioxide bymethaneinSOFC system[J]. Catalysis Today,2003,87:255-264.
    [148] Offer G J, Mermelstein J, Brightman E, Brandon N P. Thermodynamics andKinetics of the Interaction of Carbon and Sulfur with Solid Oxide fuel CellAnodes[J]. Journal of the American Ceramic Society,2009,92(4):763-780.
    [149] Buccheri M A, Singh A, Hill J M. Anode-versus electrolyte-supportedNi-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbonformation for the direct utilization of dry methane[J]. Journal of Power Sources,2011,196:968-976.
    [150] McIntosh S, Gorte R J. Direct Hydrocarbon Solid Oxide Fuel Cells[J]. ChemicalReviews,2004,104:4845-4865.
    [151] Finnerty C M, Coe N J, Cunningham R H, Ormerod R M. Carbon formation on anddeactivation of nickel-based/zirconia anodes in solid oxide fuel cells running onmethane[J]. Catalysis Today,1998,46:137-145.
    [152] Yun J W, Yoon S P, Kim H S, Han J, Nam S W. Effect of Sm0.2Ce0.8O1.9on thecarbon coking in Ni-based anodes for solid oxide fuel cells running on methanefuel[J]. International Journal of Hydrogen Energy,2012,37:4356-4366.
    [153] Savoie S, Napporn T W, Morel B. Catalytic Activity of Ni-YSZ Anodes in aSingle-Chamber Solid Oxide Fuel Cell Reactor[J]. Journal of Power Sources,2011,12(2):756-759.
    [154] Bychkov V Y, Tyulenin Y P, Korchak V N, Aptekar E L. Study of nickel catalystin oscillating regime of methane oxidation by means of gravimetry andmass-spectrometry[J]. Applied Catalysis A: General,2006,304:21-29.
    [155] Chen K F, LüZ, Ai N, Huang X Q, Zhang Y H, Xin X, Zhu R, Su W H.Development of yttria-stabilized zirconia thin films via slurry spin coating forintermediate-to-low temperature solid oxide fuel cells[J]. Journal of Power.Sources,2006,160:436-438.
    [156] Ai N, Lü Z, Chen K F, Huang X Q, Wei B, Zhang Y H, Li S Y, Xin X S, Sha XQ, Su W H. Low temperature solid oxide fuel cells based on Sm0.2Ce0.8O1.9filmsfabricated by slurry spin coating[J]. Journal of Power Sources,2006,159:637-640.
    [157] Wang J M, Lü Z, Huang X Q, Chen K F, Ai N, Hu J Y, Su W H. YSZ filmsfabricated by a spin smoothing technique and its application in solid oxide fuelcell[J]. Journal of Power Sources,2007,163:957-959.
    [158] Chen G, Guan G, Kasai Y, You H X, Abudula A. Degradation mechanism ofNi-based anode in low concentrations of dry methane[J]. Journal of Power Sources,2011,196:6022-6028.
    [159] You H X, Gao H J, Chen G, Abudula A, Ding X W. The conversion amongreactions at Ni-based anodes in solid oxide fuel cells with low concentrations of drymethane[J]. Journal of Power Sources,2011,196:2779-2784.
    [160] You H X, Gao H J, Chen G, Abudula A, Ding X W. Reactions of lowconcentration dry methane at Ni-YSZ anode in the SOFCs[J]. Journal of FuelChemistry and Technology,2011,39(1):69-74.
    [161] Wang Z, Lü Z, Wei B. Redox of Ni/YSZ Anodes and Oscillatory Behavior inSingle-Chamber SOFC Under Methane Oxidation Conditions[J]. ElectrochimicaActa,2011,10(24):267-271.
    [162] Jiang S P, Duan Y Y, Love J G. Fabrication of High-performance NiO/Y2O3-ZrO2Cermet Anodes of Solid Oxide Fuel Cells by Ion Impregnation[J]. Journal of theElectrochemical Society,2002,149:A1175-1183.
    [163] Wang W, Jiang S P, Tok A L Y. Luo L H. GDC-impregnated Ni Anodes for DirectUtilization of Methane in Solid Oxide Fuel Cells[J]. Journal of Power Sources,2006,159:68-72.
    [164] Wang J B, Jang J C, Huang T J. Study of Ni-samaria-doped ceria anode for directoxidation of methane in solid oxide fuel cells[J]. Journal of Power Sources,2003,122:122-131.
    [165] Li Y, Fu Q, Flytzani-Stepanopoulos M. Low-temperature water-gas shift reactionover Cu-and Ni-loaded cerium oxide catalysts[J]. Applied Catalysis B:Environmental,2000,27:179-191.
    [166] Zhang Q, Qin Y N, Chang L. Promoting Effect of Cerium Oxide in SupportedNickel Catalyst for Hydrocarbon Steam-reforming[J]. Applied Catalysis,1991,70:1-8.
    [167]刘明良.单室薄膜固体氧化物燃料电池微堆性能影响因素研究[D].哈尔滨:哈尔滨工业大学学位论文,2010:21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700