用户名: 密码: 验证码:
可变负荷率往复式内燃机设计理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各种技术的融合与协作逐渐成为车用往复式内燃机(简称发动机)发展的必然趋势。若能利用先进发动机技术,根据具体工况动态调节发动机的负荷率,使其一直处于最佳负荷率区间,则有望实现全转速各工况综合性能的提升。世界著名汽车公司基于变负荷率理念,已分别研制出具备可变压缩比、可变排量与可变循环等技术特征的发动机,并得到业界和市场的一致认可,但国内对相关技术的研究几乎处于空白,所以此方面研究具有实际意义和广阔前景。本文设计出一种兼具二冲程和四冲程两种机型工作循环的发动机平台,主要对其工作原理、设计理论、参数优化及可行性试验验证等方面进行了研究,为设计具有自主知识产权的先进车用发动机及其实用化奠定理论和试验基础。主要研究内容如下:
     提出一种能同时具备可变配气、可变排量、可变压缩比、可变循环与HCCI燃烧等技术的可变负荷率发动机(Variable Load Rate Engine, VLRE),应用热力循环理论,分析了不同工作循环模式、可变压缩比与可变排量的工作原理,并确定出最佳模式切换时机为压缩上止点附近区域。分别基于发动机循环功频和有效压缩比概念,分析了VLRE循环功频多样性和其可变压缩比与可变排量技术相互依存的特点。依据二冲程发动机换气理论,确定了VLRE二冲程模式(VLRE-T)顶进-侧排的换气方案。最后分析了VLRE研发的可行性优势。
     依据原型机Honda WH125-6构建了VLRE四冲程模式(VLRE-F)性能仿真模型,采用正交试验仿真得出了最大扭矩转速的最佳配气相位。仅利用七个发动机参数,建立了完整的二冲程机气口参数与配气相位程序化封闭求解数学模型,在初步确定VLRE缸侧排气口参数及VLRE-T模式设计最大功率转速配气相位后,利用VLRE-T模式性能仿真模型,优化了缸侧排气口及配气相位参数。
     基于VLRE各配气凸轮的不同驱动功能,依据双质量当量模型和凸轮阀系设计理论,利用Excite_TD搭建了VLRE配气机构运动学和动力学模型。在凸轮廓线优化设计过程中,为提高计算参量的获取与调整效率,编写了凸轮参数计算与指标检验程序。基于配气机构运动学和动力学模型,优化设计出了VLRE各配气凸轮廓线。
     提出了VLRE可变配气机构的总体设计方案,分析了其中可变配气凸轮廓线机构的结构特征与工作原理。利用数值转化建模方法,设计出了VLRE-T进气双峰凸轮廓线。基于VLRE的配气相位,研究了复合凸轮各凸峰相对位置的确定方法,并对模式切换过程的复合凸轮进行了驱动力分析。通过构建可变配气凸轮廓线机构三维虚拟样机,进行机构多体动力学分析,进一步验证了凸轮廓线设计的正确性与合理性。
     基于VLRE凸轮轴驱动机构功能需求,提出利用双排行星轮系架构实现相位与速比同时可变的驱动机构方案。为快速辨识不同构型并从中优选合理的VLRE凸轮轴驱动机构方案,以功能实现为目标,采用粗糙集理论和聚类分析法进行机构方案的型综合与分类研究,确定出一类符合VLRE应用需求的机构方案。
     为实现全转速综合性能最佳的VLRE设计参数优化,提出并构建了复合性能系数。复合性能系数的构造特点及引入的额定值无量纲法,决定了其参数权重和无量纲化结果对评价效果无本质影响,并通过考题与模糊物元法验证了其合理性。与传统发动机综合性能评价方法相比,该方法计算高效且能实现发动机不同机型或不同模式全转速综合性能的评价与比较。基于复合性能系数坎贝尔图,优化了全转速下VLRE-T模式的配气相位,确定了VLRE缸侧排气口的形状、尺寸及位置参数。依据复合性能系数与负荷率最优原则,分别制定了VLRE“综合性能模式”与“经济模式”两种工作模式切换策略。
     搭建了VLRE台架试验平台,根据原型机的具体结构与布置特征,设计了VLRE配气凸轮机构试验方案,确定了缸侧排气口加工位置与增压器驱动方案,基于实践找到了一种快速调校VLRE-T模式配气正时的方法,并设计出具备排气缓冲功能的排气管路系统,解决了小排量发动机台架试验因管路过长导致的排气背压过高问题。最后完成了对WH125-6、VLRE-F模式和VLRE-T模式的台架试验,试验测试数据的分析结果,论证了VLRE设计思想的可行性。
The integration and collaboration of various technologies gradually become the inevitable trendfor vehicle reciprocating internal combustion engine(engine for short) development. If the engine loadrate is adjusted dynamically by using advanced engine technology according to specific workingcondition, it can stay in the range of optimum load rate, and the engine over-all performance at allspeed working conditions is expected to enhance. Based on the concept of variable load rate, the worldfamous auto companies have developed the engines with variable compression ratio, variabledisplacement and variable cycle etc. separately, which are unanimously approved by the industry andthe market. However, the domestic research on such area is almost blank, so research in this area haspractical and broad prospect. This paper designed a engine platform which combines both two-strokeand four-stroke working cycle, mainly focus on operating principle, design theory, parameteroptimization and feasibility test verification, which also lay a theoretical and experimental basis forself-developed high-tech advanced vehicle engine. The main research contents are as follows:
     A variable load rate engine(VLRE) which can combine the variable valve, variable compressionratio, variable displacement, variable cycle and HCCI combustion technology simultaneity is proposed.The VLRE working principle of different work cycle mode, variable compression ratio and variabledisplacement by applying thermodynamic cycle theory are analyzed, and finally determined the bestmode switch timing is near the compression top dead center. Based on the engine cycle powerfrequency and effective compression ratio concept respectively, the diversity of cycle power frequencyand the interdependence characteristics between VLRE variable compression ratio and variabledisplacement technology are analyzed. According to the ventilation theory for two-stroke engine,VLRE’s two-stroke mode (VLRE-T) top intake-side exhaust ventilation program is determined. Finally,the feasibility advantage of developing VLRE is analyzed.
     Based on the prototype Honda WH125-6, VLRE’s four-stroke mode (VLRE-F) performancesimulation model is built, and the best valve timing for VLRE-F in maximum torque speed is obtainedby using orthogonal test simulation. Using only seven engine parameters, a programmablemathematical model for getting the closed-form solution of two-stroke engine port parameters and valve timing is established. After initially identifying the cylinder exhaust port parameters and valvetiming of VLRE-T mode in design maximum power speed by programmable mathematical model, theparameters of cylinder exhaust port and valve timing are optimized again by using VLRE-T modeperformance simulation model.
     Based on different drive functions of each VLRE valve cam, the kinematics and dynamics modelsof VLRE distribution device are built up according to the dual mass equivalent model and cam valvedesign theory by using Excite_TD. During the cam profile optimization and design process, a programis written for the cam parameters calculation and indicators inspection in order to improve theefficiency of the access and adjustment of calculated parameters. Each VLRE cam profile is optimizeddesign base on the kinematics and dynamics models of distribution device.
     Variable distribution device overall design plan of VLRE is proposed, and the structural featuresand working principle of variable cam profile mechanism are analyzed. Using numerical transformationmodeling, the VLRE-T intake cam bimodal profile is worked out. Then the method of determining therelative position of multiple mounted cam each hump is studied base on the valve timing of VLRE, andthe driving forces of multiple mounted cam is analyzed during the mode switching process. By buildingthe three-dimensional virtual prototype of variable cam profile mechanism and carrying out multi-bodydynamics analysis, further validate the correctness and reasonableness of cam profile design.
     Based on the functional requirements of the VLRE camshaft drive mechanism, a drive mechanismscheme that the double-planetary gear train structure are used to realize the phase and speed ratiochanging at the same time is proposed. In order to identify the different configurations quickly andoptimize the reasonable VLRE camshaft drive mechanism program, the rough set theory and clusteranalysis were applied to do the type synthesis and classification research on mechanism schemes withthe target of realize the function, so as to find out those mechanism schemes which can meet theapplication requirements of VLRE.
     In order to achieve the best over-all performance at all speed, so as to optimize the designparameters of VLRE, the composite performance coefficient is proposed and constructed. Thestructural characteristics of the composite performance coefficient and the rating valuenon-dimensional method determined the parameter weight and non-dimensional results have noessential impact on effect of the evaluation, and its reasonableness is verified with examples calculationand the method of fuzzy matter element. Compared with the traditional engine over-all performance evaluation method, the method is not only computationally efficient, but also can evaluate and comparethe over-all performance at all speed under different engine types or different mode. Based on theCampbell diagram of composite performance coefficient, the valve timing of VLRE-T mode at allspeed are optimized, and the optimum shape, size dimension and position parameters of VLRE cylinderexhaust port are determined. Base on the optimal principle of composite performance coefficient andload rate, the two switching strategy of "over-all performance mode" and "economy mode" for VLRE’stwo operating mode are established respectively.
     According to the specific structure and layout characteristics of the prototype, VLRE bench testplatform is built up, and the testing program about VLRE distribution device is designed, theprocessing position of the cylinder exhaust port and the supercharger drive scheme are determined. Amethod for rapidly adjusting the valve timing of VLRE-T mode is found out based on the practice, andthe exhaust piping system with exhaust buffer function is designed, which can solve problems ofsmall-displacement engine exhaust back pressure is too high when bench test. Finally, the bench test ofWH125-6, VLRE-F mode and VLRE-T mode is carried out, the analysis result of test datademonstrated the feasibility of VLRE design idea.
引文
[1]清华大学中国车用能源研究中心.中国车用能源展望2012[M].北京:科学出版社,2012:1-5.
    [2]常思勤.汽车动力装置[M].北京:机械工业出版社,2006:1-10.
    [3] Sugiyama T, Hiyoshi R, Takemura S, et al. Technology for Improving Engine PerformaneeUsing Variable Meehanisums[C]. SAE Technical Paper,2007:01-1290.
    [4]钱人一. INA(依纳)可切换液压挺杆和发动机分缸断油电子控制[J].汽车与配件,2003,40:24-26.
    [5]韦海燕,陈琳,陈祥烨,等.城市公共汽车发动机与传动系合理匹配分析[J].农机化研究,2004,03:262-264.
    [6] Yeom K, Jang J, Bae C. Homogeneous Charge Compression Ignition of LPG and GasolineUsing Variable Valve Timing in an Engine[J]. Fuel,2007,86(4):494-503.
    [7] G. Foutana, E. Galloni. Variable Valve Timing for Fuel Economy Improvement in aSpark-Ignition Engine[J]. Applied Energy,2009,86(6):96-105.
    [8] Jankovic M, Magner SW. Variable Cam Timing Consequences to Automotive Engine ControlEesign[C]. In: IFAC15th Trieminal World Congress, Barcelona, Spain,2002,34(6):271-276.
    [9]童勇,黄海波,王永忠.可变排量发动机技术在小排量4缸机上的试验研究[J].中国内燃机学会燃烧节能净化分会,2007,(8):1-5.
    [10] Jehad A A Y, Mohammad H D. Performance Simulation of a Four-stroke Engine With VariableStroke-length and Compression Ratio[J]. Applied Energy,2004,77(4):447-463.
    [11]牛釗文.基于LabVIEW的点燃式发动机工作过程模拟及可变压缩比研究[D].成都:西南交通大学,2010:50-55.
    [12] Ricardo. Engine Uses Two and Four Stroke[J]. Professional Engineering,2008,(9):55.
    [13] Ricardo.可实现冲程切换的2/4SIGHT发动机技术[J].汽车与配件,2009,(14):25-27.
    [14]李理光,苏岩.张紧器式可变配气相位机构的设计与试验[J].内燃机学报,2002,20(4):345-349.
    [15] Sato. Valve Timing Adjust Device for Internal Combustion Engine[P]. United states:US6532921,2003-3-18.
    [16] Lee J C, Lee C W, Nitkiewica J A. The Application of a Lost Motion VVT System to a DOHCSI Engine[C]. SAE TRANSACTIONS,1995,104(3):1404-1413.
    [17] Flierl R, Klüting M. The Third Generation of Valvetrains-new Fully Variable Valvetrains forThrottle-free Load Control[C]. SAE Technical Paper,2000:01-1227.
    [18]钱人一.宝马全可变气门控制(Valvetronic)四缸机的电子控制[J].汽车与配件,2003,(52):24~26
    [19] Kusano. Apparatus for Controlling Valve Timing of Engine[P]. United states: US6634329,2003-10-21.
    [20] Begg S M, Hindle M P, Cowell T, et al. Low Intake Valve Lift in A Port Fuel-injected Engine[J].Energy,2008,8(26):1-9.
    [21] Hannibal W, Flierl R, Stiegler L, Meyer R. Overview of Current Continuously Variable ValveLift Systems for Four-Stroke Spark-Ignition Engines and The Criteria for Their DesignRatings[C]. SAE Technical Paper,2004:01-1263.
    [22] Milton B, Behnia M, Ellerman D. Fuel Deposition and Re-atomisation From Fuel/Air FlowsThrough Engine Inlet Valves[J]. Intl. Journal of Heat and Fluid Flow,2001,22:350-7.
    [23] Constanzo V S, Heywood J B. Mixture Preparation Mechanisms in a Port Fuel InjectedEngine[C]. SAE Technical Paper,2005:02-2080.
    [24] Shikida T. Development of the High Speed2ZZ-GE Engine[C]. SAE Technical Paper,2000:01-0617.
    [25]王立彪.全可变气门机构闭环控制策略的实验研究[D].天津:天津大学,2006:2-19.
    [26]王希珍.电磁全可变气门的仿真控制及相关研究[D].浙江:浙江大学,2003:4-21.
    [27]李志锐,舒歌群.无凸轮电液驱动气门配气机构技术的发展[J].拖拉机与农用运输车,2005,1(2):1-3.
    [28]杨妙梁.可变排量发动机技术的发展[J].汽车与配件,2008,18(8):32-35.
    [29]申小艳,苏铁熊,郭一平,等.发动机可变排量技术的研究进展[J].内燃机与配件,2011,(5):7-11.
    [30]韩宗奇.轿车发动机变工作排量技术与应用研究[D].秦皇岛:燕山大学,2010:2-15.
    [31]王建昕.高效车用汽油机的技术进步[J].内燃机学报,2008,26(suppl):83-89.
    [32]张登攀,袁银南,崔勇.车用汽油机的停缸节油技术[J].小型内燃机与摩托车,2007,36(6):89-93.
    [33]刘厚根.汽车机械增压器的设计与试验研究[D].长沙:中南大学,2009:11-12.
    [34]朱晓东.机械增压器工作性能与实验研究[D].长沙:中南大学,2009:8-11.
    [35]宗立君. DA465Q汽油机涡轮增压技术研究[D].哈尔滨:哈尔滨工程大学,2006:3-8.
    [36]纪民举.车用涡旋增压器与发动机匹配特性研究[D].兰州:兰州理工大学,2008:29-50.
    [37] Lei Y, Zhou D S, Zhang H G. Investigation on Performance of a Compression-ignition Enginewith Pressure-wave Supercharger[J]. Energy,2010,35(1):85-93.
    [38]杨妙梁.可变排量发动机技术与停阀机构的发展动向(上)[J].汽车与配件,2003,38:33-36.
    [39] Wong V W, Stewart M, Lundholm G, et al. Increased Power Density Via VariableCompression/Displacement and Turbocharging Using the Alva-cycle Engine[J]. SAE SpecialPublications,1998,36(2):252-256.
    [40]张海涛.发动机停缸控制及其标定[D].长春:吉林大学,2002:8-54.
    [41] Hatano K, Lida K, Higashi H.多种工作方式的可变气门定时发动机[J],国外内燃机,2005,3:68-71.
    [42]杨妙梁.可变排量发动机技术与停阀机构的发展动向(下)[J].汽车与配件,2003,39:33-34.
    [43]张双双,刘恒.可变压缩比对增压汽油机影响的仿真研究[J].轻型汽车技术,2012(5):25-27.
    [44]牛钊文,周斌,展靖华,等.可变压缩比技术的展望与研究[J].内燃机,2010,4(8):44-49.
    [45] Kutlar O A, Arslan H, Calik A T. Methods to Improve Efficiency of Four Stroke Spark IgnitionEnginesat Part Load[J]. Energy Conversion and Management,2005,46:3202-3220.
    [46]崔彪.发动机可变压缩比技术方案研究[D].南京:南京理工大学,2011:1-8.
    [47] Flierl R, Schmitt S, Hannibal W. First Test Results of a1-Cylinder Engine with VariableCompression Ratio, Fully Mechanically Variable Inlet and Exhaust Valve Actuation[C]. SAETechnical Paper,2009:01-1836.
    [48] Papaioannou, Aristidis G, Chottiner, et al. Crankshaft for Use with a Variable CompressionRatio System[P]. United states: US6705255,2004-3-16.
    [49] Putman S J. Variable Compression Ratio Internal Combustion Engine Using Field-SensitiveFluid[P]. United states: US6679203,2004-1-20.
    [50] Styron, Putman J, Sashidharan, et al. Variable Compression Ratio Engine[P]. United states:US6668768,2003-12-30.
    [51] Fujimoto, Moteki H, Katsuya. Internal Combustion Engine with Variable Compression RatioMechanism[P]. United states: US6510821,2003-1-28.
    [52] Shaik A, Moorthi N S V, Rudramoorthy R. Variable Compression Ratio Engine: A Future PowerPlant for Automobiles-an Overview[C]. Proceedings of the Institution of MechanicalEngineers, Part D: Journal of Automobile Engineering,2007,221(9):1159-1168.
    [53] Moteki K, Aoyama S, Ushijima K, et al. A Study of a Variable Compression Ratio System with aMulti-Link Mechanism[C]. SAE Technical Paper,2003:01-0921.
    [54] Hiyoshi R, Ushijima K, Yasuda Y, et al. Reciprocating Engine with a Varible Compression RatioMechanism[P]. United states: US6920847B2,2005-6-26.
    [55] Shaik A, Shenbaga N, Moorthi V, et al. Variable Compression Ratio Engine: a Future PowerPlant for Automobiles-an Overview[J]. Review Paper,2007:1159-1168.
    [56]钱人一. FEV发动机技术公司的可变压缩比汽油机(上)[J].汽车与配件,2003,28:26-27.
    [57]钱人一. FEV发动机技术公司的可变压缩比汽油机(中)[J].汽车与配件,2003,29:24-25.
    [58]钱人一. FEV发动机技术公司的可变压缩比汽油机(下)[J].汽车与配件,2003,30:21-23.
    [59]钱人一. SVC创造了燃油经济性的新概念[J].汽车与配件,2004,39:30-34.
    [60] Clarke J R, Tabaczynski R J. Internal Combustion Engine with Adjustable Compression Ratioand Knock Control[P]. United states: US6135086,2000-10-24.
    [61]崔彪,常思勤,李子非.发动机可变压缩比技术的探讨[J].内燃机,2011,04:39-42.
    [62]刘克铭,杨伟红,李志强.变压缩比活塞结构设计与仿真[J].机械科学与技术,2010,03:412-415+420.
    [63] Assanis D, Cho W, Choi I, et al. Pressure Reactive Piston Technology Investigation and.Development for Spark Ignition Engines[C]. SAE Technical Paper,2005:01-1648.
    [64] Wooheum C. A Study on Pressure Reactive Piston for Spark Ignition Engines[D]. Michigan:The University of Michigan,2004:4-25.
    [65] Drangel H, Olofsson E, Reinmann R. The Variable Compression (SVC) and the CombustionControl (SCC)–Two Ways to Improve Fuel Economy and Still Comply with World-wideEmission Requirements[C]. SAE Technical Paper,2002:01-0996.
    [66] Hyvonen J, Haraldsson G, Johansson B. Operating Range in a Multi Cylinder HCCI Engineusing Variable Compression Ratio[C]. SAE Technical Paper,2003:01-1829.
    [67] Wirbeleit F G, Binder K, Gwinner D. Development of Pistons with Variable CompressionHeight for Increasing Efficiency and Specific Power Output of Combustion Engines[J]. SAETRANSACTIONS,1990,99(3):543-557.
    [68] Schwaderlapp M, Habermann K, Yapici K. Variable Compression Ratio-A Design Solution forFuel Economy Concepts[C]. SAE Technical Paper,2002:01-1103.
    [69]钱人一. FEV发动机技术公司的可变压缩比汽油机[J].新技术及应用,2003:21-27.
    [70] Mendler C, Gravel R. Variable Compression Ratio Engine[C]. SAE Technical Paper,2002:01-1940.
    [71]邹晓文.法国发明MCE-5可变压缩比发动机[J].现代制造工程,2005,09:11.
    [72] Rabhi V, Beroff J, Dionnet F. Study of a Gear-Based Variable Compression Ratio Engine[C].SAE Technical Paper,2004:01-2931.
    [73] Rabhi D, Rabhi V, Ranson P. Gear Design and Dimensioning Study for a Variable CompressionRatio Engine[C]. SAE Technical Paper,2005:01-3131.
    [74] Moteki K, Aoyama S, Ushijima K, et al. A Study of Variable ComPression Ratio System with aMulti-link Mechanism[C]. SAE Technical Paper,2003:01-0921.
    [75] Hiyoshi R, Aoyama S, Takemura S, et al. A Study of a Multiple-Link Variable CompressionRatio System for Improving Engine Performance[C]. SAE Technical Paper,2006:01-0616.
    [76] Kontarakis G, Collings N, Ma T. Demonstration of HCCI Using a Single Cylinder Four-strokeSI Engine with Modified Valve Timing[C]. SAE Technical Paper,2000:01-2870.
    [77] Olsson J O, Tunestal P, Johansson B. Closed-Loop Control of an HCCI Engine[J]. SAETRANSACTIONS,2001,110(3):1076-1085.
    [78] Flowers D, Aceves S, Westbrook C K, et al. Detailed Chemical Kinetic Simulation of NaturalGas HCCI Combustion: Gas Composition Effects and Investigation of Control Strategies[J].Journal of engineering for gas turbines and power,2001,123(2):433-439.
    [79] Morimoto S S, Kawabata Y, Sakurai T, et al. Operating Characteristics of a Natural Gas-firedHomogeneous Charge Compression Ignition Engine (Performance Improvement Using EGR)[J].SAE Technical Paper,2001:01-1034.
    [80] Christensen M, Johansson B, Einewall P. Homogeneous Charge Compression Ignition UsingIsooctane, Ethanol, and Nature Gas-a Comparison with Spark Ignition Operation[C]. SAETRANSACTIONS,1997,106(4):1104-1114.
    [81] Kim D S, Kim M Y, Lee C S. Effect of Premixed Gasoline Fuel on the CombustionCharacteristics of Compression Ignition Engine[J]. Enegy and Fuels,2004,18(4):1213-1219.
    [82]苏万华,新一代内燃机燃烧(HCCI)理论的提出及其关键科学问题[C],内燃机高新技术发展研讨会论文集,合肥,2003:53-55
    [83] Ryan T W, Matheaus A C. Fuel Requirements for HCCI Engine Operation[J], SAETRANSACTIONS,2003,112(4):1143-1152.
    [84] Aceves S, Flowers D, Martinez-Frias J, et al. Fuel and Additive Characterization for HCCICombustion[C]. SAE Technical Paper,2003:01-1814.
    [85]吕兴才,陈伟,黄震.废气再循环和发动机运转参数对不同辛烷值燃料HCCI燃烧的影响[J].内燃机学报,2005,23(2):137-146.
    [86]吕兴才,陈伟,黄震.活性添加对高辛烷值燃料HCCI着火时刻与燃烧速率的影响[J].燃烧科学与技术,2005,11(3):241-247.
    [87] Tanaka S, Ayala F, Keck J C. A reduced Chemical Kinetic Model for HCCI Combustion ofPrimary Reference Fuels in a Rapid Compression Machine[J]. Combustion and flame,2003,133:467-481.
    [88] Nakagome K, Shimazaki N, Niimura K, et al. Combustion and Emission Characteristics ofPremixed Lean Diesel Combustion Engine[J]. SAE TRANSACTIONS,1997,106(3):1528-1536.
    [89] Yanagihara H. Ignition Timing Control at Toyota “UNIBUS” Combustion System[C],Proceedings of the IFP Intemational Congress on a New Generation of Engine CombustionProcesses for the Future,2001,33-42.
    [90]王辉,苏万华,刘斌.调制多脉冲喷油策略的实现及对HCCI燃烧过程影响的研究[J].内燃机学报,2005,23(5):385-391.
    [91] Su W, Wang H, Liu B. Injection Mode Modulation for HCCI Diesel Combustion[C]. SAETechnical Paper,2005:01-0117.
    [92]隋菱歌.增压柴油机瞬态工况性能仿真及优化[D].长春:吉林大学,2012:58-60.
    [93]吕兴才,陈伟,黄震.燃料辛烷值对HCCI燃烧特征和排放特性的影响[J].燃烧科学与技术,2005,11(6):493-498.
    [94] Olsson J O, Tunestal P, Ulfvik J, et al. The Effect of Cooled EGR on Emissions andPerformance of a Turbocharged HCCI Engine[C], SAE Technical Paper,2003:01-0743.
    [95] Lv X C, Chen W, Huang Z. A Fundamental Study on the Control of the HCCI Combustion andEmissions by Fuel Design Concept Combined with Controllable EGR. Part2: Effect ofOperating Conditions and EGR on HCCI Combustion[J], Fuel,2005,84:1084-1092.
    [96] Oakle A, Zhao H, Ladommatos N. Experimental Studies on Controlled Auto Ignition(CAI)Combustion in a4-Stroke Multi-cylinder Gasoline Engine[C]. SAE Technical Paper,2001:01-1030.
    [97] Santoso H, Mattllews J, Cheng W. Characteristics of HCCI Engine Operating in theNegative-valve-overlap Mode[C]. SAE Technical Paper,2005:01-2133.
    [98] Fredrik A H, Bengt E, Jan W, et al. Control of HCCI During Engine Transients by Aid ofVariable Valve Timings Through the Use of Model Based Non-Linear Compensation[C], SAETechnical Paper,2005:01-0131.
    [99]吕兴才.燃料设计控制发动机燃烧与排放的试验研究[D],上海:上海交通大学,2004:4-17.
    [100]李德刚.二甲醚HCCI燃烧研究[D].上海:上海交通大学,2005:3-11.
    [101]侯玉春.燃料设计控制HCCI燃烧与排放的试验研究[D].上海:上海交通大学,2007:2-18.
    [102] Bengtsson J, Strandh P, Johansson R, et al. Closed-loop Combustion Control of HomogeneousCharge Compression Ignition(HCCI) Engine Dynamics[J]. International Journal of AdaptiveControl and Signal Processing,2004,18(2):167-179.
    [103] Ricardo. Different Strokes for Different Folks-the2/4Sight Concept[J]. Vehicle Technology.2006,(7):13-15.
    [104]张迪. Ricardo整合2冲程与4冲程发动机[N],京华时报,2008-04-03(113).
    [105] Baccile A, Ceccarini D, Cheng L, et al. An Innovative Control System for a2/4StrokeSwitchable Engine[J]. SAE Technical Paper,2007:01-1199.
    [106]里卡多公司.可实现冲程切换的2/4SIGHT发动机技术.汽车与配件,2009,(14):25-27.
    [107]张金生.神奇的“六冲程”发动机[J].摩托车,2001,3(8):20.
    [108]守田一郎,井上裕章.顶置气门二冲程发动机的开发[J].国外内燃机,1997,(3):3-8.
    [109]李哲,郭允,帅石金.一种可变冲程发动机及其工作方法[P].中国发明专利: CN1737350,2006-02-22.
    [110]邸立明.可变冲程与可变压缩比发动机[P].中国发明专利: CN1944993,2007-04-11.
    [111]邸立明.往复活塞式发动机多工作模式的研究[D].哈尔滨:东北林业大学,2006:16-32.
    [112]邸立明,詹长书,夏怀成.往复活塞式发动机多行程工作模式的研究[J].工程设计学报,2007,2(4):126-129.
    [113]陈波宁,曾科,周龙保.小型二冲程发动机电控燃油喷射分层扫气系统的研究[J].内燃机学报,2000,18(2):207-210.
    [114]宋如钢,杨延相,葛维晶,等. FAI直喷小型二冲程汽油机的试验研究[J].内燃机学报,2008,26(5):434-439.
    [115]商国华.二冲程发动机仍将是21世纪摩托车的主要动力源[J].摩托车技术,1999,(12):21-23.
    [116]董敬,庄志,常思勤.汽车拖拉机发动机(第3版)[M].北京:机械工业出版社,2007:40-42.
    [117]《汽车工程手册》编辑委员会.汽车工程手册·摩托车篇[M].北京:人民交通出版社,2001:P227-232
    [118]任光远,杨海青.某型活塞发动机气道稳流试验台测试与CFD仿真[J].重庆理工大学学报(自然科学),2012,02:11-16.
    [119]孙则强.柴油机进气道稳流试验研究及气体流动仿真[D].长春:吉林大学,2005:3-25.
    [120] AVL. AVL-Fire Version8CFD Workflow Manager v1.2User’s Guide[M].2003:1-10.
    [121]黄舒平.柴油机螺旋进气道流动实验与数值模拟[D].南昌:南昌大学,2011:5-41.
    [122]史宗庄,崔国起,刘元阁.二冲程内燃机气口配气相位角的计算方法[J].天津大学学报(自然科学与工程技术版).1999,32(4):418-422.
    [123]史宗庄,马其诚.二冲程内燃机气口比时面值计算方法的研究[J].内燃机学报.2000,18(1):104-106.
    [124]史宗庄.小型二冲程汽油机气口主要参数的计算和确定[J].小型内燃机.2000,29(3):16-24.
    [125]刘凤棣,刘京秋.小型二冲程汽油机缸体气口尺寸的确定及其对整机性能的影响[J].华北航天工业学院学报.2002,12(4):3-6.
    [126]李国祥. WD618.42柴油机配气凸轮廓线的改进设计[J].内燃机工程,2006,27(5):50-53.
    [127]毛崎波,蔡忆昔.配气凸轮优化设计综述[J].江苏理工大学学报,1997,3:27-31.
    [128]崔毅,宋义忠,戴正兴,等.以功率为目标的汽油机凸轮廓线优化研究[J].内燃机工程,2010,31(4):21-24.
    [129] Gonzalez-Palacios M A, Angeles J. Synthesis of Contact Surface of Spherical Cam-OscillatingRoller-Follower Mechanisms: A General Approach[J]. ASME J. of Mech. Des,1994,116(2):315-319.
    [130]赵韩等.凸轮机构设计[M].北京:高等教育出版社,1993:136-140.
    [131] Tsay D M, Wei H M. A General Approach to the Determination of Planar and Spacial CamProfiles[J]. ASME J. of Mech. Des,1996,118(2):259-265.
    [132]丁守宝,陈科. MasterCAM解析法设计凸轮轮廓曲线[J].现代制造工程,2005,8:48-50.
    [133]孙红霞,仪垂杰,邢普.基于ADAMS的配气凸轮轮廓曲线的设计[J].小型内燃机与摩托车,2007,36(5):15-17.
    [134]刁小旭,王胜华.利用TYCON软件优化摩托车发动机配气凸轮廓线[J].摩托车技术,2008,1:28-32.
    [135]赖晓丽.摩托车发动机凸轮设计及配气机构动力学分析[C]. AVL用户大会论文,2008:78-82.
    [136]刘小平.可变凸轮轴配气相位机构的测试及分析[D].天津:天津大学,2009:4-12.
    [137] Mager G. Variable Valve Timing Control for Four-stroke Engine-Using Transfer Drive BetweenCrankshaft and Camshaft for Entry and Exit Valves Allowing Relative Phase Shift[P]. PatentNo. DE3842267-A,1990-6-21.
    [138] Eichenberg A, Gregor M, Meintschel J. Cam Shaft Adjusting Device Has Locking ElementRigidly Locking at Least Two of at Least Three Shafts Rotationally Secured With Each OtherIrrespective of Operating Conditions[P]. Patent No. WO2006005423-A1; DE102004033894-A1;US2007144476-A1; JP2008506072-W; US7451731-B2; DE102004033894-B4,2006-1-19.
    [139] Ma J A, Ma J, Ma A. Camshaft Drive System for Selectable Two-stroke/Four-stroke InternalCombustion Engine with Exhaust and Intake Poppet Valves Opened and Closed byCamshafts[P]. Patent No. WO200206639-A; EP1301692-A; US6499452-B1;WO200206639-A1; GB2364745-A; AU200170788-A; US2002117133-A1; US6499452-B2;CN1388852-A; EP1301692-A1; EP1301692-B1; DE60117553-E; DE60117553-T2;CN1291137-C,2002-01-24.
    [140] Philippe S F, Laffiitte M, Peter B, et al. Varlable Cam Phaser Apparatus[P]. Patent No.US20070169731-A1,2007-7-26.
    [141] Pierik R J. Planetary Cam Phaser for Engine Timing Drive of Motor Vehicle-Has WormElectric Actuator, Selectively Adjusting Angular Position of Sun Gear, Which Includes WormGear Element Coaxial with and Drivably Connected to Sun Gear[P]. Patent No. US5680837-A,1997-10-28.
    [142] Meintschel J. Adjustment Mechanism for Camshaft Has Coupling Device in Form of ContactLess Magnetic Coupling, and Related Brake Device[P]. Patent No. WO2005111384-A1;DE102004023548-A1; US2007095318-A1; JP2007537387-W; JP4624409-B2; US7377244-B2,2005-11-24.
    [143] Oshima Y, Ichinomiya B, Takatoshi N. IC Engine Camshaft Drive-Has Sun and Planet Gearswith Planet Carrier Controlled to Vary Timing[P]. Patent No. DE2842154-A1; DE2842154-A;US4305352-A,1979-4-26.
    [144] Okuda T, Shinya Y, Shimizu T, et al. Rotational Phase Controlling Apparatus for AutomotiveEngine Valve Timing Control[P]. Patent No. EP918142-A; DE69818946-T2; EP918142-A2;JP11153008-A; JP11280422-A; US6129061-A; EP918142-B1; DE69818946-E; JP3785797-B2;JP3796931-B2,1998-11.19.
    [145] Luo J, Qiu X, Wang Y. Variable Phase Mechanism for Automobile Engine Valve[P]. Patent No.CN101338689-A; CN101338689-B,2009-1-7.
    [146]高峰.机构学研究现状与发展趋势的思考[J].机械工程学报,2005,41(8):3-17
    [147]张雪峰.线性时变周期系统的能控性、稳定性分析与粗糙控制[D].沈阳:东北大学,2009:44-48.
    [148]胡金海,谢寿生,胡剑锋,等.基于粗糙集理论的航空发动机性能综合评判[J].系统工程与电子技术,2006,28(5):704-707.
    [149]安二中.发动机性能的模糊物元综合评价[J].机床与液压,2004(10):163-164.
    [150]柴保明,王祖讷.发动机整机性能的综合评价[J].内燃机学报,2002,20(1):67-70.
    [151]张志强,徐斌,何勇灵,等.基于AHP评价方法的发动机性能评价[J].兵工学报,2008,29(5):625-628.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700